| /* |
| * QEMU dump |
| * |
| * Copyright Fujitsu, Corp. 2011, 2012 |
| * |
| * Authors: |
| * Wen Congyang <wency@cn.fujitsu.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu-common.h" |
| #include "elf.h" |
| #include "cpu.h" |
| #include "cpu-all.h" |
| #include "targphys.h" |
| #include "monitor.h" |
| #include "kvm.h" |
| #include "dump.h" |
| #include "sysemu.h" |
| #include "memory_mapping.h" |
| #include "error.h" |
| #include "qmp-commands.h" |
| #include "gdbstub.h" |
| |
| static uint16_t cpu_convert_to_target16(uint16_t val, int endian) |
| { |
| if (endian == ELFDATA2LSB) { |
| val = cpu_to_le16(val); |
| } else { |
| val = cpu_to_be16(val); |
| } |
| |
| return val; |
| } |
| |
| static uint32_t cpu_convert_to_target32(uint32_t val, int endian) |
| { |
| if (endian == ELFDATA2LSB) { |
| val = cpu_to_le32(val); |
| } else { |
| val = cpu_to_be32(val); |
| } |
| |
| return val; |
| } |
| |
| static uint64_t cpu_convert_to_target64(uint64_t val, int endian) |
| { |
| if (endian == ELFDATA2LSB) { |
| val = cpu_to_le64(val); |
| } else { |
| val = cpu_to_be64(val); |
| } |
| |
| return val; |
| } |
| |
| typedef struct DumpState { |
| ArchDumpInfo dump_info; |
| MemoryMappingList list; |
| uint16_t phdr_num; |
| uint32_t sh_info; |
| bool have_section; |
| bool resume; |
| size_t note_size; |
| target_phys_addr_t memory_offset; |
| int fd; |
| |
| RAMBlock *block; |
| ram_addr_t start; |
| bool has_filter; |
| int64_t begin; |
| int64_t length; |
| Error **errp; |
| } DumpState; |
| |
| static int dump_cleanup(DumpState *s) |
| { |
| int ret = 0; |
| |
| memory_mapping_list_free(&s->list); |
| if (s->fd != -1) { |
| close(s->fd); |
| } |
| if (s->resume) { |
| vm_start(); |
| } |
| |
| return ret; |
| } |
| |
| static void dump_error(DumpState *s, const char *reason) |
| { |
| dump_cleanup(s); |
| } |
| |
| static int fd_write_vmcore(void *buf, size_t size, void *opaque) |
| { |
| DumpState *s = opaque; |
| int fd = s->fd; |
| size_t writen_size; |
| |
| /* The fd may be passed from user, and it can be non-blocked */ |
| while (size) { |
| writen_size = qemu_write_full(fd, buf, size); |
| if (writen_size != size && errno != EAGAIN) { |
| return -1; |
| } |
| |
| buf += writen_size; |
| size -= writen_size; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf64_header(DumpState *s) |
| { |
| Elf64_Ehdr elf_header; |
| int ret; |
| int endian = s->dump_info.d_endian; |
| |
| memset(&elf_header, 0, sizeof(Elf64_Ehdr)); |
| memcpy(&elf_header, ELFMAG, SELFMAG); |
| elf_header.e_ident[EI_CLASS] = ELFCLASS64; |
| elf_header.e_ident[EI_DATA] = s->dump_info.d_endian; |
| elf_header.e_ident[EI_VERSION] = EV_CURRENT; |
| elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian); |
| elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine, |
| endian); |
| elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian); |
| elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian); |
| elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian); |
| elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr), |
| endian); |
| elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian); |
| if (s->have_section) { |
| uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info; |
| |
| elf_header.e_shoff = cpu_convert_to_target64(shoff, endian); |
| elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr), |
| endian); |
| elf_header.e_shnum = cpu_convert_to_target16(1, endian); |
| } |
| |
| ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write elf header.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf32_header(DumpState *s) |
| { |
| Elf32_Ehdr elf_header; |
| int ret; |
| int endian = s->dump_info.d_endian; |
| |
| memset(&elf_header, 0, sizeof(Elf32_Ehdr)); |
| memcpy(&elf_header, ELFMAG, SELFMAG); |
| elf_header.e_ident[EI_CLASS] = ELFCLASS32; |
| elf_header.e_ident[EI_DATA] = endian; |
| elf_header.e_ident[EI_VERSION] = EV_CURRENT; |
| elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian); |
| elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine, |
