| /* |
| * QEMU MC146818 RTC emulation |
| * |
| * Copyright (c) 2003-2004 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/cutils.h" |
| #include "qemu/module.h" |
| #include "qemu/bcd.h" |
| #include "hw/acpi/acpi_aml_interface.h" |
| #include "hw/intc/kvm_irqcount.h" |
| #include "hw/irq.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/qdev-properties-system.h" |
| #include "qemu/timer.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/replay.h" |
| #include "sysemu/reset.h" |
| #include "sysemu/runstate.h" |
| #include "sysemu/rtc.h" |
| #include "hw/rtc/mc146818rtc.h" |
| #include "hw/rtc/mc146818rtc_regs.h" |
| #include "migration/vmstate.h" |
| #include "qapi/error.h" |
| #include "qapi/qapi-events-misc.h" |
| #include "qapi/visitor.h" |
| |
| //#define DEBUG_CMOS |
| //#define DEBUG_COALESCED |
| |
| #ifdef DEBUG_CMOS |
| # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) |
| #else |
| # define CMOS_DPRINTF(format, ...) do { } while (0) |
| #endif |
| |
| #ifdef DEBUG_COALESCED |
| # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__) |
| #else |
| # define DPRINTF_C(format, ...) do { } while (0) |
| #endif |
| |
| #define SEC_PER_MIN 60 |
| #define MIN_PER_HOUR 60 |
| #define SEC_PER_HOUR 3600 |
| #define HOUR_PER_DAY 24 |
| #define SEC_PER_DAY 86400 |
| |
| #define RTC_REINJECT_ON_ACK_COUNT 20 |
| #define RTC_CLOCK_RATE 32768 |
| #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768) |
| |
| #define RTC_ISA_BASE 0x70 |
| |
| static void rtc_set_time(RTCState *s); |
| static void rtc_update_time(RTCState *s); |
| static void rtc_set_cmos(RTCState *s, const struct tm *tm); |
| static inline int rtc_from_bcd(RTCState *s, int a); |
| static uint64_t get_next_alarm(RTCState *s); |
| |
| static inline bool rtc_running(RTCState *s) |
| { |
| return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) && |
| (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20); |
| } |
| |
| static uint64_t get_guest_rtc_ns(RTCState *s) |
| { |
| uint64_t guest_clock = qemu_clock_get_ns(rtc_clock); |
| |
| return s->base_rtc * NANOSECONDS_PER_SECOND + |
| guest_clock - s->last_update + s->offset; |
| } |
| |
| static void rtc_coalesced_timer_update(RTCState *s) |
| { |
| if (s->irq_coalesced == 0) { |
| timer_del(s->coalesced_timer); |
| } else { |
| /* divide each RTC interval to 2 - 8 smaller intervals */ |
| int c = MIN(s->irq_coalesced, 7) + 1; |
| int64_t next_clock = qemu_clock_get_ns(rtc_clock) + |
| periodic_clock_to_ns(s->period / c); |
| timer_mod(s->coalesced_timer, next_clock); |
| } |
| } |
| |
| static QLIST_HEAD(, RTCState) rtc_devices = |
| QLIST_HEAD_INITIALIZER(rtc_devices); |
| |
| void qmp_rtc_reset_reinjection(Error **errp) |
| { |
| RTCState *s; |
| |
| QLIST_FOREACH(s, &rtc_devices, link) { |
| s->irq_coalesced = 0; |
| } |
| } |
| |
| static bool rtc_policy_slew_deliver_irq(RTCState *s) |
| { |
| kvm_reset_irq_delivered(); |
| qemu_irq_raise(s->irq); |
| return kvm_get_irq_delivered(); |
| } |
| |
| static void rtc_coalesced_timer(void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| if (s->irq_coalesced != 0) { |
| s->cmos_data[RTC_REG_C] |= 0xc0; |
| DPRINTF_C("cmos: injecting from timer\n"); |
| if (rtc_policy_slew_deliver_irq(s)) { |
| s->irq_coalesced--; |
| DPRINTF_C("cmos: coalesced irqs decreased to %d\n", |
| s->irq_coalesced); |
| } |
| } |
| |
| rtc_coalesced_timer_update(s); |
| } |
| |
| static uint32_t rtc_periodic_clock_ticks(RTCState *s) |
| { |
| int period_code; |
| |
| if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) { |
| return 0; |
| } |
| |
| period_code = s->cmos_data[RTC_REG_A] & 0x0f; |
| |
| return periodic_period_to_clock(period_code); |
| } |
| |
| /* |
| * handle periodic timer. @old_period indicates the periodic timer update |
