blob: d761a7d0c34c5397eaddfc61c7895ddf3d8354bf [file] [log] [blame]
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "sysemu/hw_accel.h"
#include "sysemu/runstate.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "exec/exec-all.h"
#include "helper_regs.h"
#include "hw/ppc/ppc.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "mmu-hash64.h"
#include "cpu-models.h"
#include "trace.h"
#include "kvm_ppc.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/spapr_ovec.h"
#include "hw/ppc/spapr_numa.h"
#include "mmu-book3s-v3.h"
#include "hw/mem/memory-device.h"
bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
{
MachineState *machine = MACHINE(spapr);
DeviceMemoryState *dms = machine->device_memory;
if (addr < machine->ram_size) {
return true;
}
if ((addr >= dms->base)
&& ((addr - dms->base) < memory_region_size(&dms->mr))) {
return true;
}
return false;
}
/* Convert a return code from the KVM ioctl()s implementing resize HPT
* into a PAPR hypercall return code */
static target_ulong resize_hpt_convert_rc(int ret)
{
if (ret >= 100000) {
return H_LONG_BUSY_ORDER_100_SEC;
} else if (ret >= 10000) {
return H_LONG_BUSY_ORDER_10_SEC;
} else if (ret >= 1000) {
return H_LONG_BUSY_ORDER_1_SEC;
} else if (ret >= 100) {
return H_LONG_BUSY_ORDER_100_MSEC;
} else if (ret >= 10) {
return H_LONG_BUSY_ORDER_10_MSEC;
} else if (ret > 0) {
return H_LONG_BUSY_ORDER_1_MSEC;
}
switch (ret) {
case 0:
return H_SUCCESS;
case -EPERM:
return H_AUTHORITY;
case -EINVAL:
return H_PARAMETER;
case -ENXIO:
return H_CLOSED;
case -ENOSPC:
return H_PTEG_FULL;
case -EBUSY:
return H_BUSY;
case -ENOMEM:
return H_NO_MEM;
default:
return H_HARDWARE;
}
}
static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
target_ulong flags = args[0];
int shift = args[1];
uint64_t current_ram_size;
int rc;
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
return H_AUTHORITY;
}
if (!spapr->htab_shift) {
/* Radix guest, no HPT */
return H_NOT_AVAILABLE;
}
trace_spapr_h_resize_hpt_prepare(flags, shift);
if (flags != 0) {
return H_PARAMETER;
}
if (shift && ((shift < 18) || (shift > 46))) {
return H_PARAMETER;
}
current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
/* We only allow the guest to allocate an HPT one order above what
* we'd normally give them (to stop a small guest claiming a huge
* chunk of resources in the HPT */
if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
return H_RESOURCE;
}
rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
if (rc != -ENOSYS) {
return resize_hpt_convert_rc(rc);
}
if (kvm_enabled()) {
return H_HARDWARE;
}
return softmmu_resize_hpt_prepare(cpu, spapr, shift);
}
static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
{
int ret;
cpu_synchronize_state(cs);
ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
if (ret < 0) {
error_report("failed to push sregs to KVM: %s", strerror(-ret));
exit(1);
}
}
void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
{
CPUState *cs;
/*
* This is a hack for the benefit of KVM PR - it abuses the SDR1
* slot in kvm_sregs to communicate the userspace address of the
* HPT
*/
if (!kvm_enabled() || !spapr->htab) {
return;
}
CPU_FOREACH(cs) {
run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
}
}
static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
target_ulong flags = args[0];
target_ulong shift = args[1];
int rc;
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
return H_AUTHORITY;
}
if (!spapr->htab_shift) {
/* Radix guest, no HPT */
return H_NOT_AVAILABLE;
}
trace_spapr_h_resize_hpt_commit(flags, shift);
rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
if (rc != -ENOSYS) {
rc = resize_hpt_convert_rc(rc);
if (rc == H_SUCCESS) {
/* Need to set the new htab_shift in the machine state */
spapr->htab_shift = shift;
}
return rc;
}
if (kvm_enabled()) {
return H_HARDWARE;
}
return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
}
static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
cpu_synchronize_state(CPU(cpu));
cpu->env.spr[SPR_SPRG0] = args[0];
return H_SUCCESS;
}
static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
if (!ppc_has_spr(cpu, SPR_DABR)) {
return H_HARDWARE; /* DABR register not available */
}
cpu_synchronize_state(CPU(cpu));
if (ppc_has_spr(cpu, SPR_DABRX)) {
cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
} else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
return H_RESERVED_DABR;
}
cpu->env.spr[SPR_DABR] = args[0];
return H_SUCCESS;
}
static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong dabrx = args[1];
if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
return H_HARDWARE;
}
if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
|| (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
return H_PARAMETER;
}
cpu_synchronize_state(CPU(cpu));
cpu->env.spr[SPR_DABRX] = dabrx;
cpu->env.spr[SPR_DABR] = args[0];
return H_SUCCESS;
}
static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
hwaddr dst = args[1];
hwaddr src = args[2];
hwaddr len = TARGET_PAGE_SIZE;
uint8_t *pdst, *psrc;
target_long ret = H_SUCCESS;
if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
| H_COPY_PAGE | H_ZERO_PAGE)) {
qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
flags);
return H_PARAMETER;
}