| endian); |
| elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian); |
| elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian); |
| elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian); |
| elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr), |
| endian); |
| elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian); |
| if (s->have_section) { |
| uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info; |
| |
| elf_header.e_shoff = cpu_convert_to_target32(shoff, endian); |
| elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr), |
| endian); |
| elf_header.e_shnum = cpu_convert_to_target16(1, endian); |
| } |
| |
| ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write elf header.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, |
| int phdr_index, target_phys_addr_t offset) |
| { |
| Elf64_Phdr phdr; |
| int ret; |
| int endian = s->dump_info.d_endian; |
| |
| memset(&phdr, 0, sizeof(Elf64_Phdr)); |
| phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian); |
| phdr.p_offset = cpu_convert_to_target64(offset, endian); |
| phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian); |
| if (offset == -1) { |
| /* When the memory is not stored into vmcore, offset will be -1 */ |
| phdr.p_filesz = 0; |
| } else { |
| phdr.p_filesz = cpu_convert_to_target64(memory_mapping->length, endian); |
| } |
| phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian); |
| phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian); |
| |
| ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write program header table.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, |
| int phdr_index, target_phys_addr_t offset) |
| { |
| Elf32_Phdr phdr; |
| int ret; |
| int endian = s->dump_info.d_endian; |
| |
| memset(&phdr, 0, sizeof(Elf32_Phdr)); |
| phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian); |
| phdr.p_offset = cpu_convert_to_target32(offset, endian); |
| phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian); |
| if (offset == -1) { |
| /* When the memory is not stored into vmcore, offset will be -1 */ |
| phdr.p_filesz = 0; |
| } else { |
| phdr.p_filesz = cpu_convert_to_target32(memory_mapping->length, endian); |
| } |
| phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian); |
| phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian); |
| |
| ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write program header table.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf64_note(DumpState *s) |
| { |
| Elf64_Phdr phdr; |
| int endian = s->dump_info.d_endian; |
| target_phys_addr_t begin = s->memory_offset - s->note_size; |
| int ret; |
| |
| memset(&phdr, 0, sizeof(Elf64_Phdr)); |
| phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian); |
| phdr.p_offset = cpu_convert_to_target64(begin, endian); |
| phdr.p_paddr = 0; |
| phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian); |
| phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian); |
| phdr.p_vaddr = 0; |
| |
| ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write program header table.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf64_notes(DumpState *s) |
| { |
| CPUArchState *env; |
| int ret; |
| int id; |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| id = cpu_index(env); |
| ret = cpu_write_elf64_note(fd_write_vmcore, env, id, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write elf notes.\n"); |
| return -1; |
| } |
| } |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| ret = cpu_write_elf64_qemunote(fd_write_vmcore, env, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write CPU status.\n"); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf32_note(DumpState *s) |
| { |
| target_phys_addr_t begin = s->memory_offset - s->note_size; |
| Elf32_Phdr phdr; |
| int endian = s->dump_info.d_endian; |
| int ret; |
| |
| memset(&phdr, 0, sizeof(Elf32_Phdr)); |
| phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian); |
| phdr.p_offset = cpu_convert_to_target32(begin, endian); |