| * is just due to period adjustment. |
| */ |
| static void |
| periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change) |
| { |
| uint32_t period; |
| int64_t cur_clock, next_irq_clock, lost_clock = 0; |
| |
| period = rtc_periodic_clock_ticks(s); |
| s->period = period; |
| |
| if (!period) { |
| s->irq_coalesced = 0; |
| timer_del(s->periodic_timer); |
| return; |
| } |
| |
| /* compute 32 khz clock */ |
| cur_clock = |
| muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); |
| |
| /* |
| * if the periodic timer's update is due to period re-configuration, |
| * we should count the clock since last interrupt. |
| */ |
| if (old_period && period_change) { |
| int64_t last_periodic_clock, next_periodic_clock; |
| |
| next_periodic_clock = muldiv64(s->next_periodic_time, |
| RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); |
| last_periodic_clock = next_periodic_clock - old_period; |
| lost_clock = cur_clock - last_periodic_clock; |
| assert(lost_clock >= 0); |
| } |
| |
| /* |
| * s->irq_coalesced can change for two reasons: |
| * |
| * a) if one or more periodic timer interrupts have been lost, |
| * lost_clock will be more that a period. |
| * |
| * b) when the period may be reconfigured, we expect the OS to |
| * treat delayed tick as the new period. So, when switching |
| * from a shorter to a longer period, scale down the missing, |
| * because the OS will treat past delayed ticks as longer |
| * (leftovers are put back into lost_clock). When switching |
| * to a shorter period, scale up the missing ticks since the |
| * OS handler will treat past delayed ticks as shorter. |
| */ |
| if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { |
| uint32_t old_irq_coalesced = s->irq_coalesced; |
| |
| lost_clock += old_irq_coalesced * old_period; |
| s->irq_coalesced = lost_clock / s->period; |
| lost_clock %= s->period; |
| if (old_irq_coalesced != s->irq_coalesced || |
| old_period != s->period) { |
| DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, " |
| "period scaled from %d to %d\n", old_irq_coalesced, |
| s->irq_coalesced, old_period, s->period); |
| rtc_coalesced_timer_update(s); |
| } |
| } else { |
| /* |
| * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW |
| * is not used, we should make the time progress anyway. |
| */ |
| lost_clock = MIN(lost_clock, period); |
| } |
| |
| assert(lost_clock >= 0 && lost_clock <= period); |
| |
| next_irq_clock = cur_clock + period - lost_clock; |
| s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1; |
| timer_mod(s->periodic_timer, s->next_periodic_time); |
| } |
| |
| static void rtc_periodic_timer(void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| periodic_timer_update(s, s->next_periodic_time, s->period, false); |
| s->cmos_data[RTC_REG_C] |= REG_C_PF; |
| if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { |
| s->cmos_data[RTC_REG_C] |= REG_C_IRQF; |
| if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { |
| if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT) |
| s->irq_reinject_on_ack_count = 0; |
| if (!rtc_policy_slew_deliver_irq(s)) { |
| s->irq_coalesced++; |
| rtc_coalesced_timer_update(s); |
| DPRINTF_C("cmos: coalesced irqs increased to %d\n", |
| s->irq_coalesced); |
| } |
| } else |
| qemu_irq_raise(s->irq); |
| } |
| } |
| |
| /* handle update-ended timer */ |
| static void check_update_timer(RTCState *s) |
| { |
| uint64_t next_update_time; |
| uint64_t guest_nsec; |
| int next_alarm_sec; |
| |
| /* From the data sheet: "Holding the dividers in reset prevents |
| * interrupts from operating, while setting the SET bit allows" |
| * them to occur. |
| */ |
| if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) { |
| assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0); |
| timer_del(s->update_timer); |
| return; |
| } |
| |
| guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; |
| next_update_time = qemu_clock_get_ns(rtc_clock) |
| + NANOSECONDS_PER_SECOND - guest_nsec; |
| |
| /* Compute time of next alarm. One second is already accounted |
| * for in next_update_time. |
| */ |
| next_alarm_sec = get_next_alarm(s); |
| s->next_alarm_time = next_update_time + |
| (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND; |
| |
| /* If update_in_progress latched the UIP bit, we must keep the timer |
| * programmed to the next second, so that UIP is cleared. Otherwise, |
| * if UF is already set, we might be able to optimize. |
| */ |
| if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) && |
| (s->cmos_data[RTC_REG_C] & REG_C_UF)) { |
| /* If AF cannot change (i.e. either it is set already, or |
| * SET=1 and then the time is not updated), nothing to do. |
| */ |
| if ((s->cmos_data[RTC_REG_B] & REG_B_SET) || |
| (s->cmos_data[RTC_REG_C] & REG_C_AF)) { |
| timer_del(s->update_timer); |
| return; |
| } |
| |
| /* UF is set, but AF is clear. Program the timer to target |
| * the alarm time. */ |
| next_update_time = s->next_alarm_time; |
| } |
| if (next_update_time != timer_expire_time_ns(s->update_timer)) { |
| timer_mod(s->update_timer, next_update_time); |
| } |
| } |
| |
| static inline uint8_t convert_hour(RTCState *s, uint8_t hour) |
| { |
| if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { |
| hour %= 12; |
| if (s->cmos_data[RTC_HOURS] & 0x80) { |
| hour += 12; |
| } |
| } |
| return hour; |
| } |
| |
| static uint64_t get_next_alarm(RTCState *s) |
| { |
| int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec; |
| int32_t hour, min, sec; |
| |
| rtc_update_time(s); |
| |
| alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]); |
| alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]); |
| alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]); |
| alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour); |
| |
| cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); |
| cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); |
| cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]); |
| cur_hour = convert_hour(s, cur_hour); |
| |
| if (alarm_hour == -1) { |
| alarm_hour = cur_hour; |
| if (alarm_min == -1) { |
| alarm_min = cur_min; |
| if (alarm_sec == -1) { |
| alarm_sec = cur_sec + 1; |
| } else if (cur_sec > alarm_sec) { |
| alarm_min++; |
| } |
| } else if (cur_min == alarm_min) { |
| if (alarm_sec == -1) { |
| alarm_sec = cur_sec + 1; |
| } else { |
| if (cur_sec > alarm_sec) { |
| alarm_hour++; |
| } |
| } |
| if (alarm_sec == SEC_PER_MIN) { |
| /* wrap to next hour, minutes is not in don't care mode */ |
| alarm_sec = 0; |
| alarm_hour++; |
| } |
| } else if (cur_min > alarm_min) { |
| alarm_hour++; |
| } |
| } else if (cur_hour == alarm_hour) { |
| if (alarm_min == -1) { |
| alarm_min = cur_min; |
| if (alarm_sec == -1) { |
| alarm_sec = cur_sec + 1; |
| } else if (cur_sec > alarm_sec) { |
| alarm_min++; |
| } |
| |
| if (alarm_sec == SEC_PER_MIN) { |
| alarm_sec = 0; |
| alarm_min++; |
| } |
| /* wrap to next day, hour is not in don't care mode */ |
| alarm_min %= MIN_PER_HOUR; |
| } else if (cur_min == alarm_min) { |
| if (alarm_sec == -1) { |
| alarm_sec = cur_sec + 1; |
| } |
| /* wrap to next day, hours+minutes not in don't care mode */ |
| alarm_sec %= SEC_PER_MIN; |
| } |
| } |
| |
| /* values that are still don't care fire at the next min/sec */ |
| if (alarm_min == -1) { |
| alarm_min = 0; |
| } |
| if (alarm_sec == -1) { |
| alarm_sec = 0; |
| } |
| |
| /* keep values in range */ |
| if (alarm_sec == SEC_PER_MIN) { |
| alarm_sec = 0; |
| alarm_min++; |