/* Map-in destination */
if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
return H_PARAMETER;
}
pdst = cpu_physical_memory_map(dst, &len, true);
if (!pdst || len != TARGET_PAGE_SIZE) {
return H_PARAMETER;
}
if (flags & H_COPY_PAGE) {
/* Map-in source, copy to destination, and unmap source again */
if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
ret = H_PARAMETER;
goto unmap_out;
}
psrc = cpu_physical_memory_map(src, &len, false);
if (!psrc || len != TARGET_PAGE_SIZE) {
ret = H_PARAMETER;
goto unmap_out;
}
memcpy(pdst, psrc, len);
cpu_physical_memory_unmap(psrc, len, 0, len);
} else if (flags & H_ZERO_PAGE) {
memset(pdst, 0, len); /* Just clear the destination page */
}
if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
kvmppc_dcbst_range(cpu, pdst, len);
}
if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
if (kvm_enabled()) {
kvmppc_icbi_range(cpu, pdst, len);
} else {
tb_flush(CPU(cpu));
}
}
unmap_out:
cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
return ret;
}
#define FLAGS_REGISTER_VPA 0x0000200000000000ULL
#define FLAGS_REGISTER_DTL 0x0000400000000000ULL
#define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
#define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
#define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
uint16_t size;
uint8_t tmp;
if (vpa == 0) {
hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
return H_HARDWARE;
}
if (vpa % env->dcache_line_size) {
return H_PARAMETER;
}
/* FIXME: bounds check the address */
size = lduw_be_phys(cs->as, vpa + 0x4);
if (size < VPA_MIN_SIZE) {
return H_PARAMETER;
}
/* VPA is not allowed to cross a page boundary */
if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
return H_PARAMETER;
}
spapr_cpu->vpa_addr = vpa;
tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
tmp |= VPA_SHARED_PROC_VAL;
stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
return H_SUCCESS;
}
static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
{
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
if (spapr_cpu->slb_shadow_addr) {
return H_RESOURCE;
}
if (spapr_cpu->dtl_addr) {
return H_RESOURCE;
}
spapr_cpu->vpa_addr = 0;
return H_SUCCESS;
}
static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
{
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
uint32_t size;
if (addr == 0) {
hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
return H_HARDWARE;
}
size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
if (size < 0x8) {
return H_PARAMETER;
}
if ((addr / 4096) != ((addr + size - 1) / 4096)) {
return H_PARAMETER;
}
if (!spapr_cpu->vpa_addr) {
return H_RESOURCE;
}
spapr_cpu->slb_shadow_addr = addr;
spapr_cpu->slb_shadow_size = size;
return H_SUCCESS;
}
static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
{
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
spapr_cpu->slb_shadow_addr = 0;
spapr_cpu->slb_shadow_size = 0;
return H_SUCCESS;
}
static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
{
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
uint32_t size;
if (addr == 0) {
hcall_dprintf("Can't cope with DTL at logical 0\n");
return H_HARDWARE;
}
size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
if (size < 48) {
return H_PARAMETER;
}
if (!spapr_cpu->vpa_addr) {
return H_RESOURCE;
}
spapr_cpu->dtl_addr = addr;
spapr_cpu->dtl_size = size;
return H_SUCCESS;
}
static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
{
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
spapr_cpu->dtl_addr = 0;
spapr_cpu->dtl_size = 0;
return H_SUCCESS;
}
static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
target_ulong procno = args[1];
target_ulong vpa = args[2];
target_ulong ret = H_PARAMETER;
PowerPCCPU *tcpu;
tcpu = spapr_find_cpu(procno);
if (!tcpu) {
return H_PARAMETER;
}
switch (flags) {
case FLAGS_REGISTER_VPA:
ret = register_vpa(tcpu, vpa);
break;
case FLAGS_DEREGISTER_VPA:
ret = deregister_vpa(tcpu, vpa);
break;
case FLAGS_REGISTER_SLBSHADOW:
ret = register_slb_shadow(tcpu, vpa);
break;
case FLAGS_DEREGISTER_SLBSHADOW:
ret = deregister_slb_shadow(tcpu, vpa);
break;
case FLAGS_REGISTER_DTL:
ret = register_dtl(tcpu, vpa);
break;
case FLAGS_DEREGISTER_DTL:
ret = deregister_dtl(tcpu, vpa);
break;
}
return ret;
}
static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
env->msr |= (1ULL << MSR_EE);
hreg_compute_hflags(env);
if (spapr_cpu->prod) {
spapr_cpu->prod = false;
return H_SUCCESS;
}
if (!cpu_has_work(cs)) {
cs->halted = 1;
cs->exception_index = EXCP_HLT;
cs->exit_request = 1;
}
return H_SUCCESS;
}
/*
* Confer to self, aka join. Cede could use the same pattern as well, if
* EXCP_HLT can be changed to ECXP_HALTED.
*/
static target_ulong h_confer_self(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
if (spapr_cpu->prod) {
spapr_cpu->prod = false;
return H_SUCCESS;
}
cs->halted = 1;
cs->exception_index = EXCP_HALTED;
cs->exit_request = 1;
return H_SUCCESS;
}
static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
CPUState *cs;
bool last_unjoined = true;
if (env->msr & (1ULL << MSR_EE)) {
return H_BAD_MODE;
}
/*
* Must not join the last CPU running. Interestingly, no such restriction
* for H_CONFER-to-self, but that is probably not intended to be used
* when H_JOIN is available.