| phdr.p_paddr = 0; |
| phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian); |
| phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian); |
| phdr.p_vaddr = 0; |
| |
| ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write program header table.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf32_notes(DumpState *s) |
| { |
| CPUArchState *env; |
| int ret; |
| int id; |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| id = cpu_index(env); |
| ret = cpu_write_elf32_note(fd_write_vmcore, env, id, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write elf notes.\n"); |
| return -1; |
| } |
| } |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| ret = cpu_write_elf32_qemunote(fd_write_vmcore, env, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write CPU status.\n"); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf_section(DumpState *s, int type) |
| { |
| Elf32_Shdr shdr32; |
| Elf64_Shdr shdr64; |
| int endian = s->dump_info.d_endian; |
| int shdr_size; |
| void *shdr; |
| int ret; |
| |
| if (type == 0) { |
| shdr_size = sizeof(Elf32_Shdr); |
| memset(&shdr32, 0, shdr_size); |
| shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian); |
| shdr = &shdr32; |
| } else { |
| shdr_size = sizeof(Elf64_Shdr); |
| memset(&shdr64, 0, shdr_size); |
| shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian); |
| shdr = &shdr64; |
| } |
| |
| ret = fd_write_vmcore(&shdr, shdr_size, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write section header table.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_data(DumpState *s, void *buf, int length) |
| { |
| int ret; |
| |
| ret = fd_write_vmcore(buf, length, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to save memory.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* write the memroy to vmcore. 1 page per I/O. */ |
| static int write_memory(DumpState *s, RAMBlock *block, ram_addr_t start, |
| int64_t size) |
| { |
| int64_t i; |
| int ret; |
| |
| for (i = 0; i < size / TARGET_PAGE_SIZE; i++) { |
| ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE, |
| TARGET_PAGE_SIZE); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| if ((size % TARGET_PAGE_SIZE) != 0) { |
| ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE, |
| size % TARGET_PAGE_SIZE); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* get the memory's offset in the vmcore */ |
| static target_phys_addr_t get_offset(target_phys_addr_t phys_addr, |
| DumpState *s) |
| { |
| RAMBlock *block; |
| target_phys_addr_t offset = s->memory_offset; |
| int64_t size_in_block, start; |
| |
| if (s->has_filter) { |
| if (phys_addr < s->begin || phys_addr >= s->begin + s->length) { |
| return -1; |
| } |
| } |
| |
| QLIST_FOREACH(block, &ram_list.blocks, next) { |
| if (s->has_filter) { |
| if (block->offset >= s->begin + s->length || |
| block->offset + block->length <= s->begin) { |
| /* This block is out of the range */ |
| continue; |
| } |
| |
| if (s->begin <= block->offset) { |
| start = block->offset; |
| } else { |
| start = s->begin; |
| } |
| |
| size_in_block = block->length - (start - block->offset); |
| if (s->begin + s->length < block->offset + block->length) { |
| size_in_block -= block->offset + block->length - |
| (s->begin + s->length); |
| } |
| } else { |
| start = block->offset; |
| size_in_block = block->length; |
| } |
| |
| if (phys_addr >= start && phys_addr < start + size_in_block) { |
| return phys_addr - start + offset; |
| } |
| |
| offset += size_in_block; |
| } |
| |
| return -1; |
| } |
| |
| static int write_elf_loads(DumpState *s) |
| { |
| target_phys_addr_t offset; |
| MemoryMapping *memory_mapping; |
| uint32_t phdr_index = 1; |
| int ret; |
| uint32_t max_index; |
| |
| if (s->have_section) { |
| max_index = s->sh_info; |
| } else { |
| max_index = s->phdr_num; |
| } |
| |
| QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { |
| offset = get_offset(memory_mapping->phys_addr, s); |
| if (s->dump_info.d_class == ELFCLASS64) { |
| ret = write_elf64_load(s, memory_mapping, phdr_index++, offset); |
