| /* Copyright 2008 IBM Corporation |
| * 2008 Red Hat, Inc. |
| * Copyright 2011 Intel Corporation |
| * Copyright 2016 Veertu, Inc. |
| * Copyright 2017 The Android Open Source Project |
| * |
| * QEMU Hypervisor.framework support |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * This file contain code under public domain from the hvdos project: |
| * https://github.com/mist64/hvdos |
| * |
| * Parts Copyright (c) 2011 NetApp, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qemu/error-report.h" |
| |
| #include "sysemu/hvf.h" |
| #include "sysemu/runstate.h" |
| #include "hvf-i386.h" |
| #include "vmcs.h" |
| #include "vmx.h" |
| #include "x86.h" |
| #include "x86_descr.h" |
| #include "x86_mmu.h" |
| #include "x86_decode.h" |
| #include "x86_emu.h" |
| #include "x86_task.h" |
| #include "x86hvf.h" |
| |
| #include <Hypervisor/hv.h> |
| #include <Hypervisor/hv_vmx.h> |
| |
| #include "exec/address-spaces.h" |
| #include "hw/i386/apic_internal.h" |
| #include "qemu/main-loop.h" |
| #include "sysemu/accel.h" |
| #include "target/i386/cpu.h" |
| |
| HVFState *hvf_state; |
| |
| static void assert_hvf_ok(hv_return_t ret) |
| { |
| if (ret == HV_SUCCESS) { |
| return; |
| } |
| |
| switch (ret) { |
| case HV_ERROR: |
| error_report("Error: HV_ERROR"); |
| break; |
| case HV_BUSY: |
| error_report("Error: HV_BUSY"); |
| break; |
| case HV_BAD_ARGUMENT: |
| error_report("Error: HV_BAD_ARGUMENT"); |
| break; |
| case HV_NO_RESOURCES: |
| error_report("Error: HV_NO_RESOURCES"); |
| break; |
| case HV_NO_DEVICE: |
| error_report("Error: HV_NO_DEVICE"); |
| break; |
| case HV_UNSUPPORTED: |
| error_report("Error: HV_UNSUPPORTED"); |
| break; |
| default: |
| error_report("Unknown Error"); |
| } |
| |
| abort(); |
| } |
| |
| /* Memory slots */ |
| hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size) |
| { |
| hvf_slot *slot; |
| int x; |
| for (x = 0; x < hvf_state->num_slots; ++x) { |
| slot = &hvf_state->slots[x]; |
| if (slot->size && start < (slot->start + slot->size) && |
| (start + size) > slot->start) { |
| return slot; |
| } |
| } |
| return NULL; |
| } |
| |
| struct mac_slot { |
| int present; |
| uint64_t size; |
| uint64_t gpa_start; |
| uint64_t gva; |
| }; |
| |
| struct mac_slot mac_slots[32]; |
| |
| static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags) |
| { |
| struct mac_slot *macslot; |
| hv_return_t ret; |
| |
| macslot = &mac_slots[slot->slot_id]; |
| |
| if (macslot->present) { |
| if (macslot->size != slot->size) { |
| macslot->present = 0; |
| ret = hv_vm_unmap(macslot->gpa_start, macslot->size); |
| assert_hvf_ok(ret); |
| } |
| } |
| |
| if (!slot->size) { |
| return 0; |
| } |
| |
| macslot->present = 1; |
| macslot->gpa_start = slot->start; |
| macslot->size = slot->size; |
| ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags); |
| assert_hvf_ok(ret); |
| return 0; |
| } |
| |
| void hvf_set_phys_mem(MemoryRegionSection *section, bool add) |
| { |
| hvf_slot *mem; |
| MemoryRegion *area = section->mr; |
| bool writeable = !area->readonly && !area->rom_device; |
| hv_memory_flags_t flags; |
| |
| if (!memory_region_is_ram(area)) { |
| if (writeable) { |
| return; |
| } else if (!memory_region_is_romd(area)) { |
| /* |
| * If the memory device is not in romd_mode, then we actually want |
| * to remove the hvf memory slot so all accesses will trap. |
| */ |
| add = false; |
| } |
| } |
| |
| mem = hvf_find_overlap_slot( |
| section->offset_within_address_space, |
| int128_get64(section->size)); |
| |
| if (mem && add) { |