| } |
| if (alarm_min == MIN_PER_HOUR) { |
| alarm_min = 0; |
| alarm_hour++; |
| } |
| alarm_hour %= HOUR_PER_DAY; |
| |
| hour = alarm_hour - cur_hour; |
| min = hour * MIN_PER_HOUR + alarm_min - cur_min; |
| sec = min * SEC_PER_MIN + alarm_sec - cur_sec; |
| return sec <= 0 ? sec + SEC_PER_DAY : sec; |
| } |
| |
| static void rtc_update_timer(void *opaque) |
| { |
| RTCState *s = opaque; |
| int32_t irqs = REG_C_UF; |
| int32_t new_irqs; |
| |
| assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60); |
| |
| /* UIP might have been latched, update time and clear it. */ |
| rtc_update_time(s); |
| s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| |
| if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) { |
| irqs |= REG_C_AF; |
| if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { |
| qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL); |
| } |
| } |
| |
| new_irqs = irqs & ~s->cmos_data[RTC_REG_C]; |
| s->cmos_data[RTC_REG_C] |= irqs; |
| if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) { |
| s->cmos_data[RTC_REG_C] |= REG_C_IRQF; |
| qemu_irq_raise(s->irq); |
| } |
| check_update_timer(s); |
| } |
| |
| static void cmos_ioport_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| RTCState *s = opaque; |
| uint32_t old_period; |
| bool update_periodic_timer; |
| |
| if ((addr & 1) == 0) { |
| s->cmos_index = data & 0x7f; |
| } else { |
| CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n", |
| s->cmos_index, data); |
| switch(s->cmos_index) { |
| case RTC_SECONDS_ALARM: |
| case RTC_MINUTES_ALARM: |
| case RTC_HOURS_ALARM: |
| s->cmos_data[s->cmos_index] = data; |
| check_update_timer(s); |
| break; |
| case RTC_IBM_PS2_CENTURY_BYTE: |
| s->cmos_index = RTC_CENTURY; |
| /* fall through */ |
| case RTC_CENTURY: |
| case RTC_SECONDS: |
| case RTC_MINUTES: |
| case RTC_HOURS: |
| case RTC_DAY_OF_WEEK: |
| case RTC_DAY_OF_MONTH: |
| case RTC_MONTH: |
| case RTC_YEAR: |
| s->cmos_data[s->cmos_index] = data; |
| /* if in set mode, do not update the time */ |
| if (rtc_running(s)) { |
| rtc_set_time(s); |
| check_update_timer(s); |
| } |
| break; |
| case RTC_REG_A: |
| update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f; |
| old_period = rtc_periodic_clock_ticks(s); |
| |
| if ((data & 0x60) == 0x60) { |
| if (rtc_running(s)) { |
| rtc_update_time(s); |
| } |
| /* What happens to UIP when divider reset is enabled is |
| * unclear from the datasheet. Shouldn't matter much |
| * though. |
| */ |
| s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) && |
| (data & 0x70) <= 0x20) { |
| /* when the divider reset is removed, the first update cycle |
| * begins one-half second later*/ |
| if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { |
| s->offset = 500000000; |
| rtc_set_time(s); |
| } |
| s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| } |
| /* UIP bit is read only */ |
| s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | |
| (s->cmos_data[RTC_REG_A] & REG_A_UIP); |
| |
| if (update_periodic_timer) { |
| periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), |
| old_period, true); |
| } |
| |
| check_update_timer(s); |
| break; |
| case RTC_REG_B: |
| update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data) |
| & REG_B_PIE; |
| old_period = rtc_periodic_clock_ticks(s); |
| |
| if (data & REG_B_SET) { |
| /* update cmos to when the rtc was stopping */ |
| if (rtc_running(s)) { |
| rtc_update_time(s); |
| } |
| /* set mode: reset UIP mode */ |
| s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| data &= ~REG_B_UIE; |
| } else { |
| /* if disabling set mode, update the time */ |
| if ((s->cmos_data[RTC_REG_B] & REG_B_SET) && |
| (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) { |
