| /* |
| * Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #ifndef HEXAGON_MACROS_H |
| #define HEXAGON_MACROS_H |
| |
| #include "cpu.h" |
| #include "hex_regs.h" |
| #include "reg_fields.h" |
| |
| #ifdef QEMU_GENERATE |
| #define READ_REG(dest, NUM) gen_read_reg(dest, NUM) |
| #else |
| #define READ_REG(NUM) (env->gpr[(NUM)]) |
| #define READ_PREG(NUM) (env->pred[NUM]) |
| |
| #define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot) |
| #define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL) |
| #endif |
| |
| #define PCALIGN 4 |
| #define PCALIGN_MASK (PCALIGN - 1) |
| |
| #define GET_FIELD(FIELD, REGIN) \ |
| fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \ |
| reg_field_info[FIELD].offset) |
| |
| #ifdef QEMU_GENERATE |
| #define GET_USR_FIELD(FIELD, DST) \ |
| tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \ |
| reg_field_info[FIELD].offset, \ |
| reg_field_info[FIELD].width) |
| |
| #define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int) |
| #define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv) |
| #define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64) |
| |
| #define SET_USR_FIELD_FUNC(X) \ |
| __builtin_choose_expr(TYPE_INT(X), \ |
| gen_set_usr_fieldi, \ |
| __builtin_choose_expr(TYPE_TCGV(X), \ |
| gen_set_usr_field, (void)0)) |
| #define SET_USR_FIELD(FIELD, VAL) \ |
| SET_USR_FIELD_FUNC(VAL)(FIELD, VAL) |
| #else |
| #define GET_USR_FIELD(FIELD) \ |
| fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \ |
| reg_field_info[FIELD].offset) |
| |
| #define SET_USR_FIELD(FIELD, VAL) \ |
| fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \ |
| reg_field_info[FIELD].offset, (VAL)) |
| #endif |
| |
| #ifdef QEMU_GENERATE |
| /* |
| * Section 5.5 of the Hexagon V67 Programmer's Reference Manual |
| * |
| * Slot 1 store with slot 0 load |
| * A slot 1 store operation with a slot 0 load operation can appear in a packet. |
| * The packet attribute :mem_noshuf inhibits the instruction reordering that |
| * would otherwise be done by the assembler. For example: |
| * { |
| * memw(R5) = R2 // slot 1 store |
| * R3 = memh(R6) // slot 0 load |
| * }:mem_noshuf |
| * Unlike most packetized operations, these memory operations are not executed |
| * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1 |
| * effectively executes first, followed by the load instruction in Slot 0. If |
| * the addresses of the two operations are overlapping, the load will receive |
| * the newly stored data. This feature is supported in processor versions |
| * V65 or greater. |
| * |
| * |
| * For qemu, we look for a load in slot 0 when there is a store in slot 1 |
| * in the same packet. When we see this, we call a helper that probes the |
| * load to make sure it doesn't fault. Then, we process the store ahead of |
| * the actual load. |
| |
| */ |
| #define CHECK_NOSHUF(VA, SIZE) \ |
| do { \ |
| if (insn->slot == 0 && pkt->pkt_has_store_s1) { \ |
| probe_noshuf_load(VA, SIZE, ctx->mem_idx); \ |
| process_store(ctx, pkt, 1); \ |
| } \ |
| } while (0) |
| |
| #define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \ |
| do { \ |
| TCGLabel *label = gen_new_label(); \ |
| tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \ |
| GET_EA; \ |
| if (insn->slot == 0 && pkt->pkt_has_store_s1) { \ |
| probe_noshuf_load(EA, SIZE, ctx->mem_idx); \ |
| } \ |
| gen_set_label(label); \ |
| if (insn->slot == 0 && pkt->pkt_has_store_s1) { \ |
| process_store(ctx, pkt, 1); \ |
| } \ |
| } while (0) |
| |
| #define MEM_LOAD1s(DST, VA) \ |
| do { \ |
| CHECK_NOSHUF(VA, 1); \ |
| tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \ |
| } while (0) |
| #define MEM_LOAD1u(DST, VA) \ |
| do { \ |
| CHECK_NOSHUF(VA, 1); \ |
| tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \ |
| } while (0) |
| #define MEM_LOAD2s(DST, VA) \ |
| do { \ |
| CHECK_NOSHUF(VA, 2); \ |
| tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \ |
| } while (0) |
| #define MEM_LOAD2u(DST, VA) \ |
| do { \ |
| CHECK_NOSHUF(VA, 2); \ |
| tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \ |
| } while (0) |
| #define MEM_LOAD4s(DST, VA) \ |
| do { \ |
