| /* |
| * ARM AdvSIMD / SVE Vector Operations |
| * |
| * Copyright (c) 2018 Linaro |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/helper-proto.h" |
| #include "tcg/tcg-gvec-desc.h" |
| #include "fpu/softfloat.h" |
| |
| |
| /* Note that vector data is stored in host-endian 64-bit chunks, |
| so addressing units smaller than that needs a host-endian fixup. */ |
| #ifdef HOST_WORDS_BIGENDIAN |
| #define H1(x) ((x) ^ 7) |
| #define H2(x) ((x) ^ 3) |
| #define H4(x) ((x) ^ 1) |
| #else |
| #define H1(x) (x) |
| #define H2(x) (x) |
| #define H4(x) (x) |
| #endif |
| |
| #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q |
| |
| static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz) |
| { |
| uint64_t *d = vd + opr_sz; |
| uintptr_t i; |
| |
| for (i = opr_sz; i < max_sz; i += 8) { |
| *d++ = 0; |
| } |
| } |
| |
| /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */ |
| static uint16_t inl_qrdmlah_s16(CPUARMState *env, int16_t src1, |
| int16_t src2, int16_t src3) |
| { |
| /* Simplify: |
| * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16 |
| * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15 |
| */ |
| int32_t ret = (int32_t)src1 * src2; |
| ret = ((int32_t)src3 << 15) + ret + (1 << 14); |
| ret >>= 15; |
| if (ret != (int16_t)ret) { |
| SET_QC(); |
| ret = (ret < 0 ? -0x8000 : 0x7fff); |
| } |
| return ret; |
| } |
| |
| uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1, |
| uint32_t src2, uint32_t src3) |
| { |
| uint16_t e1 = inl_qrdmlah_s16(env, src1, src2, src3); |
| uint16_t e2 = inl_qrdmlah_s16(env, src1 >> 16, src2 >> 16, src3 >> 16); |
| return deposit32(e1, 16, 16, e2); |
| } |
| |
| void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm, |
| void *ve, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| int16_t *d = vd; |
| int16_t *n = vn; |
| int16_t *m = vm; |
| CPUARMState *env = ve; |
| uintptr_t i; |
| |
| for (i = 0; i < opr_sz / 2; ++i) { |
| d[i] = inl_qrdmlah_s16(env, n[i], m[i], d[i]); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */ |
| static uint16_t inl_qrdmlsh_s16(CPUARMState *env, int16_t src1, |
| int16_t src2, int16_t src3) |
| { |
| /* Similarly, using subtraction: |
| * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16 |
| * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15 |
| */ |
| int32_t ret = (int32_t)src1 * src2; |
| ret = ((int32_t)src3 << 15) - ret + (1 << 14); |
| ret >>= 15; |
| if (ret != (int16_t)ret) { |
| SET_QC(); |
| ret = (ret < 0 ? -0x8000 : 0x7fff); |
| } |
| return ret; |
| } |
| |
| uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1, |
| uint32_t src2, uint32_t src3) |
| { |
| uint16_t e1 = inl_qrdmlsh_s16(env, src1, src2, src3); |
| uint16_t e2 = inl_qrdmlsh_s16(env, src1 >> 16, src2 >> 16, src3 >> 16); |
| return deposit32(e1, 16, 16, e2); |
| } |
| |
| void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm, |
| void *ve, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| int16_t *d = vd; |
| int16_t *n = vn; |
| int16_t *m = vm; |
| CPUARMState *env = ve; |
| uintptr_t i; |
| |
| for (i = 0; i < opr_sz / 2; ++i) { |
| d[i] = inl_qrdmlsh_s16(env, n[i], m[i], d[i]); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */ |
| uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1, |
| int32_t src2, int32_t src3) |
| { |
| /* Simplify similarly to int_qrdmlah_s16 above. */ |
| int64_t ret = (int64_t)src1 * src2; |
| ret = ((int64_t)src3 << 31) + ret + (1 << 30); |
| ret >>= 31; |
| if (ret != (int32_t)ret) { |
| SET_QC(); |
| ret = (ret < 0 ? INT32_MIN : INT32_MAX); |
| } |
| return ret; |
| } |
| |
| void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm, |
| void *ve, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| int32_t *d = vd; |
| int32_t *n = vn; |
| int32_t *m = vm; |
| CPUARMState *env = ve; |
| uintptr_t i; |
| |
| for (i = 0; i < opr_sz / 4; ++i) { |
| d[i] = helper_neon_qrdmlah_s32(env, n[i], m[i], d[i]); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */ |
| uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1, |
| int32_t src2, int32_t src3) |
| { |
| /* Simplify similarly to int_qrdmlsh_s16 above. */ |
| int64_t ret = (int64_t)src1 * src2; |
| ret = ((int64_t)src3 << 31) - ret + (1 << 30); |
| ret >>= 31; |
| if (ret != (int32_t)ret) { |
| SET_QC(); |
| ret = (ret < 0 ? INT32_MIN : INT32_MAX); |
| } |
| return ret; |
| } |
| |
| void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm, |
| void *ve, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| int32_t *d = vd; |
| int32_t *n = vn; |
| int32_t *m = vm; |
| CPUARMState *env = ve; |
| uintptr_t i; |
| |
| for (i = 0; i < opr_sz / 4; ++i) { |
| d[i] = helper_neon_qrdmlsh_s32(env, n[i], m[i], d[i]); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float16 *d = vd; |