| if (mem->size == int128_get64(section->size) && |
| mem->start == section->offset_within_address_space && |
| mem->mem == (memory_region_get_ram_ptr(area) + |
| section->offset_within_region)) { |
| return; /* Same region was attempted to register, go away. */ |
| } |
| } |
| |
| /* Region needs to be reset. set the size to 0 and remap it. */ |
| if (mem) { |
| mem->size = 0; |
| if (do_hvf_set_memory(mem, 0)) { |
| error_report("Failed to reset overlapping slot"); |
| abort(); |
| } |
| } |
| |
| if (!add) { |
| return; |
| } |
| |
| if (area->readonly || |
| (!memory_region_is_ram(area) && memory_region_is_romd(area))) { |
| flags = HV_MEMORY_READ | HV_MEMORY_EXEC; |
| } else { |
| flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC; |
| } |
| |
| /* Now make a new slot. */ |
| int x; |
| |
| for (x = 0; x < hvf_state->num_slots; ++x) { |
| mem = &hvf_state->slots[x]; |
| if (!mem->size) { |
| break; |
| } |
| } |
| |
| if (x == hvf_state->num_slots) { |
| error_report("No free slots"); |
| abort(); |
| } |
| |
| mem->size = int128_get64(section->size); |
| mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region; |
| mem->start = section->offset_within_address_space; |
| mem->region = area; |
| |
| if (do_hvf_set_memory(mem, flags)) { |
| error_report("Error registering new memory slot"); |
| abort(); |
| } |
| } |
| |
| void vmx_update_tpr(CPUState *cpu) |
| { |
| /* TODO: need integrate APIC handling */ |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4; |
| int irr = apic_get_highest_priority_irr(x86_cpu->apic_state); |
| |
| wreg(cpu->hvf_fd, HV_X86_TPR, tpr); |
| if (irr == -1) { |
| wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0); |
| } else { |
| wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 : |
| irr >> 4); |
| } |
| } |
| |
| void update_apic_tpr(CPUState *cpu) |
| { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4; |
| cpu_set_apic_tpr(x86_cpu->apic_state, tpr); |
| } |
| |
| #define VECTORING_INFO_VECTOR_MASK 0xff |
| |
| static void hvf_handle_interrupt(CPUState * cpu, int mask) |
| { |
| cpu->interrupt_request |= mask; |
| if (!qemu_cpu_is_self(cpu)) { |
| qemu_cpu_kick(cpu); |
| } |
| } |
| |
| void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer, |
| int direction, int size, int count) |
| { |
| int i; |
| uint8_t *ptr = buffer; |
| |
| for (i = 0; i < count; i++) { |
| address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED, |
| ptr, size, |
| direction); |
| ptr += size; |
| } |
| } |
| |
| /* TODO: synchronize vcpu state */ |
| static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) |
| { |
| CPUState *cpu_state = cpu; |
| if (cpu_state->vcpu_dirty == 0) { |
| hvf_get_registers(cpu_state); |
| } |
| |
| cpu_state->vcpu_dirty = 1; |
| } |
| |
| void hvf_cpu_synchronize_state(CPUState *cpu_state) |
| { |
| if (cpu_state->vcpu_dirty == 0) { |
| run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL); |
| } |
| } |
| |
| static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) |
| { |
| CPUState *cpu_state = cpu; |
| hvf_put_registers(cpu_state); |
| cpu_state->vcpu_dirty = false; |
| } |
| |
| void hvf_cpu_synchronize_post_reset(CPUState *cpu_state) |
| { |
| run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); |
| } |
| |
| void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) |
| { |
| CPUState *cpu_state = cpu; |
| hvf_put_registers(cpu_state); |
| cpu_state->vcpu_dirty = false; |
| } |
| |
| void hvf_cpu_synchronize_post_init(CPUState *cpu_state) |
| { |
| run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL); |
