| /* |
| * emulator main execution loop |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "trace-root.h" |
| #include "disas/disas.h" |
| #include "exec/exec-all.h" |
| #include "tcg.h" |
| #include "qemu/atomic.h" |
| #include "sysemu/qtest.h" |
| #include "qemu/timer.h" |
| #include "exec/address-spaces.h" |
| #include "qemu/rcu.h" |
| #include "exec/tb-hash.h" |
| #include "exec/log.h" |
| #include "qemu/main-loop.h" |
| #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) |
| #include "hw/i386/apic.h" |
| #endif |
| #include "sysemu/cpus.h" |
| #include "sysemu/replay.h" |
| |
| /* -icount align implementation. */ |
| |
| typedef struct SyncClocks { |
| int64_t diff_clk; |
| int64_t last_cpu_icount; |
| int64_t realtime_clock; |
| } SyncClocks; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* Allow the guest to have a max 3ms advance. |
| * The difference between the 2 clocks could therefore |
| * oscillate around 0. |
| */ |
| #define VM_CLOCK_ADVANCE 3000000 |
| #define THRESHOLD_REDUCE 1.5 |
| #define MAX_DELAY_PRINT_RATE 2000000000LL |
| #define MAX_NB_PRINTS 100 |
| |
| static void align_clocks(SyncClocks *sc, const CPUState *cpu) |
| { |
| int64_t cpu_icount; |
| |
| if (!icount_align_option) { |
| return; |
| } |
| |
| cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; |
| sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); |
| sc->last_cpu_icount = cpu_icount; |
| |
| if (sc->diff_clk > VM_CLOCK_ADVANCE) { |
| #ifndef _WIN32 |
| struct timespec sleep_delay, rem_delay; |
| sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; |
| sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; |
| if (nanosleep(&sleep_delay, &rem_delay) < 0) { |
| sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; |
| } else { |
| sc->diff_clk = 0; |
| } |
| #else |
| Sleep(sc->diff_clk / SCALE_MS); |
| sc->diff_clk = 0; |
| #endif |
| } |
| } |
| |
| static void print_delay(const SyncClocks *sc) |
| { |
| static float threshold_delay; |
| static int64_t last_realtime_clock; |
| static int nb_prints; |
| |
| if (icount_align_option && |
| sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && |
| nb_prints < MAX_NB_PRINTS) { |
| if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || |
| (-sc->diff_clk / (float)1000000000LL < |
| (threshold_delay - THRESHOLD_REDUCE))) { |
| threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; |
| printf("Warning: The guest is now late by %.1f to %.1f seconds\n", |
| threshold_delay - 1, |
| threshold_delay); |
| nb_prints++; |
| last_realtime_clock = sc->realtime_clock; |
| } |
| } |
| } |
| |
| static void init_delay_params(SyncClocks *sc, |
| const CPUState *cpu) |
| { |
| if (!icount_align_option) { |
| return; |
| } |
| sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); |
| sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; |
| sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; |
| if (sc->diff_clk < max_delay) { |
| max_delay = sc->diff_clk; |
| } |
| if (sc->diff_clk > max_advance) { |
| max_advance = sc->diff_clk; |
| } |
| |
| /* Print every 2s max if the guest is late. We limit the number |
| of printed messages to NB_PRINT_MAX(currently 100) */ |
| print_delay(sc); |
| } |
| #else |
| static void align_clocks(SyncClocks *sc, const CPUState *cpu) |
| { |
| } |
| |
| static void init_delay_params(SyncClocks *sc, const CPUState *cpu) |
| { |
| } |
| #endif /* CONFIG USER ONLY */ |
| |
| /* Execute a TB, and fix up the CPU state afterwards if necessary */ |
| static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) |
| { |
| CPUArchState *env = cpu->env_ptr; |
| uintptr_t ret; |
| TranslationBlock *last_tb; |
| int tb_exit; |
| uint8_t *tb_ptr = itb->tc_ptr; |
| |
| qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, |
| "Trace %p [%d: " TARGET_FMT_lx "] %s\n", |
| itb->tc_ptr, cpu->cpu_index, itb->pc, |