*/
CPU_FOREACH(cs) {
PowerPCCPU *c = POWERPC_CPU(cs);
CPUPPCState *e = &c->env;
if (c == cpu) {
continue;
}
/* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
last_unjoined = false;
break;
}
}
if (last_unjoined) {
return H_CONTINUE;
}
return h_confer_self(cpu);
}
static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_long target = args[0];
uint32_t dispatch = args[1];
CPUState *cs = CPU(cpu);
SpaprCpuState *spapr_cpu;
/*
* -1 means confer to all other CPUs without dispatch counter check,
* otherwise it's a targeted confer.
*/
if (target != -1) {
PowerPCCPU *target_cpu = spapr_find_cpu(target);
uint32_t target_dispatch;
if (!target_cpu) {
return H_PARAMETER;
}
/*
* target == self is a special case, we wait until prodded, without
* dispatch counter check.
*/
if (cpu == target_cpu) {
return h_confer_self(cpu);
}
spapr_cpu = spapr_cpu_state(target_cpu);
if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
return H_SUCCESS;
}
target_dispatch = ldl_be_phys(cs->as,
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
if (target_dispatch != dispatch) {
return H_SUCCESS;
}
/*
* The targeted confer does not do anything special beyond yielding
* the current vCPU, but even this should be better than nothing.
* At least for single-threaded tcg, it gives the target a chance to
* run before we run again. Multi-threaded tcg does not really do
* anything with EXCP_YIELD yet.
*/
}
cs->exception_index = EXCP_YIELD;
cs->exit_request = 1;
cpu_loop_exit(cs);
return H_SUCCESS;
}
static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_long target = args[0];
PowerPCCPU *tcpu;
CPUState *cs;
SpaprCpuState *spapr_cpu;
tcpu = spapr_find_cpu(target);
cs = CPU(tcpu);
if (!cs) {
return H_PARAMETER;
}
spapr_cpu = spapr_cpu_state(tcpu);
spapr_cpu->prod = true;
cs->halted = 0;
qemu_cpu_kick(cs);
return H_SUCCESS;
}
static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong rtas_r3 = args[0];
uint32_t token = rtas_ld(rtas_r3, 0);
uint32_t nargs = rtas_ld(rtas_r3, 1);
uint32_t nret = rtas_ld(rtas_r3, 2);
return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
nret, rtas_r3 + 12 + 4*nargs);
}
static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUState *cs = CPU(cpu);
target_ulong size = args[0];
target_ulong addr = args[1];
switch (size) {
case 1:
args[0] = ldub_phys(cs->as, addr);
return H_SUCCESS;
case 2:
args[0] = lduw_phys(cs->as, addr);
return H_SUCCESS;
case 4:
args[0] = ldl_phys(cs->as, addr);
return H_SUCCESS;
case 8:
args[0] = ldq_phys(cs->as, addr);
return H_SUCCESS;
}
return H_PARAMETER;
}
static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUState *cs = CPU(cpu);
target_ulong size = args[0];
target_ulong addr = args[1];
target_ulong val = args[2];
switch (size) {
case 1:
stb_phys(cs->as, addr, val);
return H_SUCCESS;
case 2:
stw_phys(cs->as, addr, val);
return H_SUCCESS;
case 4:
stl_phys(cs->as, addr, val);
return H_SUCCESS;
case 8:
stq_phys(cs->as, addr, val);
return H_SUCCESS;
}
return H_PARAMETER;
}
static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUState *cs = CPU(cpu);
target_ulong dst = args[0]; /* Destination address */
target_ulong src = args[1]; /* Source address */
target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
target_ulong count = args[3]; /* Element count */
target_ulong op = args[4]; /* 0 = copy, 1 = invert */
uint64_t tmp;
unsigned int mask = (1 << esize) - 1;
int step = 1 << esize;
if (count > 0x80000000) {
return H_PARAMETER;
}
if ((dst & mask) || (src & mask) || (op > 1)) {
return H_PARAMETER;
}
if (dst >= src && dst < (src + (count << esize))) {
dst = dst + ((count - 1) << esize);
src = src + ((count - 1) << esize);
step = -step;
}
while (count--) {
switch (esize) {
case 0:
tmp = ldub_phys(cs->as, src);
break;
case 1:
tmp = lduw_phys(cs->as, src);
break;
case 2:
tmp = ldl_phys(cs->as, src);
break;
case 3:
tmp = ldq_phys(cs->as, src);
break;
default:
return H_PARAMETER;
}
if (op == 1) {
tmp = ~tmp;
}
switch (esize) {
case 0:
stb_phys(cs->as, dst, tmp);
break;
case 1:
stw_phys(cs->as, dst, tmp);
break;
case 2:
stl_phys(cs->as, dst, tmp);
break;
case 3:
stq_phys(cs->as, dst, tmp);
break;
}
dst = dst + step;
src = src + step;
}
return H_SUCCESS;
}
static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
/* Nothing to do on emulation, KVM will trap this in the kernel */
return H_SUCCESS;
}
static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
/* Nothing to do on emulation, KVM will trap this in the kernel */
return H_SUCCESS;
}
static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong mflags,
target_ulong value1,
target_ulong value2)
{
if (value1) {
return H_P3;
}
if (value2) {
return H_P4;
}
switch (mflags) {
case H_SET_MODE_ENDIAN_BIG:
spapr_set_all_lpcrs(0, LPCR_ILE);
spapr_pci_switch_vga(spapr, true);
return H_SUCCESS;
case H_SET_MODE_ENDIAN_LITTLE:
spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
spapr_pci_switch_vga(spapr, false);
return H_SUCCESS;
}
return H_UNSUPPORTED_FLAG;
}
static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
target_ulong mflags,
target_ulong value1,
