blob: 0940e03f1d9a9dcb3c17f891fb5780ea3e901097 [file] [log] [blame]
/*
* ARM PrimeCell Timer modules.
*
* Copyright (c) 2005-2006 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/timer.h"
#include "hw/irq.h"
#include "hw/ptimer.h"
#include "hw/qdev-properties.h"
#include "qemu/module.h"
#include "qemu/log.h"
#include "qom/object.h"
/* Common timer implementation. */
#define TIMER_CTRL_ONESHOT (1 << 0)
#define TIMER_CTRL_32BIT (1 << 1)
#define TIMER_CTRL_DIV1 (0 << 2)
#define TIMER_CTRL_DIV16 (1 << 2)
#define TIMER_CTRL_DIV256 (2 << 2)
#define TIMER_CTRL_IE (1 << 5)
#define TIMER_CTRL_PERIODIC (1 << 6)
#define TIMER_CTRL_ENABLE (1 << 7)
typedef struct {
ptimer_state *timer;
uint32_t control;
uint32_t limit;
int freq;
int int_level;
qemu_irq irq;
} arm_timer_state;
/* Check all active timers, and schedule the next timer interrupt. */
static void arm_timer_update(arm_timer_state *s)
{
/* Update interrupts. */
if (s->int_level && (s->control & TIMER_CTRL_IE)) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static uint32_t arm_timer_read(void *opaque, hwaddr offset)
{
arm_timer_state *s = (arm_timer_state *)opaque;
switch (offset >> 2) {
case 0: /* TimerLoad */
case 6: /* TimerBGLoad */
return s->limit;
case 1: /* TimerValue */
return ptimer_get_count(s->timer);
case 2: /* TimerControl */
return s->control;
case 4: /* TimerRIS */
return s->int_level;
case 5: /* TimerMIS */
if ((s->control & TIMER_CTRL_IE) == 0)
return 0;
return s->int_level;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset %x\n", __func__, (int)offset);
return 0;
}
}
/*
* Reset the timer limit after settings have changed.
* May only be called from inside a ptimer transaction block.
*/
static void arm_timer_recalibrate(arm_timer_state *s, int reload)
{
uint32_t limit;
if ((s->control & (TIMER_CTRL_PERIODIC | TIMER_CTRL_ONESHOT)) == 0) {
/* Free running. */
if (s->control & TIMER_CTRL_32BIT)
limit = 0xffffffff;
else
limit = 0xffff;
} else {
/* Periodic. */
limit = s->limit;
}
ptimer_set_limit(s->timer, limit, reload);
}
static void arm_timer_write(void *opaque, hwaddr offset,
uint32_t value)
{
arm_timer_state *s = (arm_timer_state *)opaque;
int freq;
switch (offset >> 2) {
case 0: /* TimerLoad */
s->limit = value;
ptimer_transaction_begin(s->timer);
arm_timer_recalibrate(s, 1);
ptimer_transaction_commit(s->timer);
break;
case 1: /* TimerValue */
/* ??? Linux seems to want to write to this readonly register.
Ignore it. */
break;
case 2: /* TimerControl */
ptimer_transaction_begin(s->timer);
if (s->control & TIMER_CTRL_ENABLE) {
/* Pause the timer if it is running. This may cause some
inaccuracy dure to rounding, but avoids a whole lot of other
messyness. */
ptimer_stop(s->timer);
}
s->control = value;
freq = s->freq;
/* ??? Need to recalculate expiry time after changing divisor. */
switch ((value >> 2) & 3) {
case 1: freq >>= 4; break;
case 2: freq >>= 8; break;
}
arm_timer_recalibrate(s, s->control & TIMER_CTRL_ENABLE);
ptimer_set_freq(s->timer, freq);
if (s->control & TIMER_CTRL_ENABLE) {
/* Restart the timer if still enabled. */
ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
}
ptimer_transaction_commit(s->timer);
break;
case 3: /* TimerIntClr */
s->int_level = 0;
break;
case 6: /* TimerBGLoad */
s->limit = value;
ptimer_transaction_begin(s->timer);
arm_timer_recalibrate(s, 0);
ptimer_transaction_commit(s->timer);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset %x\n", __func__, (int)offset);
}
arm_timer_update(s);
}
static void arm_timer_tick(void *opaque)
{
arm_timer_state *s = (arm_timer_state *)opaque;
s->int_level = 1;
arm_timer_update(s);
}
static const VMStateDescription vmstate_arm_timer = {
.name = "arm_timer",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(control, arm_timer_state),
VMSTATE_UINT32(limit, arm_timer_state),
VMSTATE_INT32(int_level, arm_timer_state),
VMSTATE_PTIMER(timer, arm_timer_state),
VMSTATE_END_OF_LIST()
}
};
static arm_timer_state *arm_timer_init(uint32_t freq)
{
arm_timer_state *s;
s = g_new0(arm_timer_state, 1);
s->freq = freq;
s->control = TIMER_CTRL_IE;
s->timer = ptimer_init(arm_timer_tick, s, PTIMER_POLICY_LEGACY);
vmstate_register_any(NULL, &vmstate_arm_timer, s);
return s;
}
/*
* ARM PrimeCell SP804 dual timer module.