| CHECK_NOSHUF(VA, 4); \ |
| tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \ |
| } while (0) |
| #define MEM_LOAD4u(DST, VA) \ |
| do { \ |
| CHECK_NOSHUF(VA, 4); \ |
| tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \ |
| } while (0) |
| #define MEM_LOAD8u(DST, VA) \ |
| do { \ |
| CHECK_NOSHUF(VA, 8); \ |
| tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \ |
| } while (0) |
| |
| #define MEM_STORE1_FUNC(X) \ |
| __builtin_choose_expr(TYPE_INT(X), \ |
| gen_store1i, \ |
| __builtin_choose_expr(TYPE_TCGV(X), \ |
| gen_store1, (void)0)) |
| #define MEM_STORE1(VA, DATA, SLOT) \ |
| MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, SLOT) |
| |
| #define MEM_STORE2_FUNC(X) \ |
| __builtin_choose_expr(TYPE_INT(X), \ |
| gen_store2i, \ |
| __builtin_choose_expr(TYPE_TCGV(X), \ |
| gen_store2, (void)0)) |
| #define MEM_STORE2(VA, DATA, SLOT) \ |
| MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, SLOT) |
| |
| #define MEM_STORE4_FUNC(X) \ |
| __builtin_choose_expr(TYPE_INT(X), \ |
| gen_store4i, \ |
| __builtin_choose_expr(TYPE_TCGV(X), \ |
| gen_store4, (void)0)) |
| #define MEM_STORE4(VA, DATA, SLOT) \ |
| MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, SLOT) |
| |
| #define MEM_STORE8_FUNC(X) \ |
| __builtin_choose_expr(TYPE_INT(X), \ |
| gen_store8i, \ |
| __builtin_choose_expr(TYPE_TCGV_I64(X), \ |
| gen_store8, (void)0)) |
| #define MEM_STORE8(VA, DATA, SLOT) \ |
| MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, SLOT) |
| #else |
| #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA)) |
| #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA)) |
| #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA)) |
| #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA)) |
| #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA)) |
| #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA)) |
| #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA)) |
| #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA)) |
| |
| #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT) |
| #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT) |
| #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT) |
| #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT) |
| #endif |
| |
| #define CANCEL cancel_slot(env, slot) |
| |
| #define LOAD_CANCEL(EA) do { CANCEL; } while (0) |
| |
| #ifdef QEMU_GENERATE |
| static inline void gen_pred_cancel(TCGv pred, int slot_num) |
| { |
| TCGv slot_mask = tcg_temp_new(); |
| TCGv tmp = tcg_temp_new(); |
| TCGv zero = tcg_constant_tl(0); |
| tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num); |
| tcg_gen_andi_tl(tmp, pred, 1); |
| tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero, |
| slot_mask, hex_slot_cancelled); |
| tcg_temp_free(slot_mask); |
| tcg_temp_free(tmp); |
| } |
| #define PRED_LOAD_CANCEL(PRED, EA) \ |
| gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot) |
| #endif |
| |
| #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); } |
| |
| #define fMAX(A, B) (((A) > (B)) ? (A) : (B)) |
| |
| #define fMIN(A, B) (((A) < (B)) ? (A) : (B)) |
| |
| #define fABS(A) (((A) < 0) ? (-(A)) : (A)) |
| #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \ |
| REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG) |
| #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \ |
| ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL) |
| #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \ |
| (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8))) |
| #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \ |
| (((HIBIT) - (LOWBIT) + 1) ? \ |
| extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \ |
| 0LL) |
| #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \ |
| do { \ |
| int width = ((HIBIT) - (LOWBIT) + 1); \ |
| INREG = (width >= 0 ? \ |
| deposit64((INREG), (LOWBIT), width, (INVAL)) : \ |
| INREG); \ |
| } while (0) |
| |
| #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00) |
| |
| #ifdef QEMU_GENERATE |
| #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1) |
| #else |
| #define fLSBOLD(VAL) ((VAL) & 1) |
| #endif |
| |
| #ifdef QEMU_GENERATE |