| s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; |
| rtc_set_time(s); |
| } |
| } |
| /* if an interrupt flag is already set when the interrupt |
| * becomes enabled, raise an interrupt immediately. */ |
| if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) { |
| s->cmos_data[RTC_REG_C] |= REG_C_IRQF; |
| qemu_irq_raise(s->irq); |
| } else { |
| s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF; |
| qemu_irq_lower(s->irq); |
| } |
| s->cmos_data[RTC_REG_B] = data; |
| |
| if (update_periodic_timer) { |
| periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), |
| old_period, true); |
| } |
| |
| check_update_timer(s); |
| break; |
| case RTC_REG_C: |
| case RTC_REG_D: |
| /* cannot write to them */ |
| break; |
| default: |
| s->cmos_data[s->cmos_index] = data; |
| break; |
| } |
| } |
| } |
| |
| static inline int rtc_to_bcd(RTCState *s, int a) |
| { |
| if (s->cmos_data[RTC_REG_B] & REG_B_DM) { |
| return a; |
| } else { |
| return ((a / 10) << 4) | (a % 10); |
| } |
| } |
| |
| static inline int rtc_from_bcd(RTCState *s, int a) |
| { |
| if ((a & 0xc0) == 0xc0) { |
| return -1; |
| } |
| if (s->cmos_data[RTC_REG_B] & REG_B_DM) { |
| return a; |
| } else { |
| return ((a >> 4) * 10) + (a & 0x0f); |
| } |
| } |
| |
| static void rtc_get_time(RTCState *s, struct tm *tm) |
| { |
| tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); |
| tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); |
| tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); |
| if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { |
| tm->tm_hour %= 12; |
| if (s->cmos_data[RTC_HOURS] & 0x80) { |
| tm->tm_hour += 12; |
| } |
| } |
| tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; |
| tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); |
| tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; |
| tm->tm_year = |
| rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year + |
| rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900; |
| } |
| |
| static void rtc_set_time(RTCState *s) |
| { |
| struct tm tm; |
| g_autofree const char *qom_path = object_get_canonical_path(OBJECT(s)); |
| |
| rtc_get_time(s, &tm); |
| s->base_rtc = mktimegm(&tm); |
| s->last_update = qemu_clock_get_ns(rtc_clock); |
| |
| qapi_event_send_rtc_change(qemu_timedate_diff(&tm), qom_path); |
| } |
| |
| static void rtc_set_cmos(RTCState *s, const struct tm *tm) |
| { |
| int year; |
| |
| s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec); |
| s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min); |
| if (s->cmos_data[RTC_REG_B] & REG_B_24H) { |
| /* 24 hour format */ |
| s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour); |
| } else { |
| /* 12 hour format */ |
| int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12; |
| s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h); |
| if (tm->tm_hour >= 12) |
| s->cmos_data[RTC_HOURS] |= 0x80; |
| } |
| s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1); |
| s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday); |
| s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1); |
| year = tm->tm_year + 1900 - s->base_year; |
| s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100); |
| s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100); |
| } |
| |
| static void rtc_update_time(RTCState *s) |
| { |
| struct tm ret; |
| time_t guest_sec; |
| int64_t guest_nsec; |
| |
| guest_nsec = get_guest_rtc_ns(s); |
| guest_sec = guest_nsec / NANOSECONDS_PER_SECOND; |
| gmtime_r(&guest_sec, &ret); |
| |
| /* Is SET flag of Register B disabled? */ |
| if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) { |
| rtc_set_cmos(s, &ret); |
| } |
| } |
| |
| static int update_in_progress(RTCState *s) |
| { |
| int64_t guest_nsec; |