| } |
| |
| static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual) |
| { |
| int read, write; |
| |
| /* EPT fault on an instruction fetch doesn't make sense here */ |
| if (ept_qual & EPT_VIOLATION_INST_FETCH) { |
| return false; |
| } |
| |
| /* EPT fault must be a read fault or a write fault */ |
| read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; |
| write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; |
| if ((read | write) == 0) { |
| return false; |
| } |
| |
| if (write && slot) { |
| if (slot->flags & HVF_SLOT_LOG) { |
| memory_region_set_dirty(slot->region, gpa - slot->start, 1); |
| hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size, |
| HV_MEMORY_READ | HV_MEMORY_WRITE); |
| } |
| } |
| |
| /* |
| * The EPT violation must have been caused by accessing a |
| * guest-physical address that is a translation of a guest-linear |
| * address. |
| */ |
| if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || |
| (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { |
| return false; |
| } |
| |
| if (!slot) { |
| return true; |
| } |
| if (!memory_region_is_ram(slot->region) && |
| !(read && memory_region_is_romd(slot->region))) { |
| return true; |
| } |
| return false; |
| } |
| |
| static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on) |
| { |
| hvf_slot *slot; |
| |
| slot = hvf_find_overlap_slot( |
| section->offset_within_address_space, |
| int128_get64(section->size)); |
| |
| /* protect region against writes; begin tracking it */ |
| if (on) { |
| slot->flags |= HVF_SLOT_LOG; |
| hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size, |
| HV_MEMORY_READ); |
| /* stop tracking region*/ |
| } else { |
| slot->flags &= ~HVF_SLOT_LOG; |
| hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size, |
| HV_MEMORY_READ | HV_MEMORY_WRITE); |
| } |
| } |
| |
| static void hvf_log_start(MemoryListener *listener, |
| MemoryRegionSection *section, int old, int new) |
| { |
| if (old != 0) { |
| return; |
| } |
| |
| hvf_set_dirty_tracking(section, 1); |
| } |
| |
| static void hvf_log_stop(MemoryListener *listener, |
| MemoryRegionSection *section, int old, int new) |
| { |
| if (new != 0) { |
| return; |
| } |
| |
| hvf_set_dirty_tracking(section, 0); |
| } |
| |
| static void hvf_log_sync(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| /* |
| * sync of dirty pages is handled elsewhere; just make sure we keep |
| * tracking the region. |
| */ |
| hvf_set_dirty_tracking(section, 1); |
| } |
| |
| static void hvf_region_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| hvf_set_phys_mem(section, true); |
| } |
| |
| static void hvf_region_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| hvf_set_phys_mem(section, false); |
| } |
| |
| static MemoryListener hvf_memory_listener = { |
| .priority = 10, |
| .region_add = hvf_region_add, |
| .region_del = hvf_region_del, |
| .log_start = hvf_log_start, |
| .log_stop = hvf_log_stop, |
| .log_sync = hvf_log_sync, |
| }; |
| |
| void hvf_reset_vcpu(CPUState *cpu) { |
| uint64_t pdpte[4] = {0, 0, 0, 0}; |
| int i; |
| |
| /* TODO: this shouldn't be needed; there is already a call to |
| * cpu_synchronize_all_post_reset in vl.c |
| */ |
| wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0); |
| |
| /* Initialize PDPTE */ |
| for (i = 0; i < 4; i++) { |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_PDPTE0 + i * 2, pdpte[i]); |
| } |
| |
| macvm_set_cr0(cpu->hvf_fd, 0x60000010); |
| |
| wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK); |
| wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK); |
| |
| /* set VMCS guest state fields */ |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000); |
| |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0); |
| |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0); |
| |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0); |
| |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0); |
| |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0); |
| |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0); |
| |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0); |
| |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0); |
| |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0); |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0); |
| |
| /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/ |
| wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0); |
| |
| wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0); |
| wreg(cpu->hvf_fd, HV_X86_RDX, 0x623); |
| wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2); |
| wreg(cpu->hvf_fd, HV_X86_RSP, 0x0); |
| wreg(cpu->hvf_fd, HV_X86_RAX, 0x0); |
| wreg(cpu->hvf_fd, HV_X86_RBX, 0x0); |
| wreg(cpu->hvf_fd, HV_X86_RCX, 0x0); |
| wreg(cpu->hvf_fd, HV_X86_RSI, 0x0); |
| wreg(cpu->hvf_fd, HV_X86_RDI, 0x0); |
| wreg(cpu->hvf_fd, HV_X86_RBP, 0x0); |
| |
| for (int i = 0; i < 8; i++) { |
| wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0); |
| } |
| |
| hv_vcpu_invalidate_tlb(cpu->hvf_fd); |
| hv_vcpu_flush(cpu->hvf_fd); |
| } |
| |
| void hvf_vcpu_destroy(CPUState *cpu) |
| { |
| hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd); |
| assert_hvf_ok(ret); |
| } |
| |
| static void dummy_signal(int sig) |
| { |
| } |
| |
| int hvf_init_vcpu(CPUState *cpu) |
| { |
| |
| X86CPU *x86cpu = X86_CPU(cpu); |
| CPUX86State *env = &x86cpu->env; |
| int r; |
| |
| /* init cpu signals */ |
| sigset_t set; |
| struct sigaction sigact; |
| |
| memset(&sigact, 0, sizeof(sigact)); |
| sigact.sa_handler = dummy_signal; |
| sigaction(SIG_IPI, &sigact, NULL); |
| |
| pthread_sigmask(SIG_BLOCK, NULL, &set); |
| sigdelset(&set, SIG_IPI); |
| |
| init_emu(); |
| init_decoder(); |
| |
| hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1); |
| env->hvf_emul = g_new0(HVFX86EmulatorState, 1); |
| |
| r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT); |
| cpu->vcpu_dirty = 1; |
| assert_hvf_ok(r); |
| |
| if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED, |
| &hvf_state->hvf_caps->vmx_cap_pinbased)) { |
| abort(); |
| } |
| if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, |
| &hvf_state->hvf_caps->vmx_cap_procbased)) { |
| abort(); |
| } |
| if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, |
| &hvf_state->hvf_caps->vmx_cap_procbased2)) { |
| abort(); |
| } |
| if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY, |
| &hvf_state->hvf_caps->vmx_cap_entry)) { |
| abort(); |
| } |
| |
| /* set VMCS control fields */ |
| wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS, |
| cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased, |
| VMCS_PIN_BASED_CTLS_EXTINT | |
| VMCS_PIN_BASED_CTLS_NMI | |
| VMCS_PIN_BASED_CTLS_VNMI)); |
| wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, |
| cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased, |
| VMCS_PRI_PROC_BASED_CTLS_HLT | |
| VMCS_PRI_PROC_BASED_CTLS_MWAIT | |
| VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET | |
| VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) | |
| VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL); |
| wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS, |
| cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, |
| VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES)); |
| |
| wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, |
| 0)); |
| wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */ |
| |
| wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0); |
| |
| x86cpu = X86_CPU(cpu); |
| x86cpu->env.xsave_buf = qemu_memalign(4096, 4096); |
| |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1); |
| hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1); |
| |
| return 0; |
| } |
| |
| static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info) |
| { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| CPUX86State *env = &x86_cpu->env; |
| |
| env->exception_nr = -1; |
| env->exception_pending = 0; |
| env->exception_injected = 0; |
| env->interrupt_injected = -1; |
| env->nmi_injected = false; |
| env->ins_len = 0; |
| env->has_error_code = false; |
| if (idtvec_info & VMCS_IDT_VEC_VALID) { |
| switch (idtvec_info & VMCS_IDT_VEC_TYPE) { |
| case VMCS_IDT_VEC_HWINTR: |
| case VMCS_IDT_VEC_SWINTR: |
| env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM; |
| break; |
| case VMCS_IDT_VEC_NMI: |
| env->nmi_injected = true; |
| break; |
| case VMCS_IDT_VEC_HWEXCEPTION: |
| case VMCS_IDT_VEC_SWEXCEPTION: |
| env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM; |
| env->exception_injected = 1; |
| break; |
| case VMCS_IDT_VEC_PRIV_SWEXCEPTION: |
| default: |
| abort(); |
| } |
| if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION || |
| (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) { |
| env->ins_len = ins_len; |
| } |
| if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { |
| env->has_error_code = true; |
| env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR); |
| } |
| } |
| if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) & |
| VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) { |
| env->hflags2 |= HF2_NMI_MASK; |
| } else { |
| env->hflags2 &= ~HF2_NMI_MASK; |
| } |
| if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) & |
| (VMCS_INTERRUPTIBILITY_STI_BLOCKING | |
| VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) { |
| env->hflags |= HF_INHIBIT_IRQ_MASK; |
| } else { |
| env->hflags &= ~HF_INHIBIT_IRQ_MASK; |
| } |
| } |
| |
| int hvf_vcpu_exec(CPUState *cpu) |
| { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| CPUX86State *env = &x86_cpu->env; |
| int ret = 0; |
| uint64_t rip = 0; |
| |
| if (hvf_process_events(cpu)) { |
| return EXCP_HLT; |
| } |
| |
| do { |
| if (cpu->vcpu_dirty) { |
| hvf_put_registers(cpu); |
| cpu->vcpu_dirty = false; |
| } |
| |
| if (hvf_inject_interrupts(cpu)) { |
| return EXCP_INTERRUPT; |
| } |
| vmx_update_tpr(cpu); |
| |
| qemu_mutex_unlock_iothread(); |
| if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) { |
| qemu_mutex_lock_iothread(); |
| return EXCP_HLT; |
| } |
| |
| hv_return_t r = hv_vcpu_run(cpu->hvf_fd); |
| assert_hvf_ok(r); |
| |
| /* handle VMEXIT */ |
| uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON); |
| uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION); |
| uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd, |
| VMCS_EXIT_INSTRUCTION_LENGTH); |
| |
| uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO); |
| |
| hvf_store_events(cpu, ins_len, idtvec_info); |
| rip = rreg(cpu->hvf_fd, HV_X86_RIP); |
| RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS); |