| #define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1) |
| #define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1) |
| #define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1) |
| #else |
| #define fLSBNEW(PVAL) ((PVAL) & 1) |
| #define fLSBNEW0 (env->new_pred_value[0] & 1) |
| #define fLSBNEW1 (env->new_pred_value[1] & 1) |
| #endif |
| |
| #ifdef QEMU_GENERATE |
| #define fLSBOLDNOT(VAL) \ |
| do { \ |
| tcg_gen_andi_tl(LSB, (VAL), 1); \ |
| tcg_gen_xori_tl(LSB, LSB, 1); \ |
| } while (0) |
| #define fLSBNEWNOT(PNUM) \ |
| do { \ |
| tcg_gen_andi_tl(LSB, (PNUM), 1); \ |
| tcg_gen_xori_tl(LSB, LSB, 1); \ |
| } while (0) |
| #else |
| #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM)) |
| #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL)) |
| #define fLSBNEW0NOT (!fLSBNEW0) |
| #define fLSBNEW1NOT (!fLSBNEW1) |
| #endif |
| |
| #define fNEWREG(VAL) ((int32_t)(VAL)) |
| |
| #define fNEWREG_ST(VAL) (VAL) |
| |
| #define fVSATUVALN(N, VAL) \ |
| ({ \ |
| (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \ |
| }) |
| #define fSATUVALN(N, VAL) \ |
| ({ \ |
| fSET_OVERFLOW(); \ |
| ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \ |
| }) |
| #define fSATVALN(N, VAL) \ |
| ({ \ |
| fSET_OVERFLOW(); \ |
| ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ |
| }) |
| #define fVSATVALN(N, VAL) \ |
| ({ \ |
| ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ |
| }) |
| #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL) |
| #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL) |
| #define fSATN(N, VAL) \ |
| ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL)) |
| #define fVSATN(N, VAL) \ |
| ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL)) |
| #define fADDSAT64(DST, A, B) \ |
| do { \ |
| uint64_t __a = fCAST8u(A); \ |
| uint64_t __b = fCAST8u(B); \ |
| uint64_t __sum = __a + __b; \ |
| uint64_t __xor = __a ^ __b; \ |
| const uint64_t __mask = 0x8000000000000000ULL; \ |
| if (__xor & __mask) { \ |
| DST = __sum; \ |
| } \ |
| else if ((__a ^ __sum) & __mask) { \ |
| if (__sum & __mask) { \ |
| DST = 0x7FFFFFFFFFFFFFFFLL; \ |
| fSET_OVERFLOW(); \ |
| } else { \ |
| DST = 0x8000000000000000LL; \ |
| fSET_OVERFLOW(); \ |
| } \ |
| } else { \ |
| DST = __sum; \ |
| } \ |
| } while (0) |
| #define fVSATUN(N, VAL) \ |
| ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL)) |
| #define fSATUN(N, VAL) \ |
| ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL)) |
| #define fSATH(VAL) (fSATN(16, VAL)) |
| #define fSATUH(VAL) (fSATUN(16, VAL)) |
| #define fVSATH(VAL) (fVSATN(16, VAL)) |
| #define fVSATUH(VAL) (fVSATUN(16, VAL)) |
| #define fSATUB(VAL) (fSATUN(8, VAL)) |
| #define fSATB(VAL) (fSATN(8, VAL)) |
| #define fVSATUB(VAL) (fVSATUN(8, VAL)) |
| #define fVSATB(VAL) (fVSATN(8, VAL)) |
| #define fIMMEXT(IMM) (IMM = IMM) |
| #define fMUST_IMMEXT(IMM) fIMMEXT(IMM) |
| |
| #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK) |
| |
| #ifdef QEMU_GENERATE |
| static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift) |
| { |
| /* |
| * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual |
| * |
| * The "I" value from a modifier register is divided into two pieces |
| * LSB bits 23:17 |
| * MSB bits 31:28 |
| * The value is signed |
| * |
| * At the end we shift the result according to the shift argument |
| */ |
| TCGv msb = tcg_temp_new(); |
| TCGv lsb = tcg_temp_new(); |
| |
| tcg_gen_extract_tl(lsb, val, 17, 7); |
| tcg_gen_sari_tl(msb, val, 21); |
| tcg_gen_deposit_tl(result, msb, lsb, 0, 7); |
| |
| tcg_gen_shli_tl(result, result, shift); |
| |
| tcg_temp_free(msb); |
| tcg_temp_free(lsb); |
| |
| return result; |
| } |
| #define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT)) |
| #else |
| #define fREAD_IREG(VAL) \ |
| (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f))) |
| #endif |
| |
| #define fREAD_LR() (READ_REG(HEX_REG_LR)) |
| |
| #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A) |
| #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A) |
| #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A) |
| |
| #define fREAD_SP() (READ_REG(HEX_REG_SP)) |
