| /* |
| * ARM GIC support |
| * |
| * Copyright (c) 2012 Linaro Limited |
| * Copyright (c) 2015 Huawei. |
| * Copyright (c) 2015 Samsung Electronics Co., Ltd. |
| * Written by Peter Maydell |
| * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #ifndef HW_ARM_GICV3_COMMON_H |
| #define HW_ARM_GICV3_COMMON_H |
| |
| #include "hw/sysbus.h" |
| #include "hw/intc/arm_gic_common.h" |
| #include "qom/object.h" |
| |
| /* |
| * Maximum number of possible interrupts, determined by the GIC architecture. |
| * Note that this does not include LPIs. When implemented, these should be |
| * dealt with separately. |
| */ |
| #define GICV3_MAXIRQ 1020 |
| #define GICV3_MAXSPI (GICV3_MAXIRQ - GIC_INTERNAL) |
| |
| #define GICV3_LPI_INTID_START 8192 |
| |
| /* |
| * The redistributor in GICv3 has two 64KB frames per CPU; in |
| * GICv4 it has four 64KB frames per CPU. |
| */ |
| #define GICV3_REDIST_SIZE 0x20000 |
| #define GICV4_REDIST_SIZE 0x40000 |
| |
| /* Number of SGI target-list bits */ |
| #define GICV3_TARGETLIST_BITS 16 |
| |
| /* Maximum number of list registers (architectural limit) */ |
| #define GICV3_LR_MAX 16 |
| |
| /* For some distributor fields we want to model the array of 32-bit |
| * register values which hold various bitmaps corresponding to enabled, |
| * pending, etc bits. These macros and functions facilitate that; the |
| * APIs are generally modelled on the generic bitmap.h functions |
| * (which are unsuitable here because they use 'unsigned long' as the |
| * underlying storage type, which is very awkward when you need to |
| * access the data as 32-bit values.) |
| * Each bitmap contains a bit for each interrupt. Although there is |
| * space for the PPIs and SGIs, those bits (the first 32) are never |
| * used as that state lives in the redistributor. The unused bits are |
| * provided purely so that interrupt X's state is always in bit X; this |
| * avoids bugs where we forget to subtract GIC_INTERNAL from an |
| * interrupt number. |
| */ |
| #define GICV3_BMP_SIZE DIV_ROUND_UP(GICV3_MAXIRQ, 32) |
| |
| #define GIC_DECLARE_BITMAP(name) \ |
| uint32_t name[GICV3_BMP_SIZE] |
| |
| #define GIC_BIT_MASK(nr) (1U << ((nr) % 32)) |
| #define GIC_BIT_WORD(nr) ((nr) / 32) |
| |
| static inline void gic_bmp_set_bit(int nr, uint32_t *addr) |
| { |
| uint32_t mask = GIC_BIT_MASK(nr); |
| uint32_t *p = addr + GIC_BIT_WORD(nr); |
| |
| *p |= mask; |
| } |
| |
| static inline void gic_bmp_clear_bit(int nr, uint32_t *addr) |
| { |
| uint32_t mask = GIC_BIT_MASK(nr); |
| uint32_t *p = addr + GIC_BIT_WORD(nr); |
| |
| *p &= ~mask; |
| } |
| |
| static inline int gic_bmp_test_bit(int nr, const uint32_t *addr) |
| { |
| return 1U & (addr[GIC_BIT_WORD(nr)] >> (nr & 31)); |
| } |
| |
| static inline void gic_bmp_replace_bit(int nr, uint32_t *addr, int val) |
| { |
| uint32_t mask = GIC_BIT_MASK(nr); |
| uint32_t *p = addr + GIC_BIT_WORD(nr); |
| |
| *p &= ~mask; |
| *p |= (val & 1U) << (nr % 32); |
| } |
| |
| /* Return a pointer to the 32-bit word containing the specified bit. */ |
| static inline uint32_t *gic_bmp_ptr32(uint32_t *addr, int nr) |
| { |
| return addr + GIC_BIT_WORD(nr); |
| } |
| |
| typedef struct GICv3State GICv3State; |
| typedef struct GICv3CPUState GICv3CPUState; |
| |
| /* Some CPU interface registers come in three flavours: |
| * Group0, Group1 (Secure) and Group1 (NonSecure) |
| * (where the latter two are exposed as a single banked system register). |
| * In the state struct they are implemented as a 3-element array which |
| * can be indexed into by the GICV3_G0, GICV3_G1 and GICV3_G1NS constants. |
| * If the CPU doesn't support EL3 then the G1 element is unused. |
| * |
| * These constants are also used to communicate the group to use for |
| * an interrupt or SGI when it is passed between the cpu interface and |