| |
| if (!rtc_running(s)) { |
| return 0; |
| } |
| if (timer_pending(s->update_timer)) { |
| int64_t next_update_time = timer_expire_time_ns(s->update_timer); |
| /* Latch UIP until the timer expires. */ |
| if (qemu_clock_get_ns(rtc_clock) >= |
| (next_update_time - UIP_HOLD_LENGTH)) { |
| s->cmos_data[RTC_REG_A] |= REG_A_UIP; |
| return 1; |
| } |
| } |
| |
| guest_nsec = get_guest_rtc_ns(s); |
| /* UIP bit will be set at last 244us of every second. */ |
| if ((guest_nsec % NANOSECONDS_PER_SECOND) >= |
| (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| static uint64_t cmos_ioport_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| RTCState *s = opaque; |
| int ret; |
| if ((addr & 1) == 0) { |
| return 0xff; |
| } else { |
| switch(s->cmos_index) { |
| case RTC_IBM_PS2_CENTURY_BYTE: |
| s->cmos_index = RTC_CENTURY; |
| /* fall through */ |
| case RTC_CENTURY: |
| case RTC_SECONDS: |
| case RTC_MINUTES: |
| case RTC_HOURS: |
| case RTC_DAY_OF_WEEK: |
| case RTC_DAY_OF_MONTH: |
| case RTC_MONTH: |
| case RTC_YEAR: |
| /* if not in set mode, calibrate cmos before |
| * reading*/ |
| if (rtc_running(s)) { |
| rtc_update_time(s); |
| } |
| ret = s->cmos_data[s->cmos_index]; |
| break; |
| case RTC_REG_A: |
| ret = s->cmos_data[s->cmos_index]; |
| if (update_in_progress(s)) { |
| ret |= REG_A_UIP; |
| } |
| break; |
| case RTC_REG_C: |
| ret = s->cmos_data[s->cmos_index]; |
| qemu_irq_lower(s->irq); |
| s->cmos_data[RTC_REG_C] = 0x00; |
| if (ret & (REG_C_UF | REG_C_AF)) { |
| check_update_timer(s); |
| } |
| |
| if(s->irq_coalesced && |
| (s->cmos_data[RTC_REG_B] & REG_B_PIE) && |
| s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) { |
| s->irq_reinject_on_ack_count++; |
| s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF; |
| DPRINTF_C("cmos: injecting on ack\n"); |
| if (rtc_policy_slew_deliver_irq(s)) { |
| s->irq_coalesced--; |
| DPRINTF_C("cmos: coalesced irqs decreased to %d\n", |
| s->irq_coalesced); |
| } |
| } |
| break; |
| default: |
| ret = s->cmos_data[s->cmos_index]; |
| break; |
| } |
| CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n", |
| s->cmos_index, ret); |
| return ret; |
| } |
| } |
| |
| void rtc_set_memory(ISADevice *dev, int addr, int val) |
| { |
| RTCState *s = MC146818_RTC(dev); |
| if (addr >= 0 && addr <= 127) |
| s->cmos_data[addr] = val; |
| } |
| |
| int rtc_get_memory(ISADevice *dev, int addr) |
| { |
| RTCState *s = MC146818_RTC(dev); |
| assert(addr >= 0 && addr <= 127); |
| return s->cmos_data[addr]; |
| } |
| |
| static void rtc_set_date_from_host(ISADevice *dev) |
| { |
| RTCState *s = MC146818_RTC(dev); |
| struct tm tm; |
| |
| qemu_get_timedate(&tm, 0); |
| |
| s->base_rtc = mktimegm(&tm); |
| s->last_update = qemu_clock_get_ns(rtc_clock); |
| s->offset = 0; |
| |
| /* set the CMOS date */ |
| rtc_set_cmos(s, &tm); |
| } |
| |
| static int rtc_pre_save(void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| rtc_update_time(s); |
| |
| return 0; |
| } |
| |
| static int rtc_post_load(void *opaque, int version_id) |
| { |
| RTCState *s = opaque; |
| |
| if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) { |
| rtc_set_time(s); |
| s->offset = 0; |
| check_update_timer(s); |
| } |
| s->period = rtc_periodic_clock_ticks(s); |
| |
| /* The periodic timer is deterministic in record/replay mode, |
| * so there is no need to update it after loading the vmstate. |
| * Reading RTC here would misalign record and replay. |
| */ |
| if (replay_mode == REPLAY_MODE_NONE) { |
| uint64_t now = qemu_clock_get_ns(rtc_clock); |
| if (now < s->next_periodic_time || |
| now > (s->next_periodic_time + get_max_clock_jump())) { |
| periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false); |
| } |
| } |
| |
| if (version_id >= 2) { |