| #define fREAD_LC0 (READ_REG(HEX_REG_LC0)) |
| #define fREAD_LC1 (READ_REG(HEX_REG_LC1)) |
| #define fREAD_SA0 (READ_REG(HEX_REG_SA0)) |
| #define fREAD_SA1 (READ_REG(HEX_REG_SA1)) |
| #define fREAD_FP() (READ_REG(HEX_REG_FP)) |
| #ifdef FIXME |
| /* Figure out how to get insn->extension_valid to helper */ |
| #define fREAD_GP() \ |
| (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP)) |
| #else |
| #define fREAD_GP() READ_REG(HEX_REG_GP) |
| #endif |
| #define fREAD_PC() (READ_REG(HEX_REG_PC)) |
| |
| #define fREAD_NPC() (env->next_PC & (0xfffffffe)) |
| |
| #define fREAD_P0() (READ_PREG(0)) |
| #define fREAD_P3() (READ_PREG(3)) |
| |
| #define fCHECK_PCALIGN(A) |
| |
| #define fWRITE_NPC(A) write_new_pc(env, A) |
| |
| #define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC) |
| #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR) |
| #define fHINTJR(TARGET) { /* Not modelled in qemu */} |
| #define fCALL(A) \ |
| do { \ |
| fWRITE_LR(fREAD_NPC()); \ |
| fBRANCH(A, COF_TYPE_CALL); \ |
| } while (0) |
| #define fCALLR(A) \ |
| do { \ |
| fWRITE_LR(fREAD_NPC()); \ |
| fBRANCH(A, COF_TYPE_CALLR); \ |
| } while (0) |
| #define fWRITE_LOOP_REGS0(START, COUNT) \ |
| do { \ |
| WRITE_RREG(HEX_REG_LC0, COUNT); \ |
| WRITE_RREG(HEX_REG_SA0, START); \ |
| } while (0) |
| #define fWRITE_LOOP_REGS1(START, COUNT) \ |
| do { \ |
| WRITE_RREG(HEX_REG_LC1, COUNT); \ |
| WRITE_RREG(HEX_REG_SA1, START);\ |
| } while (0) |
| #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL) |
| #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL) |
| |
| #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1) |
| #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL)) |
| #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG)) |
| #define fWRITE_P0(VAL) WRITE_PREG(0, VAL) |
| #define fWRITE_P1(VAL) WRITE_PREG(1, VAL) |
| #define fWRITE_P2(VAL) WRITE_PREG(2, VAL) |
| #define fWRITE_P3(VAL) WRITE_PREG(3, VAL) |
| #define fPART1(WORK) if (part1) { WORK; return; } |
| #define fCAST4u(A) ((uint32_t)(A)) |
| #define fCAST4s(A) ((int32_t)(A)) |
| #define fCAST8u(A) ((uint64_t)(A)) |
| #define fCAST8s(A) ((int64_t)(A)) |
| #define fCAST2_2s(A) ((int16_t)(A)) |
| #define fCAST2_2u(A) ((uint16_t)(A)) |
| #define fCAST4_4s(A) ((int32_t)(A)) |
| #define fCAST4_4u(A) ((uint32_t)(A)) |
| #define fCAST4_8s(A) ((int64_t)((int32_t)(A))) |
| #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A))) |
| #define fCAST8_8s(A) ((int64_t)(A)) |
| #define fCAST8_8u(A) ((uint64_t)(A)) |
| #define fCAST2_8s(A) ((int64_t)((int16_t)(A))) |
| #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A))) |
| #define fZE8_16(A) ((int16_t)((uint8_t)(A))) |
| #define fSE8_16(A) ((int16_t)((int8_t)(A))) |
| #define fSE16_32(A) ((int32_t)((int16_t)(A))) |
| #define fZE16_32(A) ((uint32_t)((uint16_t)(A))) |
| #define fSE32_64(A) ((int64_t)((int32_t)(A))) |
| #define fZE32_64(A) ((uint64_t)((uint32_t)(A))) |
| #define fSE8_32(A) ((int32_t)((int8_t)(A))) |
| #define fZE8_32(A) ((int32_t)((uint8_t)(A))) |
| #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B)) |
| #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B)) |
| #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B)) |
| #define fMPY8SS(A, B) (int)((short)(A) * (short)(B)) |
| #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B)) |
| #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B)) |
| #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B)) |
| #define fMPY16US(A, B) fMPY16SU(B, A) |
| #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B)) |
| #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B)) |
| #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B)) |
| #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B)) |
| #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B)) |
| #define fROUND(A) (A + 0x8000) |
| #define fCLIP(DST, SRC, U) \ |
| do { \ |
| int32_t maxv = (1 << U) - 1; \ |
| int32_t minv = -(1 << U); \ |
| DST = fMIN(maxv, fMAX(SRC, minv)); \ |
| } while (0) |
| #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A))) |
| #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1)))))) |
| #define fCRNDN(A, N) (conv_round(A, N)) |