| env->eflags = RFLAGS(env); |
| |
| qemu_mutex_lock_iothread(); |
| |
| update_apic_tpr(cpu); |
| current_cpu = cpu; |
| |
| ret = 0; |
| switch (exit_reason) { |
| case EXIT_REASON_HLT: { |
| macvm_set_rip(cpu, rip + ins_len); |
| if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
| (EFLAGS(env) & IF_MASK)) |
| && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) && |
| !(idtvec_info & VMCS_IDT_VEC_VALID)) { |
| cpu->halted = 1; |
| ret = EXCP_HLT; |
| break; |
| } |
| ret = EXCP_INTERRUPT; |
| break; |
| } |
| case EXIT_REASON_MWAIT: { |
| ret = EXCP_INTERRUPT; |
| break; |
| } |
| /* Need to check if MMIO or unmapped fault */ |
| case EXIT_REASON_EPT_FAULT: |
| { |
| hvf_slot *slot; |
| uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS); |
| |
| if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) && |
| ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) { |
| vmx_set_nmi_blocking(cpu); |
| } |
| |
| slot = hvf_find_overlap_slot(gpa, 1); |
| /* mmio */ |
| if (ept_emulation_fault(slot, gpa, exit_qual)) { |
| struct x86_decode decode; |
| |
| load_regs(cpu); |
| env->hvf_emul->fetch_rip = rip; |
| |
| decode_instruction(env, &decode); |
| exec_instruction(env, &decode); |
| store_regs(cpu); |
| break; |
| } |
| break; |
| } |
| case EXIT_REASON_INOUT: |
| { |
| uint32_t in = (exit_qual & 8) != 0; |
| uint32_t size = (exit_qual & 7) + 1; |
| uint32_t string = (exit_qual & 16) != 0; |
| uint32_t port = exit_qual >> 16; |
| /*uint32_t rep = (exit_qual & 0x20) != 0;*/ |
| |
| if (!string && in) { |
| uint64_t val = 0; |
| load_regs(cpu); |
| hvf_handle_io(env, port, &val, 0, size, 1); |
| if (size == 1) { |
| AL(env) = val; |
| } else if (size == 2) { |
| AX(env) = val; |
| } else if (size == 4) { |
| RAX(env) = (uint32_t)val; |
| } else { |
| RAX(env) = (uint64_t)val; |
| } |
| RIP(env) += ins_len; |
| store_regs(cpu); |
| break; |
| } else if (!string && !in) { |
| RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX); |
| hvf_handle_io(env, port, &RAX(env), 1, size, 1); |
| macvm_set_rip(cpu, rip + ins_len); |
| break; |
| } |
| struct x86_decode decode; |
| |
| load_regs(cpu); |
| env->hvf_emul->fetch_rip = rip; |
| |
| decode_instruction(env, &decode); |
| assert(ins_len == decode.len); |
| exec_instruction(env, &decode); |
| store_regs(cpu); |
| |
| break; |
| } |
| case EXIT_REASON_CPUID: { |
| uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX); |
| uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX); |
| uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX); |
| uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX); |
| |
| cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx); |
| |
| wreg(cpu->hvf_fd, HV_X86_RAX, rax); |
| wreg(cpu->hvf_fd, HV_X86_RBX, rbx); |
| wreg(cpu->hvf_fd, HV_X86_RCX, rcx); |
| wreg(cpu->hvf_fd, HV_X86_RDX, rdx); |
| |
| macvm_set_rip(cpu, rip + ins_len); |
| break; |
| } |
| case EXIT_REASON_XSETBV: { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| CPUX86State *env = &x86_cpu->env; |
| uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX); |
| uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX); |
| uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX); |
| |
| if (ecx) { |
| macvm_set_rip(cpu, rip + ins_len); |
| break; |
| } |
| env->xcr0 = ((uint64_t)edx << 32) | eax; |
| wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1); |
| macvm_set_rip(cpu, rip + ins_len); |
| break; |
| } |
| case EXIT_REASON_INTR_WINDOW: |
| vmx_clear_int_window_exiting(cpu); |