| if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { |
| rtc_coalesced_timer_update(s); |
| } |
| } |
| return 0; |
| } |
| |
| static bool rtc_irq_reinject_on_ack_count_needed(void *opaque) |
| { |
| RTCState *s = (RTCState *)opaque; |
| return s->irq_reinject_on_ack_count != 0; |
| } |
| |
| static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = { |
| .name = "mc146818rtc/irq_reinject_on_ack_count", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = rtc_irq_reinject_on_ack_count_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_rtc = { |
| .name = "mc146818rtc", |
| .version_id = 3, |
| .minimum_version_id = 1, |
| .pre_save = rtc_pre_save, |
| .post_load = rtc_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_BUFFER(cmos_data, RTCState), |
| VMSTATE_UINT8(cmos_index, RTCState), |
| VMSTATE_UNUSED(7*4), |
| VMSTATE_TIMER_PTR(periodic_timer, RTCState), |
| VMSTATE_INT64(next_periodic_time, RTCState), |
| VMSTATE_UNUSED(3*8), |
| VMSTATE_UINT32_V(irq_coalesced, RTCState, 2), |
| VMSTATE_UINT32_V(period, RTCState, 2), |
| VMSTATE_UINT64_V(base_rtc, RTCState, 3), |
| VMSTATE_UINT64_V(last_update, RTCState, 3), |
| VMSTATE_INT64_V(offset, RTCState, 3), |
| VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3), |
| VMSTATE_UINT64_V(next_alarm_time, RTCState, 3), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &vmstate_rtc_irq_reinject_on_ack_count, |
| NULL |
| } |
| }; |
| |
| /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE) |
| BIOS will read it and start S3 resume at POST Entry */ |
| static void rtc_notify_suspend(Notifier *notifier, void *data) |
| { |
| RTCState *s = container_of(notifier, RTCState, suspend_notifier); |
| rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE); |
| } |
| |
| static const MemoryRegionOps cmos_ops = { |
| .read = cmos_ioport_read, |
| .write = cmos_ioport_write, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 1, |
| }, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp) |
| { |
| RTCState *s = MC146818_RTC(obj); |
| |
| rtc_update_time(s); |
| rtc_get_time(s, current_tm); |
| } |
| |
| static void rtc_realizefn(DeviceState *dev, Error **errp) |
| { |
| ISADevice *isadev = ISA_DEVICE(dev); |
| RTCState *s = MC146818_RTC(dev); |
| |
| s->cmos_data[RTC_REG_A] = 0x26; |
| s->cmos_data[RTC_REG_B] = 0x02; |
| s->cmos_data[RTC_REG_C] = 0x00; |
| s->cmos_data[RTC_REG_D] = 0x80; |
| |
| /* This is for historical reasons. The default base year qdev property |
| * was set to 2000 for most machine types before the century byte was |
| * implemented. |
| * |
| * This if statement means that the century byte will be always 0 |
| * (at least until 2079...) for base_year = 1980, but will be set |
| * correctly for base_year = 2000. |
| */ |
| if (s->base_year == 2000) { |
| s->base_year = 0; |
| } |
| |
| if (s->isairq >= ISA_NUM_IRQS) { |
| error_setg(errp, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS - 1); |
| return; |
| } |
| |
| rtc_set_date_from_host(isadev); |
| |
| switch (s->lost_tick_policy) { |
| case LOST_TICK_POLICY_SLEW: |
| s->coalesced_timer = |
| timer_new_ns(rtc_clock, rtc_coalesced_timer, s); |
| break; |
| case LOST_TICK_POLICY_DISCARD: |
| break; |
| default: |
| error_setg(errp, "Invalid lost tick policy."); |
| return; |
| } |
| |
| s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s); |
| s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s); |
| check_update_timer(s); |
| |
| s->suspend_notifier.notify = rtc_notify_suspend; |
| qemu_register_suspend_notifier(&s->suspend_notifier); |
| |
| memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2); |
| isa_register_ioport(isadev, &s->io, s->io_base); |
| |
| /* register rtc 0x70 port for coalesced_pio */ |