target_ulong value2)
{
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
return H_P2;
}
if (value1) {
return H_P3;
}
if (value2) {
return H_P4;
}
if (mflags == 1) {
/* AIL=1 is reserved in POWER8/POWER9/POWER10 */
return H_UNSUPPORTED_FLAG;
}
if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
/* AIL=2 is reserved in POWER10 (ISA v3.1) */
return H_UNSUPPORTED_FLAG;
}
spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
return H_SUCCESS;
}
static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong resource = args[1];
target_ulong ret = H_P2;
switch (resource) {
case H_SET_MODE_RESOURCE_LE:
ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
break;
case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
args[2], args[3]);
break;
}
return ret;
}
static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
opcode, " (H_CLEAN_SLB)");
return H_FUNCTION;
}
static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
opcode, " (H_INVALIDATE_PID)");
return H_FUNCTION;
}
static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
uint64_t patbe_old, uint64_t patbe_new)
{
/*
* We have 4 Options:
* HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
* HASH->RADIX : Free HPT
* RADIX->HASH : Allocate HPT
* NOTHING->HASH : Allocate HPT
* Note: NOTHING implies the case where we said the guest could choose
* later and so assumed radix and now it's called H_REG_PROC_TBL
*/
if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
/* We assume RADIX, so this catches all the "Do Nothing" cases */
} else if (!(patbe_old & PATE1_GR)) {
/* HASH->RADIX : Free HPT */
spapr_free_hpt(spapr);
} else if (!(patbe_new & PATE1_GR)) {
/* RADIX->HASH || NOTHING->HASH : Allocate HPT */
spapr_setup_hpt(spapr);
}
return;
}
#define FLAGS_MASK 0x01FULL
#define FLAG_MODIFY 0x10
#define FLAG_REGISTER 0x08
#define FLAG_RADIX 0x04
#define FLAG_HASH_PROC_TBL 0x02
#define FLAG_GTSE 0x01
static target_ulong h_register_process_table(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
target_ulong flags = args[0];
target_ulong proc_tbl = args[1];
target_ulong page_size = args[2];
target_ulong table_size = args[3];
target_ulong update_lpcr = 0;
uint64_t cproc;
if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
return H_PARAMETER;
}
if (flags & FLAG_MODIFY) {
if (flags & FLAG_REGISTER) {
if (flags & FLAG_RADIX) { /* Register new RADIX process table */
if (proc_tbl & 0xfff || proc_tbl >> 60) {
return H_P2;
} else if (page_size) {
return H_P3;
} else if (table_size > 24) {
return H_P4;
}
cproc = PATE1_GR | proc_tbl | table_size;
} else { /* Register new HPT process table */
if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
/* TODO - Not Supported */
/* Technically caused by flag bits => H_PARAMETER */
return H_PARAMETER;
} else { /* Hash with SLB */
if (proc_tbl >> 38) {
return H_P2;
} else if (page_size & ~0x7) {
return H_P3;
} else if (table_size > 24) {
return H_P4;
}
}
cproc = (proc_tbl << 25) | page_size << 5 | table_size;
}
} else { /* Deregister current process table */
/*
* Set to benign value: (current GR) | 0. This allows
* deregistration in KVM to succeed even if the radix bit
* in flags doesn't match the radix bit in the old PATE.
*/
cproc = spapr->patb_entry & PATE1_GR;
}
} else { /* Maintain current registration */
if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
/* Technically caused by flag bits => H_PARAMETER */
return H_PARAMETER; /* Existing Process Table Mismatch */
}
cproc = spapr->patb_entry;
}
/* Check if we need to setup OR free the hpt */
spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
spapr->patb_entry = cproc; /* Save new process table */
/* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
update_lpcr |= (LPCR_UPRT | LPCR_HR);
else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
update_lpcr |= LPCR_UPRT;
if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
update_lpcr |= LPCR_GTSE;
spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
if (kvm_enabled()) {
return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
flags & FLAG_GTSE, cproc);
}
return H_SUCCESS;
}
#define H_SIGNAL_SYS_RESET_ALL -1
#define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_long target = args[0];
CPUState *cs;
if (target < 0) {
/* Broadcast */
if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
return H_PARAMETER;
}
CPU_FOREACH(cs) {
PowerPCCPU *c = POWERPC_CPU(cs);
if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
if (c == cpu) {
continue;
}
}
run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
}
return H_SUCCESS;
} else {
/* Unicast */
cs = CPU(spapr_find_cpu(target));
if (cs) {
run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
return H_SUCCESS;
}
return H_PARAMETER;
}
}
/* Returns either a logical PVR or zero if none was found */
static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
target_ulong *addr, bool *raw_mode_supported)
{
bool explicit_match = false; /* Matched the CPU's real PVR */
uint32_t best_compat = 0;
int i;
/*
* We scan the supplied table of PVRs looking for two things
* 1. Is our real CPU PVR in the list?