| lookup_symbol(itb->pc)); |
| |
| #if defined(DEBUG_DISAS) |
| if (qemu_loglevel_mask(CPU_LOG_TB_CPU) |
| && qemu_log_in_addr_range(itb->pc)) { |
| qemu_log_lock(); |
| #if defined(TARGET_I386) |
| log_cpu_state(cpu, CPU_DUMP_CCOP); |
| #else |
| log_cpu_state(cpu, 0); |
| #endif |
| qemu_log_unlock(); |
| } |
| #endif /* DEBUG_DISAS */ |
| |
| cpu->can_do_io = !use_icount; |
| ret = tcg_qemu_tb_exec(env, tb_ptr); |
| cpu->can_do_io = 1; |
| last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); |
| tb_exit = ret & TB_EXIT_MASK; |
| trace_exec_tb_exit(last_tb, tb_exit); |
| |
| if (tb_exit > TB_EXIT_IDX1) { |
| /* We didn't start executing this TB (eg because the instruction |
| * counter hit zero); we must restore the guest PC to the address |
| * of the start of the TB. |
| */ |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, |
| "Stopped execution of TB chain before %p [" |
| TARGET_FMT_lx "] %s\n", |
| last_tb->tc_ptr, last_tb->pc, |
| lookup_symbol(last_tb->pc)); |
| if (cc->synchronize_from_tb) { |
| cc->synchronize_from_tb(cpu, last_tb); |
| } else { |
| assert(cc->set_pc); |
| cc->set_pc(cpu, last_tb->pc); |
| } |
| } |
| return ret; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* Execute the code without caching the generated code. An interpreter |
| could be used if available. */ |
| static void cpu_exec_nocache(CPUState *cpu, int max_cycles, |
| TranslationBlock *orig_tb, bool ignore_icount) |
| { |
| TranslationBlock *tb; |
| |
| /* Should never happen. |
| We only end up here when an existing TB is too long. */ |
| if (max_cycles > CF_COUNT_MASK) |
| max_cycles = CF_COUNT_MASK; |
| |
| tb_lock(); |
| tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, |
| max_cycles | CF_NOCACHE |
| | (ignore_icount ? CF_IGNORE_ICOUNT : 0)); |
| tb->orig_tb = orig_tb; |
| tb_unlock(); |
| |
| /* execute the generated code */ |
| trace_exec_tb_nocache(tb, tb->pc); |
| cpu_tb_exec(cpu, tb); |
| |
| tb_lock(); |
| tb_phys_invalidate(tb, -1); |
| tb_free(tb); |
| tb_unlock(); |
| } |
| #endif |
| |
| static void cpu_exec_step(CPUState *cpu) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| CPUArchState *env = (CPUArchState *)cpu->env_ptr; |
| TranslationBlock *tb; |
| target_ulong cs_base, pc; |
| uint32_t flags; |
| |
| cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); |
| if (sigsetjmp(cpu->jmp_env, 0) == 0) { |
| mmap_lock(); |
| tb_lock(); |
| tb = tb_gen_code(cpu, pc, cs_base, flags, |
| 1 | CF_NOCACHE | CF_IGNORE_ICOUNT); |
| tb->orig_tb = NULL; |
| tb_unlock(); |
| mmap_unlock(); |
| |
| cc->cpu_exec_enter(cpu); |
| /* execute the generated code */ |
| trace_exec_tb_nocache(tb, pc); |
| cpu_tb_exec(cpu, tb); |
| cc->cpu_exec_exit(cpu); |
| |
| tb_lock(); |
| tb_phys_invalidate(tb, -1); |
| tb_free(tb); |
| tb_unlock(); |
| } else { |
| /* We may have exited due to another problem here, so we need |
| * to reset any tb_locks we may have taken but didn't release. |
| * The mmap_lock is dropped by tb_gen_code if it runs out of |
| * memory. |
| */ |
| #ifndef CONFIG_SOFTMMU |
| tcg_debug_assert(!have_mmap_lock()); |
| #endif |
| tb_lock_reset(); |
| } |
| } |
| |
| void cpu_exec_step_atomic(CPUState *cpu) |
| { |
| start_exclusive(); |
| |
| /* Since we got here, we know that parallel_cpus must be true. */ |
| parallel_cpus = false; |
| cpu_exec_step(cpu); |
| parallel_cpus = true; |
| |
| end_exclusive(); |
| } |
| |
| struct tb_desc { |
| target_ulong pc; |
| target_ulong cs_base; |
| CPUArchState *env; |
| tb_page_addr_t phys_page1; |
| uint32_t flags; |
| }; |
| |
| static bool tb_cmp(const void *p, const void *d) |
| { |
| const TranslationBlock *tb = p; |
| const struct tb_desc *desc = d; |
| |
| if (tb->pc == desc->pc && |
| tb->page_addr[0] == desc->phys_page1 && |
| tb->cs_base == desc->cs_base && |
| tb->flags == desc->flags && |
| !atomic_read(&tb->invalid)) { |