| ret = EXCP_INTERRUPT; |
| break; |
| case EXIT_REASON_NMI_WINDOW: |
| vmx_clear_nmi_window_exiting(cpu); |
| ret = EXCP_INTERRUPT; |
| break; |
| case EXIT_REASON_EXT_INTR: |
| /* force exit and allow io handling */ |
| ret = EXCP_INTERRUPT; |
| break; |
| case EXIT_REASON_RDMSR: |
| case EXIT_REASON_WRMSR: |
| { |
| load_regs(cpu); |
| if (exit_reason == EXIT_REASON_RDMSR) { |
| simulate_rdmsr(cpu); |
| } else { |
| simulate_wrmsr(cpu); |
| } |
| RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH); |
| store_regs(cpu); |
| break; |
| } |
| case EXIT_REASON_CR_ACCESS: { |
| int cr; |
| int reg; |
| |
| load_regs(cpu); |
| cr = exit_qual & 15; |
| reg = (exit_qual >> 8) & 15; |
| |
| switch (cr) { |
| case 0x0: { |
| macvm_set_cr0(cpu->hvf_fd, RRX(env, reg)); |
| break; |
| } |
| case 4: { |
| macvm_set_cr4(cpu->hvf_fd, RRX(env, reg)); |
| break; |
| } |
| case 8: { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| if (exit_qual & 0x10) { |
| RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state); |
| } else { |
| int tpr = RRX(env, reg); |
| cpu_set_apic_tpr(x86_cpu->apic_state, tpr); |
| ret = EXCP_INTERRUPT; |
| } |
| break; |
| } |
| default: |
| error_report("Unrecognized CR %d", cr); |
| abort(); |
| } |
| RIP(env) += ins_len; |
| store_regs(cpu); |
| break; |
| } |
| case EXIT_REASON_APIC_ACCESS: { /* TODO */ |
| struct x86_decode decode; |
| |
| load_regs(cpu); |
| env->hvf_emul->fetch_rip = rip; |
| |
| decode_instruction(env, &decode); |
| exec_instruction(env, &decode); |
| store_regs(cpu); |
| break; |
| } |
| case EXIT_REASON_TPR: { |
| ret = 1; |
| break; |
| } |
| case EXIT_REASON_TASK_SWITCH: { |
| uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO); |
| x68_segment_selector sel = {.sel = exit_qual & 0xffff}; |
| vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3, |
| vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo |
| & VMCS_INTR_T_MASK); |
| break; |
| } |
| case EXIT_REASON_TRIPLE_FAULT: { |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| ret = EXCP_INTERRUPT; |
| break; |
| } |
| case EXIT_REASON_RDPMC: |
| wreg(cpu->hvf_fd, HV_X86_RAX, 0); |
| wreg(cpu->hvf_fd, HV_X86_RDX, 0); |
| macvm_set_rip(cpu, rip + ins_len); |
| break; |
| case VMX_REASON_VMCALL: |
| env->exception_nr = EXCP0D_GPF; |
| env->exception_injected = 1; |
| env->has_error_code = true; |
| env->error_code = 0; |
| break; |
| default: |
| error_report("%llx: unhandled exit %llx", rip, exit_reason); |
| } |
| } while (ret == 0); |
| |
| return ret; |
| } |
| |
| bool hvf_allowed; |
| |
| static int hvf_accel_init(MachineState *ms) |
| { |
| int x; |
| hv_return_t ret; |
| HVFState *s; |
| |
| ret = hv_vm_create(HV_VM_DEFAULT); |
| assert_hvf_ok(ret); |
| |
| s = g_new0(HVFState, 1); |
| |
| s->num_slots = 32; |
| for (x = 0; x < s->num_slots; ++x) { |
| s->slots[x].size = 0; |
| s->slots[x].slot_id = x; |
| } |
| |
| hvf_state = s; |
| cpu_interrupt_handler = hvf_handle_interrupt; |
| memory_listener_register(&hvf_memory_listener, &address_space_memory); |
| return 0; |
| } |
| |
| static void hvf_accel_class_init(ObjectClass *oc, void *data) |
| { |
| AccelClass *ac = ACCEL_CLASS(oc); |
| ac->name = "HVF"; |
| ac->init_machine = hvf_accel_init; |
| ac->allowed = &hvf_allowed; |
| } |
| |
| static const TypeInfo hvf_accel_type = { |
| .name = TYPE_HVF_ACCEL, |
| .parent = TYPE_ACCEL, |
| .class_init = hvf_accel_class_init, |
| }; |
| |
| static void hvf_type_init(void) |
| { |
| type_register_static(&hvf_accel_type); |
| } |
| |
| type_init(hvf_type_init); |