* 2. What's the "best" listed logical PVR
*/
for (i = 0; i < 512; ++i) {
uint32_t pvr, pvr_mask;
pvr_mask = ldl_be_phys(&address_space_memory, *addr);
pvr = ldl_be_phys(&address_space_memory, *addr + 4);
*addr += 8;
if (~pvr_mask & pvr) {
break; /* Terminator record */
}
if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
explicit_match = true;
} else {
if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
best_compat = pvr;
}
}
}
*raw_mode_supported = explicit_match;
/* Parsing finished */
trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
return best_compat;
}
static
target_ulong do_client_architecture_support(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong vec,
target_ulong fdt_bufsize)
{
target_ulong ov_table; /* Working address in data buffer */
uint32_t cas_pvr;
SpaprOptionVector *ov1_guest, *ov5_guest;
bool guest_radix;
bool raw_mode_supported = false;
bool guest_xive;
CPUState *cs;
void *fdt;
uint32_t max_compat = spapr->max_compat_pvr;
/* CAS is supposed to be called early when only the boot vCPU is active. */
CPU_FOREACH(cs) {
if (cs == CPU(cpu)) {
continue;
}
if (!cs->halted) {
warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
return H_MULTI_THREADS_ACTIVE;
}
}
cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
if (!cas_pvr && (!raw_mode_supported || max_compat)) {
/*
* We couldn't find a suitable compatibility mode, and either
* the guest doesn't support "raw" mode for this CPU, or "raw"
* mode is disabled because a maximum compat mode is set.
*/
error_report("Couldn't negotiate a suitable PVR during CAS");
return H_HARDWARE;
}
/* Update CPUs */
if (cpu->compat_pvr != cas_pvr) {
Error *local_err = NULL;
if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
/* We fail to set compat mode (likely because running with KVM PR),
* but maybe we can fallback to raw mode if the guest supports it.
*/
if (!raw_mode_supported) {
error_report_err(local_err);
return H_HARDWARE;
}
error_free(local_err);
}
}
/* For the future use: here @ov_table points to the first option vector */
ov_table = vec;
ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
if (!ov1_guest) {
warn_report("guest didn't provide option vector 1");
return H_PARAMETER;
}
ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
if (!ov5_guest) {
spapr_ovec_cleanup(ov1_guest);
warn_report("guest didn't provide option vector 5");
return H_PARAMETER;
}
if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
error_report("guest requested hash and radix MMU, which is invalid.");
exit(EXIT_FAILURE);
}
if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
error_report("guest requested an invalid interrupt mode");
exit(EXIT_FAILURE);
}
guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
/*
* HPT resizing is a bit of a special case, because when enabled
* we assume an HPT guest will support it until it says it
* doesn't, instead of assuming it won't support it until it says
* it does. Strictly speaking that approach could break for
* guests which don't make a CAS call, but those are so old we
* don't care about them. Without that assumption we'd have to
* make at least a temporary allocation of an HPT sized for max
* memory, which could be impossibly difficult under KVM HV if
* maxram is large.
*/
if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
error_report(
"h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
exit(1);
}
if (spapr->htab_shift < maxshift) {
/* Guest doesn't know about HPT resizing, so we
* pre-emptively resize for the maximum permitted RAM. At
* the point this is called, nothing should have been
* entered into the existing HPT */
spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
push_sregs_to_kvm_pr(spapr);
}
}
/* NOTE: there are actually a number of ov5 bits where input from the
* guest is always zero, and the platform/QEMU enables them independently
* of guest input. To model these properly we'd want some sort of mask,
* but since they only currently apply to memory migration as defined
* by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
* to worry about this for now.
*/
/* full range of negotiated ov5 capabilities */
spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
spapr_ovec_cleanup(ov5_guest);
spapr_check_mmu_mode(guest_radix);
spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
spapr_ovec_cleanup(ov1_guest);
/*
* Check for NUMA affinity conditions now that we know which NUMA
* affinity the guest will use.
*/
spapr_numa_associativity_check(spapr);
/*
* Ensure the guest asks for an interrupt mode we support;
* otherwise terminate the boot.
*/
if (guest_xive) {
if (!spapr->irq->xive) {
error_report(
"Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
exit(EXIT_FAILURE);
}
} else {
if (!spapr->irq->xics) {
error_report(
"Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
exit(EXIT_FAILURE);
}
}
spapr_irq_update_active_intc(spapr);
/*
* Process all pending hot-plug/unplug requests now. An updated full
* rendered FDT will be returned to the guest.
*/
spapr_drc_reset_all(spapr);
spapr_clear_pending_hotplug_events(spapr);
/*
* If spapr_machine_reset() did not set up a HPT but one is necessary
* (because the guest isn't going to use radix) then set it up here.
*/
if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
/* legacy hash or new hash: */
spapr_setup_hpt(spapr);
}
fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
g_free(spapr->fdt_blob);
spapr->fdt_size = fdt_totalsize(fdt);
spapr->fdt_initial_size = spapr->fdt_size;
spapr->fdt_blob = fdt;
return H_SUCCESS;
}
static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
target_ulong vec = ppc64_phys_to_real(args[0]);
target_ulong fdt_buf = args[1];
target_ulong fdt_bufsize = args[2];
target_ulong ret;
SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
if (fdt_bufsize < sizeof(hdr)) {
error_report("SLOF provided insufficient CAS buffer "
TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
exit(EXIT_FAILURE);
}
fdt_bufsize -= sizeof(hdr);
ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
if (ret == H_SUCCESS) {
_FDT((fdt_pack(spapr->fdt_blob)));
spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
spapr->fdt_initial_size = spapr->fdt_size;
cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
spapr->fdt_size);
trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
}
return ret;
}
target_ulong spapr_vof_client_architecture_support(MachineState *ms,
CPUState *cs,
target_ulong ovec_addr)
{
SpaprMachineState *spapr = SPAPR_MACHINE(ms);
target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
ovec_addr, FDT_MAX_SIZE);
/*
* This adds stdout and generates phandles for boottime and CAS FDTs.
* It is alright to update the FDT here as do_client_architecture_support()
* does not pack it.
*/
spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
return ret;
}
static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
~H_CPU_CHAR_THR_RECONF_TRIG;
uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
SPAPR_CAP_CCF_ASSIST);
switch (safe_cache) {
case SPAPR_CAP_WORKAROUND:
characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
break;
case SPAPR_CAP_FIXED:
behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
break;
default: /* broken */
assert(safe_cache == SPAPR_CAP_BROKEN);
behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
break;
}
switch (safe_bounds_check) {
case SPAPR_CAP_WORKAROUND:
characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
break;
case SPAPR_CAP_FIXED:
break;
default: /* broken */
assert(safe_bounds_check == SPAPR_CAP_BROKEN);
behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
break;
}
switch (safe_indirect_branch) {
case SPAPR_CAP_FIXED_NA:
break;
case SPAPR_CAP_FIXED_CCD:
characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
break;
case SPAPR_CAP_FIXED_IBS:
characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
break;
case SPAPR_CAP_WORKAROUND:
behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
if (count_cache_flush_assist) {
characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
}
break;
default: /* broken */
assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
break;
}
args[0] = characteristics;
args[1] = behaviour;
return H_SUCCESS;
}
static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong dt = ppc64_phys_to_real(args[0]);
struct fdt_header hdr = { 0 };
unsigned cb;
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
void *fdt;
cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
cb = fdt32_to_cpu(hdr.totalsize);
if (!smc->update_dt_enabled) {
return H_SUCCESS;
}
/* Check that the fdt did not grow out of proportion */
if (cb > spapr->fdt_initial_size * 2) {
trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
fdt32_to_cpu(hdr.magic));
return H_PARAMETER;
}
fdt = g_malloc0(cb);
cpu_physical_memory_read(dt, fdt, cb);
/* Check the fdt consistency */
if (fdt_check_full(fdt, cb)) {
trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
fdt32_to_cpu(hdr.magic));
return H_PARAMETER;
}
g_free(spapr->fdt_blob);
spapr->fdt_size = cb;
spapr->fdt_blob = fdt;
trace_spapr_update_dt(cb);
return H_SUCCESS;
}
static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
{
spapr_hcall_fn *slot;
if (opcode <= MAX_HCALL_OPCODE) {
assert((opcode & 0x3) == 0);
slot = &papr_hypercall_table[opcode / 4];
} else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
/* we only have SVM-related hcall numbers assigned in multiples of 4 */
assert((opcode & 0x3) == 0);
slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
} else {
assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
}
assert(!(*slot));
*slot = fn;
}
target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
target_ulong *args)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
if ((opcode <= MAX_HCALL_OPCODE)
&& ((opcode & 0x3) == 0)) {
spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
if (fn) {
return fn(cpu, spapr, opcode, args);
}
} else if ((opcode >= SVM_HCALL_BASE) &&
(opcode <= SVM_HCALL_MAX)) {
spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
if (fn) {
return fn(cpu, spapr, opcode, args);
}
} else if ((opcode >= KVMPPC_HCALL_BASE) &&
(opcode <= KVMPPC_HCALL_MAX)) {
spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
if (fn) {
return fn(cpu, spapr, opcode, args);
}
}
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
opcode);
return H_FUNCTION;
}
#ifdef CONFIG_TCG
#define PRTS_MASK 0x1f
static target_ulong h_set_ptbl(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
target_ulong ptcr = args[0];
if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
return H_FUNCTION;
}
if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
return H_PARAMETER;
}
spapr->nested_ptcr = ptcr; /* Save new partition table */
return H_SUCCESS;
}
static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
/*
* The spapr virtual hypervisor nested HV implementation retains no L2
* translation state except for TLB. And the TLB is always invalidated
* across L1<->L2 transitions, so nothing is required here.
*/
return H_SUCCESS;
}
static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
/*
* This HCALL is not required, L1 KVM will take a slow path and walk the
* page tables manually to do the data copy.
*/
return H_FUNCTION;
}
/*
* When this handler returns, the environment is switched to the L2 guest
* and TCG begins running that. spapr_exit_nested() performs the switch from
* L2 back to L1 and returns from the H_ENTER_NESTED hcall.
*/
static target_ulong h_enter_nested(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
target_ulong hv_ptr = args[0];
target_ulong regs_ptr = args[1];
target_ulong hdec, now = cpu_ppc_load_tbl(env);
target_ulong lpcr, lpcr_mask;
struct kvmppc_hv_guest_state *hvstate;
struct kvmppc_hv_guest_state hv_state;
struct kvmppc_pt_regs *regs;
hwaddr len;
uint64_t cr;
int i;
if (spapr->nested_ptcr == 0) {
return H_NOT_AVAILABLE;
}
len = sizeof(*hvstate);
hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
MEMTXATTRS_UNSPECIFIED);
if (len != sizeof(*hvstate)) {
address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
return H_PARAMETER;
}
memcpy(&hv_state, hvstate, len);
address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
/*
* We accept versions 1 and 2. Version 2 fields are unused because TCG
* does not implement DAWR*.
*/
if (hv_state.version > HV_GUEST_STATE_VERSION) {
return H_PARAMETER;
}
spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1);
if (!spapr_cpu->nested_host_state) {
return H_NO_MEM;
}
memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState));
len = sizeof(*regs);
regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
MEMTXATTRS_UNSPECIFIED);
if (!regs || len != sizeof(*regs)) {
address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
g_free(spapr_cpu->nested_host_state);
return H_P2;
}
len = sizeof(env->gpr);
assert(len == sizeof(regs->gpr));
memcpy(env->gpr, regs->gpr, len);
env->lr = regs->link;
env->ctr = regs->ctr;
cpu_write_xer(env, regs->xer);
cr = regs->ccr;
for (i = 7; i >= 0; i--) {
env->crf[i] = cr & 15;
cr >>= 4;
}
env->msr = regs->msr;
env->nip = regs->nip;
address_space_unmap(CPU(cpu)->as, regs, len, len, false);
env->cfar = hv_state.cfar;
assert(env->spr[SPR_LPIDR] == 0);
env->spr[SPR_LPIDR] = hv_state.lpid;
lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
lpcr &= ~LPCR_LPES0;
env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
env->spr[SPR_PCR] = hv_state.pcr;
/* hv_state.amor is not used */
env->spr[SPR_DPDES] = hv_state.dpdes;
env->spr[SPR_HFSCR] = hv_state.hfscr;
hdec = hv_state.hdec_expiry - now;
spapr_cpu->nested_tb_offset = hv_state.tb_offset;
/* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
env->spr[SPR_SRR0] = hv_state.srr0;
env->spr[SPR_SRR1] = hv_state.srr1;
env->spr[SPR_SPRG0] = hv_state.sprg[0];
env->spr[SPR_SPRG1] = hv_state.sprg[1];
env->spr[SPR_SPRG2] = hv_state.sprg[2];
env->spr[SPR_SPRG3] = hv_state.sprg[3];
env->spr[SPR_BOOKS_PID] = hv_state.pidr;
env->spr[SPR_PPR] = hv_state.ppr;
cpu_ppc_hdecr_init(env);
cpu_ppc_store_hdecr(env, hdec);
/*
* The hv_state.vcpu_token is not needed. It is used by the KVM
* implementation to remember which L2 vCPU last ran on which physical
* CPU so as to invalidate process scope translations if it is moved
* between physical CPUs. For now TLBs are always flushed on L1<->L2
* transitions so this is not a problem.
*
* Could validate that the same vcpu_token does not attempt to run on
* different L1 vCPUs at the same time, but that would be a L1 KVM bug
* and it's not obviously worth a new data structure to do it.
*/
env->tb_env->tb_offset += spapr_cpu->nested_tb_offset;
spapr_cpu->in_nested = true;
hreg_compute_hflags(env);
tlb_flush(cs);
env->reserve_addr = -1; /* Reset the reservation */
/*
* The spapr hcall helper sets env->gpr[3] to the return value, but at
* this point the L1 is not returning from the hcall but rather we
* start running the L2, so r3 must not be clobbered, so return env->gpr[3]
* to leave it unchanged.