| /* check next page if needed */ |
| if (tb->page_addr[1] == -1) { |
| return true; |
| } else { |
| tb_page_addr_t phys_page2; |
| target_ulong virt_page2; |
| |
| virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; |
| phys_page2 = get_page_addr_code(desc->env, virt_page2); |
| if (tb->page_addr[1] == phys_page2) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| static TranslationBlock *tb_htable_lookup(CPUState *cpu, |
| target_ulong pc, |
| target_ulong cs_base, |
| uint32_t flags) |
| { |
| tb_page_addr_t phys_pc; |
| struct tb_desc desc; |
| uint32_t h; |
| |
| desc.env = (CPUArchState *)cpu->env_ptr; |
| desc.cs_base = cs_base; |
| desc.flags = flags; |
| desc.pc = pc; |
| phys_pc = get_page_addr_code(desc.env, pc); |
| desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; |
| h = tb_hash_func(phys_pc, pc, flags); |
| return qht_lookup(&tcg_ctx.tb_ctx.htable, tb_cmp, &desc, h); |
| } |
| |
| static inline TranslationBlock *tb_find(CPUState *cpu, |
| TranslationBlock *last_tb, |
| int tb_exit) |
| { |
| CPUArchState *env = (CPUArchState *)cpu->env_ptr; |
| TranslationBlock *tb; |
| target_ulong cs_base, pc; |
| uint32_t flags; |
| bool have_tb_lock = false; |
| |
| /* we record a subset of the CPU state. It will |
| always be the same before a given translated block |
| is executed. */ |
| cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); |
| tb = atomic_rcu_read(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]); |
| if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || |
| tb->flags != flags)) { |
| tb = tb_htable_lookup(cpu, pc, cs_base, flags); |
| if (!tb) { |
| |
| /* mmap_lock is needed by tb_gen_code, and mmap_lock must be |
| * taken outside tb_lock. As system emulation is currently |
| * single threaded the locks are NOPs. |
| */ |
| mmap_lock(); |
| tb_lock(); |
| have_tb_lock = true; |
| |
| /* There's a chance that our desired tb has been translated while |
| * taking the locks so we check again inside the lock. |
| */ |
| tb = tb_htable_lookup(cpu, pc, cs_base, flags); |
| if (!tb) { |
| /* if no translated code available, then translate it now */ |
| tb = tb_gen_code(cpu, pc, cs_base, flags, 0); |
| } |
| |
| mmap_unlock(); |
| } |
| |
| /* We add the TB in the virtual pc hash table for the fast lookup */ |
| atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); |
| } |
| #ifndef CONFIG_USER_ONLY |
| /* We don't take care of direct jumps when address mapping changes in |
| * system emulation. So it's not safe to make a direct jump to a TB |
| * spanning two pages because the mapping for the second page can change. |
| */ |
| if (tb->page_addr[1] != -1) { |
| last_tb = NULL; |
| } |
| #endif |
| /* See if we can patch the calling TB. */ |
| if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { |
| if (!have_tb_lock) { |
| tb_lock(); |
| have_tb_lock = true; |
| } |
| if (!tb->invalid) { |
| tb_add_jump(last_tb, tb_exit, tb); |
| } |
| } |
| if (have_tb_lock) { |
| tb_unlock(); |
| } |
| return tb; |
| } |
| |
| static inline bool cpu_handle_halt(CPUState *cpu) |
| { |
| if (cpu->halted) { |
| #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) |
| if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) |
| && replay_interrupt()) { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| qemu_mutex_lock_iothread(); |
| apic_poll_irq(x86_cpu->apic_state); |
| cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); |
| qemu_mutex_unlock_iothread(); |
| } |
| #endif |
| if (!cpu_has_work(cpu)) { |
| return true; |
| } |
| |
| cpu->halted = 0; |
| } |
| |
| return false; |
| } |
| |
| static inline void cpu_handle_debug_exception(CPUState *cpu) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| CPUWatchpoint *wp; |
| |
| if (!cpu->watchpoint_hit) { |
| QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
| wp->flags &= ~BP_WATCHPOINT_HIT; |