| #define fADD128(A, B) (int128_add(A, B)) |
| #define fSUB128(A, B) (int128_sub(A, B)) |
| #define fSHIFTR128(A, B) (int128_rshift(A, B)) |
| #define fSHIFTL128(A, B) (int128_lshift(A, B)) |
| #define fAND128(A, B) (int128_and(A, B)) |
| #define fCAST8S_16S(A) (int128_exts64(A)) |
| #define fCAST16S_8S(A) (int128_getlo(A)) |
| |
| #ifdef QEMU_GENERATE |
| #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM) |
| #define fEA_RRs(REG, REG2, SCALE) \ |
| do { \ |
| TCGv tmp = tcg_temp_new(); \ |
| tcg_gen_shli_tl(tmp, REG2, SCALE); \ |
| tcg_gen_add_tl(EA, REG, tmp); \ |
| tcg_temp_free(tmp); \ |
| } while (0) |
| #define fEA_IRs(IMM, REG, SCALE) \ |
| do { \ |
| tcg_gen_shli_tl(EA, REG, SCALE); \ |
| tcg_gen_addi_tl(EA, EA, IMM); \ |
| } while (0) |
| #else |
| #define fEA_RI(REG, IMM) \ |
| do { \ |
| EA = REG + IMM; \ |
| } while (0) |
| #define fEA_RRs(REG, REG2, SCALE) \ |
| do { \ |
| EA = REG + (REG2 << SCALE); \ |
| } while (0) |
| #define fEA_IRs(IMM, REG, SCALE) \ |
| do { \ |
| EA = IMM + (REG << SCALE); \ |
| } while (0) |
| #endif |
| |
| #ifdef QEMU_GENERATE |
| #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM) |
| #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG) |
| #define fEA_BREVR(REG) gen_helper_fbrev(EA, REG) |
| #define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM) |
| #define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL) |
| #define fPM_CIRI(REG, IMM, MVAL) \ |
| do { \ |
| TCGv tcgv_siV = tcg_constant_tl(siV); \ |
| gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \ |
| hex_gpr[HEX_REG_CS0 + MuN]); \ |
| } while (0) |
| #else |
| #define fEA_IMM(IMM) do { EA = (IMM); } while (0) |
| #define fEA_REG(REG) do { EA = (REG); } while (0) |
| #define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0) |
| #define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0) |
| #define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0) |
| #endif |
| #define fSCALE(N, A) (((int64_t)(A)) << N) |
| #define fVSATW(A) fVSATN(32, ((long long)A)) |
| #define fSATW(A) fSATN(32, ((long long)A)) |
| #define fVSAT(A) fVSATN(32, (A)) |
| #define fSAT(A) fSATN(32, (A)) |
| #define fSAT_ORIG_SHL(A, ORIG_REG) \ |
| ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \ |
| ? fSATVALN(32, ((int32_t)(ORIG_REG))) \ |
| : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \ |
| : fSAT(A))) |
| #define fPASS(A) A |
| #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \ |
| (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \ |
| : (fCAST##REGSTYPE(SRC) << (SHAMT))) |
| #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \ |
| fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s) |
| #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \ |
| fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u) |
| #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \ |
| (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \ |
| : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC))) |
| #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \ |
| (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \ |
| : (fCAST##REGSTYPE(SRC) >> (SHAMT))) |
| #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \ |
| fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s) |
| #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \ |
| fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u) |
| #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \ |
| (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \ |
| << ((-(SHAMT)) - 1)) << 1, (SRC)) \ |
| : (fCAST##REGSTYPE##s(SRC) >> (SHAMT))) |
| #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT)) |
| #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \ |
| (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT))) |
| #define fROTL(SRC, SHAMT, REGSTYPE) \ |
| (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \ |
| ((fCAST##REGSTYPE##u(SRC) >> \ |
| ((sizeof(SRC) * 8) - (SHAMT)))))) |
| #define fROTR(SRC, SHAMT, REGSTYPE) \ |
| (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \ |
| ((fCAST##REGSTYPE##u(SRC) << \ |
| ((sizeof(SRC) * 8) - (SHAMT)))))) |