| } else { |
| ret = write_elf32_load(s, memory_mapping, phdr_index++, offset); |
| } |
| |
| if (ret < 0) { |
| return -1; |
| } |
| |
| if (phdr_index >= max_index) { |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* write elf header, PT_NOTE and elf note to vmcore. */ |
| static int dump_begin(DumpState *s) |
| { |
| int ret; |
| |
| /* |
| * the vmcore's format is: |
| * -------------- |
| * | elf header | |
| * -------------- |
| * | PT_NOTE | |
| * -------------- |
| * | PT_LOAD | |
| * -------------- |
| * | ...... | |
| * -------------- |
| * | PT_LOAD | |
| * -------------- |
| * | sec_hdr | |
| * -------------- |
| * | elf note | |
| * -------------- |
| * | memory | |
| * -------------- |
| * |
| * we only know where the memory is saved after we write elf note into |
| * vmcore. |
| */ |
| |
| /* write elf header to vmcore */ |
| if (s->dump_info.d_class == ELFCLASS64) { |
| ret = write_elf64_header(s); |
| } else { |
| ret = write_elf32_header(s); |
| } |
| if (ret < 0) { |
| return -1; |
| } |
| |
| if (s->dump_info.d_class == ELFCLASS64) { |
| /* write PT_NOTE to vmcore */ |
| if (write_elf64_note(s) < 0) { |
| return -1; |
| } |
| |
| /* write all PT_LOAD to vmcore */ |
| if (write_elf_loads(s) < 0) { |
| return -1; |
| } |
| |
| /* write section to vmcore */ |
| if (s->have_section) { |
| if (write_elf_section(s, 1) < 0) { |
| return -1; |
| } |
| } |
| |
| /* write notes to vmcore */ |
| if (write_elf64_notes(s) < 0) { |
| return -1; |
| } |
| |
| } else { |
| /* write PT_NOTE to vmcore */ |
| if (write_elf32_note(s) < 0) { |
| return -1; |
| } |
| |
| /* write all PT_LOAD to vmcore */ |
| if (write_elf_loads(s) < 0) { |
| return -1; |
| } |
| |
| /* write section to vmcore */ |
| if (s->have_section) { |
| if (write_elf_section(s, 0) < 0) { |
| return -1; |
| } |
| } |
| |
| /* write notes to vmcore */ |
| if (write_elf32_notes(s) < 0) { |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* write PT_LOAD to vmcore */ |
| static int dump_completed(DumpState *s) |
| { |
| dump_cleanup(s); |
| return 0; |
| } |
| |
| static int get_next_block(DumpState *s, RAMBlock *block) |
| { |
| while (1) { |
| block = QLIST_NEXT(block, next); |
| if (!block) { |
| /* no more block */ |
| return 1; |
| } |
| |
| s->start = 0; |
| s->block = block; |
| if (s->has_filter) { |
| if (block->offset >= s->begin + s->length || |
| block->offset + block->length <= s->begin) { |
| /* This block is out of the range */ |
| continue; |
| } |
| |
| if (s->begin > block->offset) { |
| s->start = s->begin - block->offset; |
| } |
| } |
| |
| return 0; |
| } |
| } |
| |
| /* write all memory to vmcore */ |
| static int dump_iterate(DumpState *s) |
| { |
| RAMBlock *block; |
| int64_t size; |
| int ret; |
| |
| while (1) { |
| block = s->block; |
| |
| size = block->length; |
| if (s->has_filter) { |
| size -= s->start; |
| if (s->begin + s->length < block->offset + block->length) { |
| size -= block->offset + block->length - (s->begin + s->length); |
| } |
| } |
| ret = write_memory(s, block, s->start, size); |
| if (ret == -1) { |
| return ret; |
| } |
| |
| ret = get_next_block(s, block); |
| if (ret == 1) { |
| dump_completed(s); |
| return 0; |
| } |
| } |
| } |
| |
| static int create_vmcore(DumpState *s) |
| { |
| int ret; |
| |
| ret = dump_begin(s); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| ret = dump_iterate(s); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static ram_addr_t get_start_block(DumpState *s) |
| { |
| RAMBlock *block; |
| |
| if (!s->has_filter) { |
| s->block = QLIST_FIRST(&ram_list.blocks); |
| return 0; |
| } |
| |
| QLIST_FOREACH(block, &ram_list.blocks, next) { |
| if (block->offset >= s->begin + s->length || |
| block->offset + block->length <= s->begin) { |
| /* This block is out of the range */ |
| continue; |
| } |
| |
| s->block = block; |
| if (s->begin > block->offset) { |
| s->start = s->begin - block->offset; |
| } else { |
| s->start = 0; |
| } |
| return s->start; |
| } |
| |
| return -1; |