| } |
| } |
| |
| cc->debug_excp_handler(cpu); |
| } |
| |
| static inline bool cpu_handle_exception(CPUState *cpu, int *ret) |
| { |
| if (cpu->exception_index >= 0) { |
| if (cpu->exception_index >= EXCP_INTERRUPT) { |
| /* exit request from the cpu execution loop */ |
| *ret = cpu->exception_index; |
| if (*ret == EXCP_DEBUG) { |
| cpu_handle_debug_exception(cpu); |
| } |
| cpu->exception_index = -1; |
| return true; |
| } else { |
| #if defined(CONFIG_USER_ONLY) |
| /* if user mode only, we simulate a fake exception |
| which will be handled outside the cpu execution |
| loop */ |
| #if defined(TARGET_I386) |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| cc->do_interrupt(cpu); |
| #endif |
| *ret = cpu->exception_index; |
| cpu->exception_index = -1; |
| return true; |
| #else |
| if (replay_exception()) { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| qemu_mutex_lock_iothread(); |
| cc->do_interrupt(cpu); |
| qemu_mutex_unlock_iothread(); |
| cpu->exception_index = -1; |
| } else if (!replay_has_interrupt()) { |
| /* give a chance to iothread in replay mode */ |
| *ret = EXCP_INTERRUPT; |
| return true; |
| } |
| #endif |
| } |
| #ifndef CONFIG_USER_ONLY |
| } else if (replay_has_exception() |
| && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { |
| /* try to cause an exception pending in the log */ |
| cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0), true); |
| *ret = -1; |
| return true; |
| #endif |
| } |
| |
| return false; |
| } |
| |
| static inline bool cpu_handle_interrupt(CPUState *cpu, |
| TranslationBlock **last_tb) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| |
| if (unlikely(atomic_read(&cpu->interrupt_request))) { |
| int interrupt_request; |
| qemu_mutex_lock_iothread(); |
| interrupt_request = cpu->interrupt_request; |
| if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { |
| /* Mask out external interrupts for this step. */ |
| interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; |
| } |
| if (interrupt_request & CPU_INTERRUPT_DEBUG) { |
| cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; |
| cpu->exception_index = EXCP_DEBUG; |
| qemu_mutex_unlock_iothread(); |
| return true; |
| } |
| if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { |
| /* Do nothing */ |
| } else if (interrupt_request & CPU_INTERRUPT_HALT) { |
| replay_interrupt(); |
| cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; |
| cpu->halted = 1; |
| cpu->exception_index = EXCP_HLT; |
| qemu_mutex_unlock_iothread(); |
| return true; |
| } |
| #if defined(TARGET_I386) |
| else if (interrupt_request & CPU_INTERRUPT_INIT) { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| CPUArchState *env = &x86_cpu->env; |
| replay_interrupt(); |
| cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); |
| do_cpu_init(x86_cpu); |
| cpu->exception_index = EXCP_HALTED; |
| qemu_mutex_unlock_iothread(); |
| return true; |
| } |
| #else |
| else if (interrupt_request & CPU_INTERRUPT_RESET) { |
| replay_interrupt(); |
| cpu_reset(cpu); |
| qemu_mutex_unlock_iothread(); |
| return true; |
| } |
| #endif |
| /* The target hook has 3 exit conditions: |
| False when the interrupt isn't processed, |
| True when it is, and we should restart on a new TB, |
| and via longjmp via cpu_loop_exit. */ |
| else { |
| if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { |
| replay_interrupt(); |
| *last_tb = NULL; |
| } |
| /* The target hook may have updated the 'cpu->interrupt_request'; |
| * reload the 'interrupt_request' value */ |
| interrupt_request = cpu->interrupt_request; |
| } |
| if (interrupt_request & CPU_INTERRUPT_EXITTB) { |
| cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; |
| /* ensure that no TB jump will be modified as |
| the program flow was changed */ |
| *last_tb = NULL; |
| } |
| |