| * the redistributor or distributor. For those purposes the receiving end |
| * must be prepared to cope with a Group 1 Secure interrupt even if it does |
| * not have security support enabled, because security can be disabled |
| * independently in the CPU and in the GIC. In that case the receiver should |
| * treat an incoming Group 1 Secure interrupt as if it were Group 0. |
| * (This architectural requirement is why the _G1 element is the unused one |
| * in a no-EL3 CPU: we would otherwise have to translate back and forth |
| * between (G0, G1NS) from the distributor and (G0, G1) in the CPU i/f.) |
| */ |
| #define GICV3_G0 0 |
| #define GICV3_G1 1 |
| #define GICV3_G1NS 2 |
| |
| /* ICC_CTLR_EL1, GICD_STATUSR and GICR_STATUSR are banked but not |
| * group-related, so those indices are just 0 for S and 1 for NS. |
| * (If the CPU or the GIC, respectively, don't support the Security |
| * extensions then the S element is unused.) |
| */ |
| #define GICV3_S 0 |
| #define GICV3_NS 1 |
| |
| typedef struct { |
| int irq; |
| uint8_t prio; |
| int grp; |
| bool nmi; |
| } PendingIrq; |
| |
| struct GICv3CPUState { |
| GICv3State *gic; |
| CPUState *cpu; |
| qemu_irq parent_irq; |
| qemu_irq parent_fiq; |
| qemu_irq parent_virq; |
| qemu_irq parent_vfiq; |
| qemu_irq parent_nmi; |
| qemu_irq parent_vnmi; |
| |
| /* Redistributor */ |
| uint32_t level; /* Current IRQ level */ |
| /* RD_base page registers */ |
| uint32_t gicr_ctlr; |
| uint64_t gicr_typer; |
| uint32_t gicr_statusr[2]; |
| uint32_t gicr_waker; |
| uint64_t gicr_propbaser; |
| uint64_t gicr_pendbaser; |
| /* SGI_base page registers */ |
| uint32_t gicr_igroupr0; |
| uint32_t gicr_ienabler0; |
| uint32_t gicr_ipendr0; |
| uint32_t gicr_iactiver0; |
| uint32_t gicr_inmir0; |
| uint32_t edge_trigger; /* ICFGR0 and ICFGR1 even bits */ |
| uint32_t gicr_igrpmodr0; |
| uint32_t gicr_nsacr; |
| uint8_t gicr_ipriorityr[GIC_INTERNAL]; |
| /* VLPI_base page registers */ |
| uint64_t gicr_vpropbaser; |
| uint64_t gicr_vpendbaser; |
| |
| /* CPU interface */ |
| uint64_t icc_sre_el1; |
| uint64_t icc_ctlr_el1[2]; |
| uint64_t icc_pmr_el1; |
| uint64_t icc_bpr[3]; |
| uint64_t icc_apr[3][4]; |
| uint64_t icc_igrpen[3]; |
| uint64_t icc_ctlr_el3; |
| |
| /* Virtualization control interface */ |
| uint64_t ich_apr[3][4]; /* ich_apr[GICV3_G1][x] never used */ |
| uint64_t ich_hcr_el2; |
| uint64_t ich_lr_el2[GICV3_LR_MAX]; |
| uint64_t ich_vmcr_el2; |
| |
| /* Properties of the CPU interface. These are initialized from |
| * the settings in the CPU proper. |
| * If the number of implemented list registers is 0 then the |
| * virtualization support is not implemented. |
| */ |
| int num_list_regs; |
| int vpribits; /* number of virtual priority bits */ |
| int vprebits; /* number of virtual preemption bits */ |
| int pribits; /* number of physical priority bits */ |
| int prebits; /* number of physical preemption bits */ |
| |
| /* Current highest priority pending interrupt for this CPU. |
| * This is cached information that can be recalculated from the |
| * real state above; it doesn't need to be migrated. |
| */ |
| PendingIrq hppi; |
| |
| /* |
| * Cached information recalculated from LPI tables |
| * in guest memory |
| */ |
| PendingIrq hpplpi; |
| |
| /* Cached information recalculated from vLPI tables in guest memory */ |
| PendingIrq hppvlpi; |
| |
| /* This is temporary working state, to avoid a malloc in gicv3_update() */ |
| bool seenbetter; |
| |
| /* |
| * Whether the CPU interface has NMI support (FEAT_GICv3_NMI). The |
| * CPU interface may support NMIs even when the GIC proper (what the |
| * spec calls the IRI; the redistributors and distributor) does not. |
| */ |
| bool nmi_support; |
| }; |
| |
| /* |
| * The redistributor pages might be split into more than one region |
| * on some machine types if there are many CPUs. |
| */ |
| typedef struct GICv3RedistRegion { |
| GICv3State *gic; |
| MemoryRegion iomem; |
| uint32_t cpuidx; /* index of first CPU this region covers */ |
| } GICv3RedistRegion; |
| |
| struct GICv3State { |
| /*< private >*/ |
| SysBusDevice parent_obj; |
| /*< public >*/ |
| |
| MemoryRegion iomem_dist; /* Distributor */ |
| GICv3RedistRegion *redist_regions; /* Redistributor Regions */ |
| uint32_t *redist_region_count; /* redistributor count within each region */ |
| uint32_t nb_redist_regions; /* number of redist regions */ |
| |
| uint32_t num_cpu; |
| uint32_t num_irq; |
| uint32_t revision; |
| bool lpi_enable; |
| bool nmi_support; |
| bool security_extn; |
| bool force_8bit_prio; |
| bool irq_reset_nonsecure; |
| bool gicd_no_migration_shift_bug; |
| |
| int dev_fd; /* kvm device fd if backed by kvm vgic support */ |
| Error *migration_blocker; |
| |
| MemoryRegion *dma; |
| AddressSpace dma_as; |
| |
| /* Distributor */ |
| |
| /* for a GIC with the security extensions the NS banked version of this |
| * register is just an alias of bit 1 of the S banked version. |
| */ |
| uint32_t gicd_ctlr; |
| uint32_t gicd_statusr[2]; |
| GIC_DECLARE_BITMAP(group); /* GICD_IGROUPR */ |
| GIC_DECLARE_BITMAP(grpmod); /* GICD_IGRPMODR */ |
| GIC_DECLARE_BITMAP(enabled); /* GICD_ISENABLER */ |
| GIC_DECLARE_BITMAP(pending); /* GICD_ISPENDR */ |
| GIC_DECLARE_BITMAP(active); /* GICD_ISACTIVER */ |
| GIC_DECLARE_BITMAP(level); /* Current level */ |
| GIC_DECLARE_BITMAP(edge_trigger); /* GICD_ICFGR even bits */ |
| GIC_DECLARE_BITMAP(nmi); /* GICD_INMIR */ |
| uint8_t gicd_ipriority[GICV3_MAXIRQ]; |
| uint64_t gicd_irouter[GICV3_MAXIRQ]; |
| /* Cached information: pointer to the cpu i/f for the CPUs specified |
| * in the IROUTER registers |
| */ |
| GICv3CPUState *gicd_irouter_target[GICV3_MAXIRQ]; |
| uint32_t gicd_nsacr[DIV_ROUND_UP(GICV3_MAXIRQ, 16)]; |
| |
| GICv3CPUState *cpu; |
| /* List of all ITSes connected to this GIC */ |
| GPtrArray *itslist; |
| }; |
| |
| #define GICV3_BITMAP_ACCESSORS(BMP) \ |
| static inline void gicv3_gicd_##BMP##_set(GICv3State *s, int irq) \ |
| { \ |
| gic_bmp_set_bit(irq, s->BMP); \ |
| } \ |
| static inline int gicv3_gicd_##BMP##_test(GICv3State *s, int irq) \ |
| { \ |
| return gic_bmp_test_bit(irq, s->BMP); \ |
| } \ |
| static inline void gicv3_gicd_##BMP##_clear(GICv3State *s, int irq) \ |
| { \ |
| gic_bmp_clear_bit(irq, s->BMP); \ |
| } \ |
| static inline void gicv3_gicd_##BMP##_replace(GICv3State *s, \ |
| int irq, int value) \ |
| { \ |
| gic_bmp_replace_bit(irq, s->BMP, value); \ |
| } |
| |
| GICV3_BITMAP_ACCESSORS(group) |
| GICV3_BITMAP_ACCESSORS(grpmod) |
| GICV3_BITMAP_ACCESSORS(enabled) |
| GICV3_BITMAP_ACCESSORS(pending) |
| GICV3_BITMAP_ACCESSORS(active) |
| GICV3_BITMAP_ACCESSORS(level) |
| GICV3_BITMAP_ACCESSORS(edge_trigger) |
| GICV3_BITMAP_ACCESSORS(nmi) |
| |
| #define TYPE_ARM_GICV3_COMMON "arm-gicv3-common" |
| typedef struct ARMGICv3CommonClass ARMGICv3CommonClass; |
| DECLARE_OBJ_CHECKERS(GICv3State, ARMGICv3CommonClass, |
| ARM_GICV3_COMMON, TYPE_ARM_GICV3_COMMON) |
| |
| struct ARMGICv3CommonClass { |
| /*< private >*/ |
| SysBusDeviceClass parent_class; |
| /*< public >*/ |
| |
| void (*pre_save)(GICv3State *s); |
| void (*post_load)(GICv3State *s); |
| }; |
| |
| void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, |
| const MemoryRegionOps *ops); |
| |
| /** |
| * gicv3_class_name |
| * |
| * Return name of GICv3 class to use depending on whether KVM acceleration is |
| * in use. May throw an error if the chosen implementation is not available. |
| * |
| * Returns: class name to use |
| */ |
| const char *gicv3_class_name(void); |
| |
| #endif |