| /* | 
 |  * Arm SSE Subsystem System Timer | 
 |  * | 
 |  * Copyright (c) 2020 Linaro Limited | 
 |  * Written by Peter Maydell | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 or | 
 |  * (at your option) any later version. | 
 |  */ | 
 |  | 
 | /* | 
 |  * This is a model of the "System timer" which is documented in | 
 |  * the Arm SSE-123 Example Subsystem Technical Reference Manual: | 
 |  * https://developer.arm.com/documentation/101370/latest/ | 
 |  * | 
 |  * The timer is based around a simple 64-bit incrementing counter | 
 |  * (readable from CNTPCT_HI/LO). The timer fires when | 
 |  *  Counter - CompareValue >= 0. | 
 |  * The CompareValue is guest-writable, via CNTP_CVAL_HI/LO. | 
 |  * CNTP_TVAL is an alternative view of the CompareValue defined by | 
 |  *  TimerValue = CompareValue[31:0] - Counter[31:0] | 
 |  * which can be both read and written. | 
 |  * This part is similar to the generic timer in an Arm A-class CPU. | 
 |  * | 
 |  * The timer also has a separate auto-increment timer. When this | 
 |  * timer is enabled, then the AutoIncrValue is set to: | 
 |  *  AutoIncrValue = Reload + Counter | 
 |  * and this timer fires when | 
 |  *  Counter - AutoIncrValue >= 0 | 
 |  * at which point, an interrupt is generated and the new AutoIncrValue | 
 |  * is calculated. | 
 |  * When the auto-increment timer is enabled, interrupt generation | 
 |  * via the compare/timervalue registers is disabled. | 
 |  */ | 
 | #include "qemu/osdep.h" | 
 | #include "qemu/log.h" | 
 | #include "qemu/timer.h" | 
 | #include "qapi/error.h" | 
 | #include "trace.h" | 
 | #include "hw/timer/sse-timer.h" | 
 | #include "hw/timer/sse-counter.h" | 
 | #include "hw/sysbus.h" | 
 | #include "hw/irq.h" | 
 | #include "hw/registerfields.h" | 
 | #include "hw/clock.h" | 
 | #include "hw/qdev-clock.h" | 
 | #include "hw/qdev-properties.h" | 
 | #include "migration/vmstate.h" | 
 |  | 
 | REG32(CNTPCT_LO, 0x0) | 
 | REG32(CNTPCT_HI, 0x4) | 
 | REG32(CNTFRQ, 0x10) | 
 | REG32(CNTP_CVAL_LO, 0x20) | 
 | REG32(CNTP_CVAL_HI, 0x24) | 
 | REG32(CNTP_TVAL, 0x28) | 
 | REG32(CNTP_CTL, 0x2c) | 
 |     FIELD(CNTP_CTL, ENABLE, 0, 1) | 
 |     FIELD(CNTP_CTL, IMASK, 1, 1) | 
 |     FIELD(CNTP_CTL, ISTATUS, 2, 1) | 
 | REG32(CNTP_AIVAL_LO, 0x40) | 
 | REG32(CNTP_AIVAL_HI, 0x44) | 
 | REG32(CNTP_AIVAL_RELOAD, 0x48) | 
 | REG32(CNTP_AIVAL_CTL, 0x4c) | 
 |     FIELD(CNTP_AIVAL_CTL, EN, 0, 1) | 
 |     FIELD(CNTP_AIVAL_CTL, CLR, 1, 1) | 
 | REG32(CNTP_CFG, 0x50) | 
 |     FIELD(CNTP_CFG, AIVAL, 0, 4) | 
 | #define R_CNTP_CFG_AIVAL_IMPLEMENTED 1 | 
 | REG32(PID4, 0xFD0) | 
 | REG32(PID5, 0xFD4) | 
 | REG32(PID6, 0xFD8) | 
 | REG32(PID7, 0xFDC) | 
 | REG32(PID0, 0xFE0) | 
 | REG32(PID1, 0xFE4) | 
 | REG32(PID2, 0xFE8) | 
 | REG32(PID3, 0xFEC) | 
 | REG32(CID0, 0xFF0) | 
 | REG32(CID1, 0xFF4) | 
 | REG32(CID2, 0xFF8) | 
 | REG32(CID3, 0xFFC) | 
 |  | 
 | /* PID/CID values */ | 
 | static const int timer_id[] = { | 
 |     0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ | 
 |     0xb7, 0xb0, 0x0b, 0x00, /* PID0..PID3 */ | 
 |     0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ | 
 | }; | 
 |  | 
 | static bool sse_is_autoinc(SSETimer *s) | 
 | { | 
 |     return (s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_EN_MASK) != 0; | 