| /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| /* Finally, check if we need to exit to the main loop. */ |
| if (unlikely(atomic_read(&cpu->exit_request) |
| || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { |
| atomic_set(&cpu->exit_request, 0); |
| cpu->exception_index = EXCP_INTERRUPT; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, |
| TranslationBlock **last_tb, int *tb_exit) |
| { |
| uintptr_t ret; |
| int32_t insns_left; |
| |
| trace_exec_tb(tb, tb->pc); |
| ret = cpu_tb_exec(cpu, tb); |
| tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); |
| *tb_exit = ret & TB_EXIT_MASK; |
| if (*tb_exit != TB_EXIT_REQUESTED) { |
| *last_tb = tb; |
| return; |
| } |
| |
| *last_tb = NULL; |
| insns_left = atomic_read(&cpu->icount_decr.u32); |
| atomic_set(&cpu->icount_decr.u16.high, 0); |
| if (insns_left < 0) { |
| /* Something asked us to stop executing chained TBs; just |
| * continue round the main loop. Whatever requested the exit |
| * will also have set something else (eg exit_request or |
| * interrupt_request) which we will handle next time around |
| * the loop. But we need to ensure the zeroing of icount_decr |
| * comes before the next read of cpu->exit_request |
| * or cpu->interrupt_request. |
| */ |
| smp_mb(); |
| return; |
| } |
| |
| /* Instruction counter expired. */ |
| assert(use_icount); |
| #ifndef CONFIG_USER_ONLY |
| /* Ensure global icount has gone forward */ |
| cpu_update_icount(cpu); |
| /* Refill decrementer and continue execution. */ |
| insns_left = MIN(0xffff, cpu->icount_budget); |
| cpu->icount_decr.u16.low = insns_left; |
| cpu->icount_extra = cpu->icount_budget - insns_left; |
| if (!cpu->icount_extra) { |
| /* Execute any remaining instructions, then let the main loop |
| * handle the next event. |
| */ |
| if (insns_left > 0) { |
| cpu_exec_nocache(cpu, insns_left, tb, false); |
| } |
| } |
| #endif |
| } |
| |
| /* main execution loop */ |
| |
| int cpu_exec(CPUState *cpu) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| int ret; |
| SyncClocks sc = { 0 }; |
| |
| /* replay_interrupt may need current_cpu */ |
| current_cpu = cpu; |
| |
| if (cpu_handle_halt(cpu)) { |
| return EXCP_HALTED; |
| } |
| |
| rcu_read_lock(); |
| |
| cc->cpu_exec_enter(cpu); |
| |
| /* Calculate difference between guest clock and host clock. |
| * This delay includes the delay of the last cycle, so |
| * what we have to do is sleep until it is 0. As for the |
| * advance/delay we gain here, we try to fix it next time. |
| */ |
| init_delay_params(&sc, cpu); |
| |
| /* prepare setjmp context for exception handling */ |
| if (sigsetjmp(cpu->jmp_env, 0) != 0) { |
| #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) |
| /* Some compilers wrongly smash all local variables after |
| * siglongjmp. There were bug reports for gcc 4.5.0 and clang. |
| * Reload essential local variables here for those compilers. |
| * Newer versions of gcc would complain about this code (-Wclobbered). */ |
| cpu = current_cpu; |
| cc = CPU_GET_CLASS(cpu); |
| #else /* buggy compiler */ |
| /* Assert that the compiler does not smash local variables. */ |
| g_assert(cpu == current_cpu); |
| g_assert(cc == CPU_GET_CLASS(cpu)); |
| #endif /* buggy compiler */ |
| cpu->can_do_io = 1; |
| tb_lock_reset(); |
| if (qemu_mutex_iothread_locked()) { |
| qemu_mutex_unlock_iothread(); |
| } |
| } |
| |
| /* if an exception is pending, we execute it here */ |
| while (!cpu_handle_exception(cpu, &ret)) { |
| TranslationBlock *last_tb = NULL; |
| int tb_exit = 0; |
| |
| while (!cpu_handle_interrupt(cpu, &last_tb)) { |
| TranslationBlock *tb = tb_find(cpu, last_tb, tb_exit); |
| cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); |
| /* Try to align the host and virtual clocks |
| if the guest is in advance */ |
| align_clocks(&sc, cpu); |
| } |
| } |
| |
| cc->cpu_exec_exit(cpu); |
| rcu_read_unlock(); |
| |
| return ret; |
| } |