* Docs at
* https://developer.arm.com/documentation/ddi0271/latest/
*/
#define TYPE_SP804 "sp804"
OBJECT_DECLARE_SIMPLE_TYPE(SP804State, SP804)
struct SP804State {
SysBusDevice parent_obj;
MemoryRegion iomem;
arm_timer_state *timer[2];
uint32_t freq0, freq1;
int level[2];
qemu_irq irq;
};
static const uint8_t sp804_ids[] = {
/* Timer ID */
0x04, 0x18, 0x14, 0,
/* PrimeCell ID */
0xd, 0xf0, 0x05, 0xb1
};
/* Merge the IRQs from the two component devices. */
static void sp804_set_irq(void *opaque, int irq, int level)
{
SP804State *s = (SP804State *)opaque;
s->level[irq] = level;
qemu_set_irq(s->irq, s->level[0] || s->level[1]);
}
static uint64_t sp804_read(void *opaque, hwaddr offset,
unsigned size)
{
SP804State *s = (SP804State *)opaque;
if (offset < 0x20) {
return arm_timer_read(s->timer[0], offset);
}
if (offset < 0x40) {
return arm_timer_read(s->timer[1], offset - 0x20);
}
/* TimerPeriphID */
if (offset >= 0xfe0 && offset <= 0xffc) {
return sp804_ids[(offset - 0xfe0) >> 2];
}
switch (offset) {
/* Integration Test control registers, which we won't support */
case 0xf00: /* TimerITCR */
case 0xf04: /* TimerITOP (strictly write only but..) */
qemu_log_mask(LOG_UNIMP,
"%s: integration test registers unimplemented\n",
__func__);
return 0;
}
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset %x\n", __func__, (int)offset);
return 0;
}
static void sp804_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
SP804State *s = (SP804State *)opaque;
if (offset < 0x20) {
arm_timer_write(s->timer[0], offset, value);
return;
}
if (offset < 0x40) {
arm_timer_write(s->timer[1], offset - 0x20, value);
return;
}
/* Technically we could be writing to the Test Registers, but not likely */
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset %x\n",
__func__, (int)offset);
}
static const MemoryRegionOps sp804_ops = {
.read = sp804_read,
.write = sp804_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_sp804 = {
.name = "sp804",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_INT32_ARRAY(level, SP804State, 2),
VMSTATE_END_OF_LIST()
}
};
static void sp804_init(Object *obj)
{
SP804State *s = SP804(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
sysbus_init_irq(sbd, &s->irq);
memory_region_init_io(&s->iomem, obj, &sp804_ops, s,
"sp804", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
static void sp804_realize(DeviceState *dev, Error **errp)
{
SP804State *s = SP804(dev);
s->timer[0] = arm_timer_init(s->freq0);
s->timer[1] = arm_timer_init(s->freq1);
s->timer[0]->irq = qemu_allocate_irq(sp804_set_irq, s, 0);
s->timer[1]->irq = qemu_allocate_irq(sp804_set_irq, s, 1);
}
/* Integrator/CP timer module. */
#define TYPE_INTEGRATOR_PIT "integrator_pit"
OBJECT_DECLARE_SIMPLE_TYPE(icp_pit_state, INTEGRATOR_PIT)
struct icp_pit_state {
SysBusDevice parent_obj;
MemoryRegion iomem;
arm_timer_state *timer[3];
};
static uint64_t icp_pit_read(void *opaque, hwaddr offset,
unsigned size)
{
icp_pit_state *s = (icp_pit_state *)opaque;
int n;
/* ??? Don't know the PrimeCell ID for this device. */
n = offset >> 8;
if (n > 2) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad timer %d\n", __func__, n);
return 0;
}
return arm_timer_read(s->timer[n], offset & 0xff);
}
static void icp_pit_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
icp_pit_state *s = (icp_pit_state *)opaque;
int n;
n = offset >> 8;
if (n > 2) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad timer %d\n", __func__, n);
return;
}
arm_timer_write(s->timer[n], offset & 0xff, value);
}
static const MemoryRegionOps icp_pit_ops = {
.read = icp_pit_read,
.write = icp_pit_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void icp_pit_init(Object *obj)
{
icp_pit_state *s = INTEGRATOR_PIT(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
/* Timer 0 runs at the system clock speed (40MHz). */
s->timer[0] = arm_timer_init(40000000);
/* The other two timers run at 1MHz. */
s->timer[1] = arm_timer_init(1000000);
s->timer[2] = arm_timer_init(1000000);
sysbus_init_irq(dev, &s->timer[0]->irq);
sysbus_init_irq(dev, &s->timer[1]->irq);
sysbus_init_irq(dev, &s->timer[2]->irq);
memory_region_init_io(&s->iomem, obj, &icp_pit_ops, s,
"icp_pit", 0x1000);
sysbus_init_mmio(dev, &s->iomem);
/* This device has no state to save/restore. The component timers will
save themselves. */
}
static const TypeInfo icp_pit_info = {
.name = TYPE_INTEGRATOR_PIT,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(icp_pit_state),
.instance_init = icp_pit_init,
};
static Property sp804_properties[] = {
DEFINE_PROP_UINT32("freq0", SP804State, freq0, 1000000),
DEFINE_PROP_UINT32("freq1", SP804State, freq1, 1000000),
DEFINE_PROP_END_OF_LIST(),
};
static void sp804_class_init(ObjectClass *klass, void *data)
{
DeviceClass *k = DEVICE_CLASS(klass);
k->realize = sp804_realize;
device_class_set_props(k, sp804_properties);
k->vmsd = &vmstate_sp804;
}
static const TypeInfo sp804_info = {
.name = TYPE_SP804,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SP804State),
.instance_init = sp804_init,
.class_init = sp804_class_init,
};
static void arm_timer_register_types(void)
{
type_register_static(&icp_pit_info);
type_register_static(&sp804_info);
}
type_init(arm_timer_register_types)