 | } | 
 |  | 
 | static bool sse_enabled(SSETimer *s) | 
 | { | 
 |     return (s->cntp_ctl & R_CNTP_CTL_ENABLE_MASK) != 0; | 
 | } | 
 |  | 
 | static uint64_t sse_cntpct(SSETimer *s) | 
 | { | 
 |     /* Return the CNTPCT value for the current time */ | 
 |     return sse_counter_for_timestamp(s->counter, | 
 |                                      qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); | 
 | } | 
 |  | 
 | static bool sse_timer_status(SSETimer *s) | 
 | { | 
 |     /* | 
 |      * Return true if timer condition is met. This is used for both | 
 |      * the CNTP_CTL.ISTATUS bit and for whether (unless masked) we | 
 |      * assert our IRQ. | 
 |      * The documentation is unclear about the behaviour of ISTATUS when | 
 |      * in autoincrement mode; we assume that it follows CNTP_AIVAL_CTL.CLR | 
 |      * (ie whether the autoincrement timer is asserting the interrupt). | 
 |      */ | 
 |     if (!sse_enabled(s)) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (sse_is_autoinc(s)) { | 
 |         return s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_CLR_MASK; | 
 |     } else { | 
 |         return sse_cntpct(s) >= s->cntp_cval; | 
 |     } | 
 | } | 
 |  | 
 | static void sse_update_irq(SSETimer *s) | 
 | { | 
 |     bool irqstate = (!(s->cntp_ctl & R_CNTP_CTL_IMASK_MASK) && | 
 |                      sse_timer_status(s)); | 
 |  | 
 |     qemu_set_irq(s->irq, irqstate); | 
 | } | 
 |  | 
 | static void sse_set_timer(SSETimer *s, uint64_t nexttick) | 
 | { | 
 |     /* Set the timer to expire at nexttick */ | 
 |     uint64_t expiry = sse_counter_tick_to_time(s->counter, nexttick); | 
 |  | 
 |     if (expiry <= INT64_MAX) { | 
 |         timer_mod_ns(&s->timer, expiry); | 
 |     } else { | 
 |         /* | 
 |          * nexttick is so far in the future that it would overflow the | 
 |          * signed 64-bit range of a QEMUTimer. Since timer_mod_ns() | 
 |          * expiry times are absolute, not relative, we are never going | 
 |          * to be able to set the timer to this value, so we must just | 
 |          * assume that guest execution can never run so long that it | 
 |          * reaches the theoretical point when the timer fires. | 
 |          * This is also the code path for "counter is not running", | 
 |          * which is signalled by expiry == UINT64_MAX. | 
 |          */ | 
 |         timer_del(&s->timer); | 
 |     } | 
 | } | 
 |  | 
 | static void sse_recalc_timer(SSETimer *s) | 
 | { | 
 |     /* Recalculate the normal timer */ | 
 |     uint64_t count, nexttick; | 
 |  | 
 |     if (sse_is_autoinc(s)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (!sse_enabled(s)) { | 
 |         timer_del(&s->timer); | 
 |         return; | 
 |     } | 
 |  | 
 |     count = sse_cntpct(s); | 
 |  | 
 |     if (count >= s->cntp_cval) { | 
 |         /* | 
 |          * Timer condition already met. In theory we have a transition when | 
 |          * the count rolls back over to 0, but that is so far in the future | 
 |          * that it is not representable as a timer_mod() expiry, so in | 
 |          * fact sse_set_timer() will always just delete the timer. | 
 |          */ | 
 |         nexttick = UINT64_MAX; | 
 |     } else { | 
 |         /* Next transition is when count hits cval */ | 
 |         nexttick = s->cntp_cval; | 
 |     } | 
 |     sse_set_timer(s, nexttick); | 
 |     sse_update_irq(s); | 
 | } | 
 |  | 
 | static void sse_autoinc(SSETimer *s) | 
 | { | 
 |     /* Auto-increment the AIVAL, and set the timer accordingly */ | 
 |     s->cntp_aival = sse_cntpct(s) + s->cntp_aival_reload; | 
 |     sse_set_timer(s, s->cntp_aival); | 
 | } | 
 |  | 
 | static void sse_timer_cb(void *opaque) | 
 | { | 
 |     SSETimer *s = SSE_TIMER(opaque); | 
 |  | 
 |     if (sse_is_autoinc(s)) { | 
 |         uint64_t count = sse_cntpct(s); | 
 |  | 
 |         if (count >= s->cntp_aival) { | 
 |             /* Timer condition met, set CLR and do another autoinc */ | 
 |             s->cntp_aival_ctl |= R_CNTP_AIVAL_CTL_CLR_MASK; | 
 |             s->cntp_aival = count + s->cntp_aival_reload; | 
 |         } | 
 |         sse_set_timer(s, s->cntp_aival); | 
 |         sse_update_irq(s); | 
 |     } else { | 
 |         sse_recalc_timer(s); | 
 |     } | 
 | } | 
 |  | 
 | static uint64_t sse_timer_read(void *opaque, hwaddr offset, unsigned size) | 
 | { | 
 |     SSETimer *s = SSE_TIMER(opaque); | 
 |     uint64_t r; | 
 |  | 
 |     switch (offset) { | 
 |     case A_CNTPCT_LO: | 
 |         r = extract64(sse_cntpct(s), 0, 32); | 
 |         break; | 
 |     case A_CNTPCT_HI: | 
 |         r = extract64(sse_cntpct(s), 32, 32); | 
 |         break; | 
 |     case A_CNTFRQ: | 
 |         r = s->cntfrq; | 
 |         break; | 
 |     case A_CNTP_CVAL_LO: | 
 |         r = extract64(s->cntp_cval, 0, 32); | 
 |         break; | 
 |     case A_CNTP_CVAL_HI: | 
 |         r = extract64(s->cntp_cval, 32, 32); | 
 |         break; | 
 |     case A_CNTP_TVAL: | 
 |         r = extract64(s->cntp_cval - sse_cntpct(s), 0, 32); | 
 |         break; | 
 |     case A_CNTP_CTL: | 
 |         r = s->cntp_ctl; | 
 |         if (sse_timer_status(s)) { | 
 |             r |= R_CNTP_CTL_ISTATUS_MASK; | 
 |         } | 
 |         break; | 
 |     case A_CNTP_AIVAL_LO: | 
 |         r = extract64(s->cntp_aival, 0, 32); | 
 |         break; | 
 |     case A_CNTP_AIVAL_HI: | 
 |         r = extract64(s->cntp_aival, 32, 32); | 
 |         break; | 
 |     case A_CNTP_AIVAL_RELOAD: | 
 |         r = s->cntp_aival_reload; | 
 |         break; | 
 |     case A_CNTP_AIVAL_CTL: | 
 |         /* | 
 |          * All the bits of AIVAL_CTL are documented as WO, but this is probably | 
 |          * a documentation error. We implement them as readable. | 
 |          */ | 
 |         r = s->cntp_aival_ctl; | 
 |         break; | 
 |     case A_CNTP_CFG: | 
 |         r = R_CNTP_CFG_AIVAL_IMPLEMENTED << R_CNTP_CFG_AIVAL_SHIFT; | 
 |         break; | 
 |     case A_PID4 ... A_CID3: | 
 |         r = timer_id[(offset - A_PID4) / 4]; | 
 |         break; | 
 |     default: | 
 |         qemu_log_mask(LOG_GUEST_ERROR, | 
 |                       "SSE System Timer read: bad offset 0x%x", | 
 |                       (unsigned) offset); | 
 |         r = 0; | 
 |         break; | 
 |     } | 
 |  | 
 |     trace_sse_timer_read(offset, r, size); | 
 |     return r; | 
 | } | 
 |  | 
 | static void sse_timer_write(void *opaque, hwaddr offset, uint64_t value, | 
 |                             unsigned size) | 
 | { | 
 |     SSETimer *s = SSE_TIMER(opaque); | 
 |  | 
 |     trace_sse_timer_write(offset, value, size); | 
 |  | 
 |     switch (offset) { | 
 |     case A_CNTFRQ: | 
 |         s->cntfrq = value; | 
 |         break; | 
 |     case A_CNTP_CVAL_LO: | 
 |         s->cntp_cval = deposit64(s->cntp_cval, 0, 32, value); | 
 |         sse_recalc_timer(s); | 
 |         break; | 
 |     case A_CNTP_CVAL_HI: | 
 |         s->cntp_cval = deposit64(s->cntp_cval, 32, 32, value); | 
 |         sse_recalc_timer(s); | 
 |         break; | 
 |     case A_CNTP_TVAL: | 
 |         s->cntp_cval = sse_cntpct(s) + sextract64(value, 0, 32); | 
 |         sse_recalc_timer(s); | 
 |         break; | 
 |     case A_CNTP_CTL: | 
 |     { | 
 |         uint32_t old_ctl = s->cntp_ctl; | 
 |         value &= R_CNTP_CTL_ENABLE_MASK | R_CNTP_CTL_IMASK_MASK; | 
 |         s->cntp_ctl = value; | 
 |         if ((old_ctl ^ s->cntp_ctl) & R_CNTP_CTL_ENABLE_MASK) { | 
 |             if (sse_enabled(s)) { | 
 |                 if (sse_is_autoinc(s)) { | 
 |                     sse_autoinc(s); | 
 |                 } else { | 
 |                     sse_recalc_timer(s); | 
 |                 } | 
 |             } | 
 |         } | 
 |         sse_update_irq(s); | 
 |         break; | 
 |     } | 
 |     case A_CNTP_AIVAL_RELOAD: | 
 |         s->cntp_aival_reload = value; | 
 |         break; | 
 |     case A_CNTP_AIVAL_CTL: | 
 |     { | 
 |         uint32_t old_ctl = s->cntp_aival_ctl; | 
 |  | 
 |         /* EN bit is writable; CLR bit is write-0-to-clear, write-1-ignored */ | 
 |         s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_EN_MASK; | 
 |         s->cntp_aival_ctl |= value & R_CNTP_AIVAL_CTL_EN_MASK; | 
 |         if (!(value & R_CNTP_AIVAL_CTL_CLR_MASK)) { | 
 |             s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_CLR_MASK; | 
 |         } | 
 |         if ((old_ctl ^ s->cntp_aival_ctl) & R_CNTP_AIVAL_CTL_EN_MASK) { | 
 |             /* Auto-increment toggled on/off */ | 
 |             if (sse_enabled(s)) { | 
 |                 if (sse_is_autoinc(s)) { | 
 |                     sse_autoinc(s); | 
 |                 } else { | 
 |                     sse_recalc_timer(s); | 
 |                 } | 
 |             } | 
 |         } | 
 |         sse_update_irq(s); | 
 |         break; | 
 |     } | 
 |     case A_CNTPCT_LO: | 
 |     case A_CNTPCT_HI: | 
 |     case A_CNTP_CFG: | 
 |     case A_CNTP_AIVAL_LO: | 
 |     case A_CNTP_AIVAL_HI: | 
 |     case A_PID4 ... A_CID3: | 
 |         qemu_log_mask(LOG_GUEST_ERROR, | 
 |                       "SSE System Timer write: write to RO offset 0x%x\n", | 
 |                       (unsigned)offset); | 
 |         break; | 
 |     default: | 
 |         qemu_log_mask(LOG_GUEST_ERROR, | 
 |                       "SSE System Timer write: bad offset 0x%x\n", | 
 |                       (unsigned)offset); | 
 |         break; | 
 |     } | 
 | } | 
 |  | 
 | static const MemoryRegionOps sse_timer_ops = { | 
 |     .read = sse_timer_read, | 
 |     .write = sse_timer_write, | 
 |     .endianness = DEVICE_LITTLE_ENDIAN, | 
 |     .valid.min_access_size = 4, | 
 |     .valid.max_access_size = 4, | 
 | }; | 
 |  | 
 | static void sse_timer_reset(DeviceState *dev) | 
 | { | 
 |     SSETimer *s = SSE_TIMER(dev); | 
 |  | 
 |     trace_sse_timer_reset(); | 
 |  | 
 |     timer_del(&s->timer); | 
 |     s->cntfrq = 0; | 
 |     s->cntp_ctl = 0; | 
 |     s->cntp_cval = 0; | 
 |     s->cntp_aival = 0; | 
 |     s->cntp_aival_ctl = 0; | 
 |     s->cntp_aival_reload = 0; | 
 | } | 
 |  | 
 | static void sse_timer_counter_callback(Notifier *notifier, void *data) | 
 | { | 
 |     SSETimer *s = container_of(notifier, SSETimer, counter_notifier); | 
 |  | 
 |     /* System counter told us we need to recalculate */ | 
 |     if (sse_enabled(s)) { | 
 |         if (sse_is_autoinc(s)) { | 
 |             sse_set_timer(s, s->cntp_aival); | 
 |         } else { | 
 |             sse_recalc_timer(s); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void sse_timer_init(Object *obj) | 
 | { | 
 |     SysBusDevice *sbd = SYS_BUS_DEVICE(obj); | 
 |     SSETimer *s = SSE_TIMER(obj); | 
 |  | 
 |     memory_region_init_io(&s->iomem, obj, &sse_timer_ops, | 
 |                           s, "sse-timer", 0x1000); | 
 |     sysbus_init_mmio(sbd, &s->iomem); | 
 |     sysbus_init_irq(sbd, &s->irq); | 
 | } | 
 |  | 
 | static void sse_timer_realize(DeviceState *dev, Error **errp) | 
 | { | 
 |     SSETimer *s = SSE_TIMER(dev); | 
 |  | 
 |     if (!s->counter) { | 
 |         error_setg(errp, "counter property was not set"); | 
 |         return; | 
 |     } | 
 |  | 
 |     s->counter_notifier.notify = sse_timer_counter_callback; | 
 |     sse_counter_register_consumer(s->counter, &s->counter_notifier); | 
 |  | 
 |     timer_init_ns(&s->timer, QEMU_CLOCK_VIRTUAL, sse_timer_cb, s); | 
 | } | 
 |  | 
 | static const VMStateDescription sse_timer_vmstate = { | 
 |     .name = "sse-timer", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .fields = (const VMStateField[]) { | 
 |         VMSTATE_TIMER(timer, SSETimer), | 
 |         VMSTATE_UINT32(cntfrq, SSETimer), | 
 |         VMSTATE_UINT32(cntp_ctl, SSETimer), | 
 |         VMSTATE_UINT64(cntp_cval, SSETimer), | 
 |         VMSTATE_UINT64(cntp_aival, SSETimer), | 
 |         VMSTATE_UINT32(cntp_aival_ctl, SSETimer), | 
 |         VMSTATE_UINT32(cntp_aival_reload, SSETimer), | 
 |         VMSTATE_END_OF_LIST() | 
 |     } | 
 | }; | 
 |  | 
 | static Property sse_timer_properties[] = { | 
 |     DEFINE_PROP_LINK("counter", SSETimer, counter, TYPE_SSE_COUNTER, SSECounter *), | 
 |     DEFINE_PROP_END_OF_LIST(), | 
 | }; | 
 |  | 
 | static void sse_timer_class_init(ObjectClass *klass, void *data) | 
 | { | 
 |     DeviceClass *dc = DEVICE_CLASS(klass); | 
 |  | 
 |     dc->realize = sse_timer_realize; | 
 |     dc->vmsd = &sse_timer_vmstate; | 
 |     dc->reset = sse_timer_reset; | 
 |     device_class_set_props(dc, sse_timer_properties); | 
 | } | 
 |  | 
 | static const TypeInfo sse_timer_info = { | 
 |     .name = TYPE_SSE_TIMER, | 
 |     .parent = TYPE_SYS_BUS_DEVICE, | 
 |     .instance_size = sizeof(SSETimer), | 
 |     .instance_init = sse_timer_init, | 
 |     .class_init = sse_timer_class_init, | 
 | }; | 
 |  | 
 | static void sse_timer_register_types(void) | 
 | { | 
 |     type_register_static(&sse_timer_info); | 
 | } | 
 |  | 
 | type_init(sse_timer_register_types); |