*/
return env->gpr[3];
}
void spapr_exit_nested(PowerPCCPU *cpu, int excp)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
struct kvmppc_hv_guest_state *hvstate;
struct kvmppc_pt_regs *regs;
hwaddr len;
uint64_t cr;
int i;
assert(spapr_cpu->in_nested);
cpu_ppc_hdecr_exit(env);
len = sizeof(*hvstate);
hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
MEMTXATTRS_UNSPECIFIED);
if (len != sizeof(*hvstate)) {
address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
r3_return = H_PARAMETER;
goto out_restore_l1;
}
hvstate->cfar = env->cfar;
hvstate->lpcr = env->spr[SPR_LPCR];
hvstate->pcr = env->spr[SPR_PCR];
hvstate->dpdes = env->spr[SPR_DPDES];
hvstate->hfscr = env->spr[SPR_HFSCR];
if (excp == POWERPC_EXCP_HDSI) {
hvstate->hdar = env->spr[SPR_HDAR];
hvstate->hdsisr = env->spr[SPR_HDSISR];
hvstate->asdr = env->spr[SPR_ASDR];
} else if (excp == POWERPC_EXCP_HISI) {
hvstate->asdr = env->spr[SPR_ASDR];
}
/* HEIR should be implemented for HV mode and saved here. */
hvstate->srr0 = env->spr[SPR_SRR0];
hvstate->srr1 = env->spr[SPR_SRR1];
hvstate->sprg[0] = env->spr[SPR_SPRG0];
hvstate->sprg[1] = env->spr[SPR_SPRG1];
hvstate->sprg[2] = env->spr[SPR_SPRG2];
hvstate->sprg[3] = env->spr[SPR_SPRG3];
hvstate->pidr = env->spr[SPR_BOOKS_PID];
hvstate->ppr = env->spr[SPR_PPR];
/* Is it okay to specify write length larger than actual data written? */
address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
len = sizeof(*regs);
regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
MEMTXATTRS_UNSPECIFIED);
if (!regs || len != sizeof(*regs)) {
address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
r3_return = H_P2;
goto out_restore_l1;
}
len = sizeof(env->gpr);
assert(len == sizeof(regs->gpr));
memcpy(regs->gpr, env->gpr, len);
regs->link = env->lr;
regs->ctr = env->ctr;
regs->xer = cpu_read_xer(env);
cr = 0;
for (i = 0; i < 8; i++) {
cr |= (env->crf[i] & 15) << (4 * (7 - i));
}
regs->ccr = cr;
if (excp == POWERPC_EXCP_MCHECK ||
excp == POWERPC_EXCP_RESET ||
excp == POWERPC_EXCP_SYSCALL) {
regs->nip = env->spr[SPR_SRR0];
regs->msr = env->spr[SPR_SRR1] & env->msr_mask;
} else {
regs->nip = env->spr[SPR_HSRR0];
regs->msr = env->spr[SPR_HSRR1] & env->msr_mask;
}
/* Is it okay to specify write length larger than actual data written? */
address_space_unmap(CPU(cpu)->as, regs, len, len, true);
out_restore_l1:
memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr));
env->lr = spapr_cpu->nested_host_state->lr;
env->ctr = spapr_cpu->nested_host_state->ctr;
memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf));
env->cfar = spapr_cpu->nested_host_state->cfar;
env->xer = spapr_cpu->nested_host_state->xer;
env->so = spapr_cpu->nested_host_state->so;
env->ov = spapr_cpu->nested_host_state->ov;
env->ov32 = spapr_cpu->nested_host_state->ov32;
env->ca32 = spapr_cpu->nested_host_state->ca32;
env->msr = spapr_cpu->nested_host_state->msr;
env->nip = spapr_cpu->nested_host_state->nip;
assert(env->spr[SPR_LPIDR] != 0);
env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR];
env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR];
env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR];
env->spr[SPR_DPDES] = 0;
env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR];
env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0];
env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1];
env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0];
env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1];
env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2];
env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3];
env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID];
env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR];
/*
* Return the interrupt vector address from H_ENTER_NESTED to the L1
* (or error code).
*/
env->gpr[3] = r3_return;
env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset;
spapr_cpu->in_nested = false;
hreg_compute_hflags(env);
tlb_flush(cs);
env->reserve_addr = -1; /* Reset the reservation */
g_free(spapr_cpu->nested_host_state);
spapr_cpu->nested_host_state = NULL;
}
static void hypercall_register_nested(void)
{
spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
}
static void hypercall_register_softmmu(void)
{
/* DO NOTHING */
}
#else
void spapr_exit_nested(PowerPCCPU *cpu, int excp)
{
g_assert_not_reached();
}
static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
g_assert_not_reached();
}
static void hypercall_register_nested(void)
{
/* DO NOTHING */
}
static void hypercall_register_softmmu(void)
{
/* hcall-pft */
spapr_register_hypercall(H_ENTER, h_softmmu);
spapr_register_hypercall(H_REMOVE, h_softmmu);
spapr_register_hypercall(H_PROTECT, h_softmmu);
spapr_register_hypercall(H_READ, h_softmmu);
/* hcall-bulk */
spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
}
#endif
static void hypercall_register_types(void)
{
hypercall_register_softmmu();
/* hcall-hpt-resize */
spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
/* hcall-splpar */
spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
spapr_register_hypercall(H_CEDE, h_cede);
spapr_register_hypercall(H_CONFER, h_confer);
spapr_register_hypercall(H_PROD, h_prod);
/* hcall-join */
spapr_register_hypercall(H_JOIN, h_join);
spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
/* processor register resource access h-calls */
spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
spapr_register_hypercall(H_SET_DABR, h_set_dabr);
spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
spapr_register_hypercall(H_PAGE_INIT, h_page_init);
spapr_register_hypercall(H_SET_MODE, h_set_mode);
/* In Memory Table MMU h-calls */
spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
/* hcall-get-cpu-characteristics */
spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
h_get_cpu_characteristics);
/* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
* here between the "CI" and the "CACHE" variants, they will use whatever
* mapping attributes qemu is using. When using KVM, the kernel will
* enforce the attributes more strongly
*/
spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
/* qemu/KVM-PPC specific hcalls */
spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
/* ibm,client-architecture-support support */
spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
hypercall_register_nested();
}
type_init(hypercall_register_types)