| memory_region_set_flush_coalesced(&s->io); |
| memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops, |
| s, "rtc-index", 1); |
| memory_region_add_subregion(&s->io, 0, &s->coalesced_io); |
| memory_region_add_coalescing(&s->coalesced_io, 0, 1); |
| |
| qdev_set_legacy_instance_id(dev, s->io_base, 3); |
| |
| object_property_add_tm(OBJECT(s), "date", rtc_get_date); |
| |
| qdev_init_gpio_out(dev, &s->irq, 1); |
| QLIST_INSERT_HEAD(&rtc_devices, s, link); |
| } |
| |
| ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq) |
| { |
| DeviceState *dev; |
| ISADevice *isadev; |
| RTCState *s; |
| |
| isadev = isa_new(TYPE_MC146818_RTC); |
| dev = DEVICE(isadev); |
| s = MC146818_RTC(isadev); |
| qdev_prop_set_int32(dev, "base_year", base_year); |
| isa_realize_and_unref(isadev, bus, &error_fatal); |
| if (intercept_irq) { |
| qdev_connect_gpio_out(dev, 0, intercept_irq); |
| } else { |
| isa_connect_gpio_out(isadev, 0, s->isairq); |
| } |
| |
| object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev), |
| "date"); |
| |
| return isadev; |
| } |
| |
| static Property mc146818rtc_properties[] = { |
| DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980), |
| DEFINE_PROP_UINT16("iobase", RTCState, io_base, RTC_ISA_BASE), |
| DEFINE_PROP_UINT8("irq", RTCState, isairq, RTC_ISA_IRQ), |
| DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState, |
| lost_tick_policy, LOST_TICK_POLICY_DISCARD), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void rtc_reset_enter(Object *obj, ResetType type) |
| { |
| RTCState *s = MC146818_RTC(obj); |
| |
| /* Reason: VM do suspend self will set 0xfe |
| * Reset any values other than 0xfe(Guest suspend case) */ |
| if (s->cmos_data[0x0f] != 0xfe) { |
| s->cmos_data[0x0f] = 0x00; |
| } |
| |
| s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); |
| s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); |
| check_update_timer(s); |
| |
| |
| if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { |
| s->irq_coalesced = 0; |
| s->irq_reinject_on_ack_count = 0; |
| } |
| } |
| |
| static void rtc_reset_hold(Object *obj) |
| { |
| RTCState *s = MC146818_RTC(obj); |
| |
| qemu_irq_lower(s->irq); |
| } |
| |
| static void rtc_build_aml(AcpiDevAmlIf *adev, Aml *scope) |
| { |
| RTCState *s = MC146818_RTC(adev); |
| Aml *dev; |
| Aml *crs; |
| |
| /* |
| * Reserving 8 io ports here, following what physical hardware |
| * does, even though qemu only responds to the first two ports. |
| */ |
| crs = aml_resource_template(); |
| aml_append(crs, aml_io(AML_DECODE16, s->io_base, s->io_base, |
| 0x01, 0x08)); |
| aml_append(crs, aml_irq_no_flags(s->isairq)); |
| |
| dev = aml_device("RTC"); |
| aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00"))); |
| aml_append(dev, aml_name_decl("_CRS", crs)); |
| |
| aml_append(scope, dev); |
| } |
| |
| static void rtc_class_initfn(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| ResettableClass *rc = RESETTABLE_CLASS(klass); |
| AcpiDevAmlIfClass *adevc = ACPI_DEV_AML_IF_CLASS(klass); |
| |
| dc->realize = rtc_realizefn; |
| dc->vmsd = &vmstate_rtc; |
| rc->phases.enter = rtc_reset_enter; |
| rc->phases.hold = rtc_reset_hold; |
| adevc->build_dev_aml = rtc_build_aml; |
| device_class_set_props(dc, mc146818rtc_properties); |
| set_bit(DEVICE_CATEGORY_MISC, dc->categories); |
| } |
| |
| static const TypeInfo mc146818rtc_info = { |
| .name = TYPE_MC146818_RTC, |
| .parent = TYPE_ISA_DEVICE, |
| .instance_size = sizeof(RTCState), |
| .class_init = rtc_class_initfn, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_ACPI_DEV_AML_IF }, |
| { }, |
| }, |
| }; |
| |
| static void mc146818rtc_register_types(void) |
| { |
| type_register_static(&mc146818rtc_info); |
| } |
| |
| type_init(mc146818rtc_register_types) |