| float16 *n = vn; |
| float16 *m = vm; |
| float_status *fpst = vfpst; |
| uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = neg_real ^ 1; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 15; |
| neg_imag <<= 15; |
| |
| for (i = 0; i < opr_sz / 2; i += 2) { |
| float16 e0 = n[H2(i)]; |
| float16 e1 = m[H2(i + 1)] ^ neg_imag; |
| float16 e2 = n[H2(i + 1)]; |
| float16 e3 = m[H2(i)] ^ neg_real; |
| |
| d[H2(i)] = float16_add(e0, e1, fpst); |
| d[H2(i + 1)] = float16_add(e2, e3, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float32 *d = vd; |
| float32 *n = vn; |
| float32 *m = vm; |
| float_status *fpst = vfpst; |
| uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = neg_real ^ 1; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 31; |
| neg_imag <<= 31; |
| |
| for (i = 0; i < opr_sz / 4; i += 2) { |
| float32 e0 = n[H4(i)]; |
| float32 e1 = m[H4(i + 1)] ^ neg_imag; |
| float32 e2 = n[H4(i + 1)]; |
| float32 e3 = m[H4(i)] ^ neg_real; |
| |
| d[H4(i)] = float32_add(e0, e1, fpst); |
| d[H4(i + 1)] = float32_add(e2, e3, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float64 *d = vd; |
| float64 *n = vn; |
| float64 *m = vm; |
| float_status *fpst = vfpst; |
| uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1); |
| uint64_t neg_imag = neg_real ^ 1; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 63; |
| neg_imag <<= 63; |
| |
| for (i = 0; i < opr_sz / 8; i += 2) { |
| float64 e0 = n[i]; |
| float64 e1 = m[i + 1] ^ neg_imag; |
| float64 e2 = n[i + 1]; |
| float64 e3 = m[i] ^ neg_real; |
| |
| d[i] = float64_add(e0, e1, fpst); |
| d[i + 1] = float64_add(e2, e3, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float16 *d = vd; |
| float16 *n = vn; |
| float16 *m = vm; |
| float_status *fpst = vfpst; |
| intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| uint32_t neg_real = flip ^ neg_imag; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 15; |
| neg_imag <<= 15; |
| |
| for (i = 0; i < opr_sz / 2; i += 2) { |
| float16 e2 = n[H2(i + flip)]; |
| float16 e1 = m[H2(i + flip)] ^ neg_real; |
| float16 e4 = e2; |
| float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag; |
| |
| d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst); |
| d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float16 *d = vd; |
| float16 *n = vn; |
| float16 *m = vm; |
| float_status *fpst = vfpst; |
| intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| uint32_t neg_real = flip ^ neg_imag; |
| uintptr_t i; |
| float16 e1 = m[H2(flip)]; |
| float16 e3 = m[H2(1 - flip)]; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 15; |
| neg_imag <<= 15; |
| e1 ^= neg_real; |
| e3 ^= neg_imag; |
| |
| for (i = 0; i < opr_sz / 2; i += 2) { |
| float16 e2 = n[H2(i + flip)]; |
| float16 e4 = e2; |
| |
| d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst); |
| d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float32 *d = vd; |
| float32 *n = vn; |
| float32 *m = vm; |
| float_status *fpst = vfpst; |
| intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| uint32_t neg_real = flip ^ neg_imag; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 31; |
| neg_imag <<= 31; |
| |
| for (i = 0; i < opr_sz / 4; i += 2) { |
| float32 e2 = n[H4(i + flip)]; |
| float32 e1 = m[H4(i + flip)] ^ neg_real; |
| float32 e4 = e2; |
| float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag; |
| |
| d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst); |
| d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float32 *d = vd; |
| float32 *n = vn; |
| float32 *m = vm; |
| float_status *fpst = vfpst; |
| intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| uint32_t neg_real = flip ^ neg_imag; |
| uintptr_t i; |
| float32 e1 = m[H4(flip)]; |
| float32 e3 = m[H4(1 - flip)]; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 31; |
| neg_imag <<= 31; |
| e1 ^= neg_real; |
| e3 ^= neg_imag; |
| |
| for (i = 0; i < opr_sz / 4; i += 2) { |
| float32 e2 = n[H4(i + flip)]; |
| float32 e4 = e2; |
| |
| d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst); |
| d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float64 *d = vd; |
| float64 *n = vn; |
| float64 *m = vm; |
| float_status *fpst = vfpst; |
| intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| uint64_t neg_real = flip ^ neg_imag; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 63; |
| neg_imag <<= 63; |
| |
| for (i = 0; i < opr_sz / 8; i += 2) { |
| float64 e2 = n[i + flip]; |
| float64 e1 = m[i + flip] ^ neg_real; |
| float64 e4 = e2; |
| float64 e3 = m[i + 1 - flip] ^ neg_imag; |
| |
| d[i] = float64_muladd(e2, e1, d[i], 0, fpst); |
| d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |