| /* |
| * Xen HVM emulation support in KVM |
| * |
| * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. |
| * Copyright © 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "hw/xen/xen.h" |
| #include "sysemu/kvm_int.h" |
| #include "sysemu/kvm_xen.h" |
| #include "kvm/kvm_i386.h" |
| #include "exec/address-spaces.h" |
| #include "xen-emu.h" |
| #include "trace.h" |
| #include "sysemu/runstate.h" |
| |
| #include "hw/i386/kvm/xen_overlay.h" |
| |
| #include "hw/xen/interface/version.h" |
| #include "hw/xen/interface/sched.h" |
| #include "hw/xen/interface/memory.h" |
| #include "hw/xen/interface/hvm/hvm_op.h" |
| #include "hw/xen/interface/vcpu.h" |
| |
| #include "xen-compat.h" |
| |
| #ifdef TARGET_X86_64 |
| #define hypercall_compat32(longmode) (!(longmode)) |
| #else |
| #define hypercall_compat32(longmode) (false) |
| #endif |
| |
| static int kvm_gva_rw(CPUState *cs, uint64_t gva, void *_buf, size_t sz, |
| bool is_write) |
| { |
| uint8_t *buf = (uint8_t *)_buf; |
| int ret; |
| |
| while (sz) { |
| struct kvm_translation tr = { |
| .linear_address = gva, |
| }; |
| |
| size_t len = TARGET_PAGE_SIZE - (tr.linear_address & ~TARGET_PAGE_MASK); |
| if (len > sz) { |
| len = sz; |
| } |
| |
| ret = kvm_vcpu_ioctl(cs, KVM_TRANSLATE, &tr); |
| if (ret || !tr.valid || (is_write && !tr.writeable)) { |
| return -EFAULT; |
| } |
| |
| cpu_physical_memory_rw(tr.physical_address, buf, len, is_write); |
| |
| buf += len; |
| sz -= len; |
| gva += len; |
| } |
| |
| return 0; |
| } |
| |
| static inline int kvm_copy_from_gva(CPUState *cs, uint64_t gva, void *buf, |
| size_t sz) |
| { |
| return kvm_gva_rw(cs, gva, buf, sz, false); |
| } |
| |
| static inline int kvm_copy_to_gva(CPUState *cs, uint64_t gva, void *buf, |
| size_t sz) |
| { |
| return kvm_gva_rw(cs, gva, buf, sz, true); |
| } |
| |
| int kvm_xen_init(KVMState *s, uint32_t hypercall_msr) |
| { |
| const int required_caps = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | |
| KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | KVM_XEN_HVM_CONFIG_SHARED_INFO; |
| struct kvm_xen_hvm_config cfg = { |
| .msr = hypercall_msr, |
| .flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL, |
| }; |
| int xen_caps, ret; |
| |
| xen_caps = kvm_check_extension(s, KVM_CAP_XEN_HVM); |
| if (required_caps & ~xen_caps) { |
| error_report("kvm: Xen HVM guest support not present or insufficient"); |
| return -ENOSYS; |
| } |
| |
| if (xen_caps & KVM_XEN_HVM_CONFIG_EVTCHN_SEND) { |
| struct kvm_xen_hvm_attr ha = { |
| .type = KVM_XEN_ATTR_TYPE_XEN_VERSION, |
| .u.xen_version = s->xen_version, |
| }; |
| (void)kvm_vm_ioctl(s, KVM_XEN_HVM_SET_ATTR, &ha); |
| |
| cfg.flags |= KVM_XEN_HVM_CONFIG_EVTCHN_SEND; |
| } |
| |
| ret = kvm_vm_ioctl(s, KVM_XEN_HVM_CONFIG, &cfg); |
| if (ret < 0) { |
| error_report("kvm: Failed to enable Xen HVM support: %s", |
| strerror(-ret)); |
| return ret; |
| } |
| |
| s->xen_caps = xen_caps; |
| return 0; |
| } |
| |
| int kvm_xen_init_vcpu(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| int err; |
| |
| /* |
| * The kernel needs to know the Xen/ACPI vCPU ID because that's |
| * what the guest uses in hypercalls such as timers. It doesn't |
| * match the APIC ID which is generally used for talking to the |
| * kernel about vCPUs. And if vCPU threads race with creating |
| * their KVM vCPUs out of order, it doesn't necessarily match |
| * with the kernel's internal vCPU indices either. |
| */ |
| if (kvm_xen_has_cap(EVTCHN_SEND)) { |
| struct kvm_xen_vcpu_attr va = { |
| .type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID, |
| .u.vcpu_id = cs->cpu_index, |
| }; |
| err = kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &va); |
| if (err) { |
| error_report("kvm: Failed to set Xen vCPU ID attribute: %s", |
| strerror(-err)); |
| return err; |
| } |
| } |
| |
| env->xen_vcpu_info_gpa = INVALID_GPA; |
| env->xen_vcpu_info_default_gpa = INVALID_GPA; |
| |
| return 0; |
| } |
| |
| uint32_t kvm_xen_get_caps(void) |
| { |
| return kvm_state->xen_caps; |
| } |
| |
| static bool kvm_xen_hcall_xen_version(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg) |
| { |
| int err = 0; |
| |
| switch (cmd) { |
| case XENVER_get_features: { |
| struct xen_feature_info fi; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(fi) == 8); |
| |
| err = kvm_copy_from_gva(CPU(cpu), arg, &fi, sizeof(fi)); |
| if (err) { |
| break; |
| } |
| |
| fi.submap = 0; |
| if (fi.submap_idx == 0) { |
| fi.submap |= 1 << XENFEAT_writable_page_tables | |
| 1 << XENFEAT_writable_descriptor_tables | |
| 1 << XENFEAT_auto_translated_physmap | |
| 1 << XENFEAT_supervisor_mode_kernel; |
| } |
| |
| err = kvm_copy_to_gva(CPU(cpu), arg, &fi, sizeof(fi)); |
| break; |
| } |
| |
| default: |
| return false; |
| } |
| |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static int kvm_xen_set_vcpu_attr(CPUState *cs, uint16_t type, uint64_t gpa) |
| { |
| struct kvm_xen_vcpu_attr xhsi; |
| |
| xhsi.type = type; |
| xhsi.u.gpa = gpa; |
| |
| trace_kvm_xen_set_vcpu_attr(cs->cpu_index, type, gpa); |
| |
| return kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &xhsi); |
| } |
| |
| static void do_set_vcpu_info_default_gpa(CPUState *cs, run_on_cpu_data data) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| env->xen_vcpu_info_default_gpa = data.host_ulong; |
| |
| /* Changing the default does nothing if a vcpu_info was explicitly set. */ |
| if (env->xen_vcpu_info_gpa == INVALID_GPA) { |
| kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO, |
| env->xen_vcpu_info_default_gpa); |
| } |
| } |
| |
| static void do_set_vcpu_info_gpa(CPUState *cs, run_on_cpu_data data) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| env->xen_vcpu_info_gpa = data.host_ulong; |
| |
| kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO, |
| env->xen_vcpu_info_gpa); |
| } |
| |
| static void do_vcpu_soft_reset(CPUState *cs, run_on_cpu_data data) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| env->xen_vcpu_info_gpa = INVALID_GPA; |
| env->xen_vcpu_info_default_gpa = INVALID_GPA; |
| |
| kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO, INVALID_GPA); |
| } |
| |
| static int xen_set_shared_info(uint64_t gfn) |
| { |
| uint64_t gpa = gfn << TARGET_PAGE_BITS; |
| int i, err; |
| |
| QEMU_IOTHREAD_LOCK_GUARD(); |
| |
| /* |
| * The xen_overlay device tells KVM about it too, since it had to |
| * do that on migration load anyway (unless we're going to jump |
| * through lots of hoops to maintain the fiction that this isn't |
| * KVM-specific. |
| */ |
| err = xen_overlay_map_shinfo_page(gpa); |
| if (err) { |
| return err; |
| } |
| |
| trace_kvm_xen_set_shared_info(gfn); |
| |
| for (i = 0; i < XEN_LEGACY_MAX_VCPUS; i++) { |
| CPUState *cpu = qemu_get_cpu(i); |
| if (cpu) { |
| async_run_on_cpu(cpu, do_set_vcpu_info_default_gpa, |
| RUN_ON_CPU_HOST_ULONG(gpa)); |
| } |
| gpa += sizeof(vcpu_info_t); |
| } |
| |
| return err; |
| } |
| |
| static int add_to_physmap_one(uint32_t space, uint64_t idx, uint64_t gfn) |
| { |
| switch (space) { |
| case XENMAPSPACE_shared_info: |
| if (idx > 0) { |
| return -EINVAL; |
| } |
| return xen_set_shared_info(gfn); |
| |
| case XENMAPSPACE_grant_table: |
| case XENMAPSPACE_gmfn: |
| case XENMAPSPACE_gmfn_range: |
| return -ENOTSUP; |
| |
| case XENMAPSPACE_gmfn_foreign: |
| case XENMAPSPACE_dev_mmio: |
| return -EPERM; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int do_add_to_physmap(struct kvm_xen_exit *exit, X86CPU *cpu, |
| uint64_t arg) |
| { |
| struct xen_add_to_physmap xatp; |
| CPUState *cs = CPU(cpu); |
| |
| if (hypercall_compat32(exit->u.hcall.longmode)) { |
| struct compat_xen_add_to_physmap xatp32; |
| |
| qemu_build_assert(sizeof(struct compat_xen_add_to_physmap) == 16); |
| if (kvm_copy_from_gva(cs, arg, &xatp32, sizeof(xatp32))) { |
| return -EFAULT; |
| } |
| xatp.domid = xatp32.domid; |
| xatp.size = xatp32.size; |
| xatp.space = xatp32.space; |
| xatp.idx = xatp32.idx; |
| xatp.gpfn = xatp32.gpfn; |
| } else { |
| if (kvm_copy_from_gva(cs, arg, &xatp, sizeof(xatp))) { |
| return -EFAULT; |
| } |
| } |
| |
| if (xatp.domid != DOMID_SELF && xatp.domid != xen_domid) { |
| return -ESRCH; |
| } |
| |
| return add_to_physmap_one(xatp.space, xatp.idx, xatp.gpfn); |
| } |
| |
| static int do_add_to_physmap_batch(struct kvm_xen_exit *exit, X86CPU *cpu, |
| uint64_t arg) |
| { |
| struct xen_add_to_physmap_batch xatpb; |
| unsigned long idxs_gva, gpfns_gva, errs_gva; |
| CPUState *cs = CPU(cpu); |
| size_t op_sz; |
| |
| if (hypercall_compat32(exit->u.hcall.longmode)) { |
| struct compat_xen_add_to_physmap_batch xatpb32; |
| |
| qemu_build_assert(sizeof(struct compat_xen_add_to_physmap_batch) == 20); |
| if (kvm_copy_from_gva(cs, arg, &xatpb32, sizeof(xatpb32))) { |
| return -EFAULT; |
| } |
| xatpb.domid = xatpb32.domid; |
| xatpb.space = xatpb32.space; |
| xatpb.size = xatpb32.size; |
| |
| idxs_gva = xatpb32.idxs.c; |
| gpfns_gva = xatpb32.gpfns.c; |
| errs_gva = xatpb32.errs.c; |
| op_sz = sizeof(uint32_t); |
| } else { |
| if (kvm_copy_from_gva(cs, arg, &xatpb, sizeof(xatpb))) { |
| return -EFAULT; |
| } |
| op_sz = sizeof(unsigned long); |
| idxs_gva = (unsigned long)xatpb.idxs.p; |
| gpfns_gva = (unsigned long)xatpb.gpfns.p; |
| errs_gva = (unsigned long)xatpb.errs.p; |
| } |
| |
| if (xatpb.domid != DOMID_SELF && xatpb.domid != xen_domid) { |
| return -ESRCH; |
| } |
| |
| /* Explicitly invalid for the batch op. Not that we implement it anyway. */ |
| if (xatpb.space == XENMAPSPACE_gmfn_range) { |
| return -EINVAL; |
| } |
| |
| while (xatpb.size--) { |
| unsigned long idx = 0; |
| unsigned long gpfn = 0; |
| int err; |
| |
| /* For 32-bit compat this only copies the low 32 bits of each */ |
| if (kvm_copy_from_gva(cs, idxs_gva, &idx, op_sz) || |
| kvm_copy_from_gva(cs, gpfns_gva, &gpfn, op_sz)) { |
| return -EFAULT; |
| } |
| idxs_gva += op_sz; |
| gpfns_gva += op_sz; |
| |
| err = add_to_physmap_one(xatpb.space, idx, gpfn); |
| |
| if (kvm_copy_to_gva(cs, errs_gva, &err, sizeof(err))) { |
| return -EFAULT; |
| } |
| errs_gva += sizeof(err); |
| } |
| return 0; |
| } |
| |
| static bool kvm_xen_hcall_memory_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg) |
| { |
| int err; |
| |
| switch (cmd) { |
| case XENMEM_add_to_physmap: |
| err = do_add_to_physmap(exit, cpu, arg); |
| break; |
| |
| case XENMEM_add_to_physmap_batch: |
| err = do_add_to_physmap_batch(exit, cpu, arg); |
| break; |
| |
| default: |
| return false; |
| } |
| |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static bool kvm_xen_hcall_hvm_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg) |
| { |
| switch (cmd) { |
| case HVMOP_pagetable_dying: |
| exit->u.hcall.result = -ENOSYS; |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| static int vcpuop_register_vcpu_info(CPUState *cs, CPUState *target, |
| uint64_t arg) |
| { |
| struct vcpu_register_vcpu_info rvi; |
| uint64_t gpa; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(rvi) == 16); |
| qemu_build_assert(sizeof(struct vcpu_info) == 64); |
| |
| if (!target) { |
| return -ENOENT; |
| } |
| |
| if (kvm_copy_from_gva(cs, arg, &rvi, sizeof(rvi))) { |
| return -EFAULT; |
| } |
| |
| if (rvi.offset > TARGET_PAGE_SIZE - sizeof(struct vcpu_info)) { |
| return -EINVAL; |
| } |
| |
| gpa = ((rvi.mfn << TARGET_PAGE_BITS) + rvi.offset); |
| async_run_on_cpu(target, do_set_vcpu_info_gpa, RUN_ON_CPU_HOST_ULONG(gpa)); |
| return 0; |
| } |
| |
| static bool kvm_xen_hcall_vcpu_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, int vcpu_id, uint64_t arg) |
| { |
| CPUState *dest = qemu_get_cpu(vcpu_id); |
| CPUState *cs = CPU(cpu); |
| int err; |
| |
| switch (cmd) { |
| case VCPUOP_register_vcpu_info: |
| err = vcpuop_register_vcpu_info(cs, dest, arg); |
| break; |
| |
| default: |
| return false; |
| } |
| |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| int kvm_xen_soft_reset(void) |
| { |
| CPUState *cpu; |
| int err; |
| |
| assert(qemu_mutex_iothread_locked()); |
| |
| trace_kvm_xen_soft_reset(); |
| |
| CPU_FOREACH(cpu) { |
| async_run_on_cpu(cpu, do_vcpu_soft_reset, RUN_ON_CPU_NULL); |
| } |
| |
| err = xen_overlay_map_shinfo_page(INVALID_GFN); |
| if (err) { |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int schedop_shutdown(CPUState *cs, uint64_t arg) |
| { |
| struct sched_shutdown shutdown; |
| int ret = 0; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(shutdown) == 4); |
| |
| if (kvm_copy_from_gva(cs, arg, &shutdown, sizeof(shutdown))) { |
| return -EFAULT; |
| } |
| |
| switch (shutdown.reason) { |
| case SHUTDOWN_crash: |
| cpu_dump_state(cs, stderr, CPU_DUMP_CODE); |
| qemu_system_guest_panicked(NULL); |
| break; |
| |
| case SHUTDOWN_reboot: |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| break; |
| |
| case SHUTDOWN_poweroff: |
| qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); |
| break; |
| |
| case SHUTDOWN_soft_reset: |
| qemu_mutex_lock_iothread(); |
| ret = kvm_xen_soft_reset(); |
| qemu_mutex_unlock_iothread(); |
| break; |
| |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static bool kvm_xen_hcall_sched_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg) |
| { |
| CPUState *cs = CPU(cpu); |
| int err = -ENOSYS; |
| |
| switch (cmd) { |
| case SCHEDOP_shutdown: |
| err = schedop_shutdown(cs, arg); |
| break; |
| |
| case SCHEDOP_poll: |
| /* |
| * Linux will panic if this doesn't work. Just yield; it's not |
| * worth overthinking it because with event channel handling |
| * in KVM, the kernel will intercept this and it will never |
| * reach QEMU anyway. The semantics of the hypercall explicltly |
| * permit spurious wakeups. |
| */ |
| case SCHEDOP_yield: |
| sched_yield(); |
| err = 0; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static bool do_kvm_xen_handle_exit(X86CPU *cpu, struct kvm_xen_exit *exit) |
| { |
| uint16_t code = exit->u.hcall.input; |
| |
| if (exit->u.hcall.cpl > 0) { |
| exit->u.hcall.result = -EPERM; |
| return true; |
| } |
| |
| switch (code) { |
| case __HYPERVISOR_sched_op: |
| return kvm_xen_hcall_sched_op(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1]); |
| case __HYPERVISOR_vcpu_op: |
| return kvm_xen_hcall_vcpu_op(exit, cpu, |
| exit->u.hcall.params[0], |
| exit->u.hcall.params[1], |
| exit->u.hcall.params[2]); |
| case __HYPERVISOR_hvm_op: |
| return kvm_xen_hcall_hvm_op(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1]); |
| case __HYPERVISOR_memory_op: |
| return kvm_xen_hcall_memory_op(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1]); |
| case __HYPERVISOR_xen_version: |
| return kvm_xen_hcall_xen_version(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1]); |
| default: |
| return false; |
| } |
| } |
| |
| int kvm_xen_handle_exit(X86CPU *cpu, struct kvm_xen_exit *exit) |
| { |
| if (exit->type != KVM_EXIT_XEN_HCALL) { |
| return -1; |
| } |
| |
| /* |
| * The kernel latches the guest 32/64 mode when the MSR is used to fill |
| * the hypercall page. So if we see a hypercall in a mode that doesn't |
| * match our own idea of the guest mode, fetch the kernel's idea of the |
| * "long mode" to remain in sync. |
| */ |
| if (exit->u.hcall.longmode != xen_is_long_mode()) { |
| xen_sync_long_mode(); |
| } |
| |
| if (!do_kvm_xen_handle_exit(cpu, exit)) { |
| /* |
| * Some hypercalls will be deliberately "implemented" by returning |
| * -ENOSYS. This case is for hypercalls which are unexpected. |
| */ |
| exit->u.hcall.result = -ENOSYS; |
| qemu_log_mask(LOG_UNIMP, "Unimplemented Xen hypercall %" |
| PRId64 " (0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 ")\n", |
| (uint64_t)exit->u.hcall.input, |
| (uint64_t)exit->u.hcall.params[0], |
| (uint64_t)exit->u.hcall.params[1], |
| (uint64_t)exit->u.hcall.params[2]); |
| } |
| |
| trace_kvm_xen_hypercall(CPU(cpu)->cpu_index, exit->u.hcall.cpl, |
| exit->u.hcall.input, exit->u.hcall.params[0], |
| exit->u.hcall.params[1], exit->u.hcall.params[2], |
| exit->u.hcall.result); |
| return 0; |
| } |
| |
| int kvm_put_xen_state(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| uint64_t gpa; |
| int ret; |
| |
| gpa = env->xen_vcpu_info_gpa; |
| if (gpa == INVALID_GPA) { |
| gpa = env->xen_vcpu_info_default_gpa; |
| } |
| |
| if (gpa != INVALID_GPA) { |
| ret = kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO, gpa); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int kvm_get_xen_state(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| uint64_t gpa; |
| |
| /* |
| * The kernel does not mark vcpu_info as dirty when it delivers interrupts |
| * to it. It's up to userspace to *assume* that any page shared thus is |
| * always considered dirty. The shared_info page is different since it's |
| * an overlay and migrated separately anyway. |
| */ |
| gpa = env->xen_vcpu_info_gpa; |
| if (gpa == INVALID_GPA) { |
| gpa = env->xen_vcpu_info_default_gpa; |
| } |
| if (gpa != INVALID_GPA) { |
| MemoryRegionSection mrs = memory_region_find(get_system_memory(), |
| gpa, |
| sizeof(struct vcpu_info)); |
| if (mrs.mr && |
| !int128_lt(mrs.size, int128_make64(sizeof(struct vcpu_info)))) { |
| memory_region_set_dirty(mrs.mr, mrs.offset_within_region, |
| sizeof(struct vcpu_info)); |
| } |
| } |
| |
| return 0; |
| } |