| } |
| |
| static int dump_init(DumpState *s, int fd, bool paging, bool has_filter, |
| int64_t begin, int64_t length, Error **errp) |
| { |
| CPUArchState *env; |
| int nr_cpus; |
| int ret; |
| |
| if (runstate_is_running()) { |
| vm_stop(RUN_STATE_SAVE_VM); |
| s->resume = true; |
| } else { |
| s->resume = false; |
| } |
| |
| s->errp = errp; |
| s->fd = fd; |
| s->has_filter = has_filter; |
| s->begin = begin; |
| s->length = length; |
| s->start = get_start_block(s); |
| if (s->start == -1) { |
| error_set(errp, QERR_INVALID_PARAMETER, "begin"); |
| goto cleanup; |
| } |
| |
| /* |
| * get dump info: endian, class and architecture. |
| * If the target architecture is not supported, cpu_get_dump_info() will |
| * return -1. |
| * |
| * if we use kvm, we should synchronize the register before we get dump |
| * info. |
| */ |
| nr_cpus = 0; |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| cpu_synchronize_state(env); |
| nr_cpus++; |
| } |
| |
| ret = cpu_get_dump_info(&s->dump_info); |
| if (ret < 0) { |
| error_set(errp, QERR_UNSUPPORTED); |
| goto cleanup; |
| } |
| |
| s->note_size = cpu_get_note_size(s->dump_info.d_class, |
| s->dump_info.d_machine, nr_cpus); |
| if (ret < 0) { |
| error_set(errp, QERR_UNSUPPORTED); |
| goto cleanup; |
| } |
| |
| /* get memory mapping */ |
| memory_mapping_list_init(&s->list); |
| if (paging) { |
| qemu_get_guest_memory_mapping(&s->list); |
| } else { |
| qemu_get_guest_simple_memory_mapping(&s->list); |
| } |
| |
| if (s->has_filter) { |
| memory_mapping_filter(&s->list, s->begin, s->length); |
| } |
| |
| /* |
| * calculate phdr_num |
| * |
| * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow |
| */ |
| s->phdr_num = 1; /* PT_NOTE */ |
| if (s->list.num < UINT16_MAX - 2) { |
| s->phdr_num += s->list.num; |
| s->have_section = false; |
| } else { |
| s->have_section = true; |
| s->phdr_num = PN_XNUM; |
| s->sh_info = 1; /* PT_NOTE */ |
| |
| /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */ |
| if (s->list.num <= UINT32_MAX - 1) { |
| s->sh_info += s->list.num; |
| } else { |
| s->sh_info = UINT32_MAX; |
| } |
| } |
| |
| if (s->dump_info.d_class == ELFCLASS64) { |
| if (s->have_section) { |
| s->memory_offset = sizeof(Elf64_Ehdr) + |
| sizeof(Elf64_Phdr) * s->sh_info + |
| sizeof(Elf64_Shdr) + s->note_size; |
| } else { |
| s->memory_offset = sizeof(Elf64_Ehdr) + |
| sizeof(Elf64_Phdr) * s->phdr_num + s->note_size; |
| } |
| } else { |
| if (s->have_section) { |
| s->memory_offset = sizeof(Elf32_Ehdr) + |
| sizeof(Elf32_Phdr) * s->sh_info + |
| sizeof(Elf32_Shdr) + s->note_size; |
| } else { |
| s->memory_offset = sizeof(Elf32_Ehdr) + |
| sizeof(Elf32_Phdr) * s->phdr_num + s->note_size; |
| } |
| } |
| |
| return 0; |
| |
| cleanup: |
| if (s->resume) { |
| vm_start(); |
| } |
| |
| return -1; |
| } |
| |
| void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin, |
| int64_t begin, bool has_length, int64_t length, |
| Error **errp) |
| { |
| const char *p; |
| int fd = -1; |
| DumpState *s; |
| int ret; |
| |
| if (has_begin && !has_length) { |
| error_set(errp, QERR_MISSING_PARAMETER, "length"); |
| return; |
| } |
| if (!has_begin && has_length) { |
| error_set(errp, QERR_MISSING_PARAMETER, "begin"); |
| return; |
| } |
| |
| #if !defined(WIN32) |
| if (strstart(file, "fd:", &p)) { |
| fd = monitor_get_fd(cur_mon, p); |
| if (fd == -1) { |
| error_set(errp, QERR_FD_NOT_FOUND, p); |
| return; |
| } |
| } |
| #endif |
| |
| if (strstart(file, "file:", &p)) { |
| fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); |
| if (fd < 0) { |
| error_set(errp, QERR_OPEN_FILE_FAILED, p); |
| return; |
| } |
| } |
| |
| if (fd == -1) { |
| error_set(errp, QERR_INVALID_PARAMETER, "protocol"); |
| return; |
| } |
| |
| s = g_malloc(sizeof(DumpState)); |
| |
| ret = dump_init(s, fd, paging, has_begin, begin, length, errp); |
| if (ret < 0) { |
| g_free(s); |
| return; |
| } |
| |
| if (create_vmcore(s) < 0 && !error_is_set(s->errp)) { |
| error_set(errp, QERR_IO_ERROR); |
| } |
| |
| g_free(s); |
| } |