| #define fASHIFTL(SRC, SHAMT, REGSTYPE) \ |
| (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT))) |
| |
| #ifdef QEMU_GENERATE |
| #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA) |
| #else |
| #define fLOAD(NUM, SIZE, SIGN, EA, DST) \ |
| DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA) |
| #endif |
| |
| #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE) |
| |
| #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY) |
| #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32)) |
| #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL) |
| |
| #ifdef CONFIG_USER_ONLY |
| #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */ |
| #else |
| /* System mode not implemented yet */ |
| #define fFRAMECHECK(ADDR, EA) g_assert_not_reached(); |
| #endif |
| |
| #ifdef QEMU_GENERATE |
| #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \ |
| gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx); |
| #endif |
| |
| #ifdef QEMU_GENERATE |
| #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot) |
| #else |
| #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot) |
| #endif |
| |
| #ifdef QEMU_GENERATE |
| #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \ |
| gen_store_conditional##SIZE(ctx, PRED, EA, SRC); |
| #endif |
| |
| #ifdef QEMU_GENERATE |
| #define GETBYTE_FUNC(X) \ |
| __builtin_choose_expr(TYPE_TCGV(X), \ |
| gen_get_byte, \ |
| __builtin_choose_expr(TYPE_TCGV_I64(X), \ |
| gen_get_byte_i64, (void)0)) |
| #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true) |
| #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false) |
| #else |
| #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff)) |
| #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff)) |
| #endif |
| |
| #define fSETBYTE(N, DST, VAL) \ |
| do { \ |
| DST = (DST & ~(0x0ffLL << ((N) * 8))) | \ |
| (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \ |
| } while (0) |
| |
| #ifdef QEMU_GENERATE |
| #define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true) |
| #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false) |
| #else |
| #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff)) |
| #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff)) |
| #endif |
| #define fSETHALF(N, DST, VAL) \ |
| do { \ |
| DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \ |
| (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \ |
| } while (0) |
| #define fSETHALFw fSETHALF |
| #define fSETHALFd fSETHALF |
| |
| #define fGETWORD(N, SRC) \ |
| ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL))) |
| #define fGETUWORD(N, SRC) \ |
| ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL))) |
| |
| #define fSETWORD(N, DST, VAL) \ |
| do { \ |
| DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \ |
| (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \ |
| } while (0) |
| |
| #define fSETBIT(N, DST, VAL) \ |
| do { \ |
| DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \ |
| } while (0) |
| |
| #define fGETBIT(N, SRC) (((SRC) >> N) & 1) |
| #define fSETBITS(HI, LO, DST, VAL) \ |
| do { \ |
| int j; \ |
| for (j = LO; j <= HI; j++) { \ |
| fSETBIT(j, DST, VAL); \ |
| } \ |
| } while (0) |
| #define fCOUNTONES_2(VAL) ctpop16(VAL) |
| #define fCOUNTONES_4(VAL) ctpop32(VAL) |
| #define fCOUNTONES_8(VAL) ctpop64(VAL) |
| #define fBREV_8(VAL) revbit64(VAL) |
| #define fBREV_4(VAL) revbit32(VAL) |
| #define fCL1_8(VAL) clo64(VAL) |
| #define fCL1_4(VAL) clo32(VAL) |
| #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16) |
| #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN) |
| #define fDEINTERLEAVE(MIXED) deinterleave(MIXED) |
| #define fHIDE(A) A |
| #define fCONSTLL(A) A##LL |
| #define fECHO(A) (A) |
| |
| #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0) |
| #define fPAUSE(IMM) |
| |
| #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \ |
| ((VAL) << reg_field_info[FIELD].offset) |
| #define fGET_REG_FIELD_MASK(FIELD) \ |
| (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset) |
| #define fREAD_REG_FIELD(REG, FIELD) \ |
| fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \ |
| reg_field_info[FIELD].width, \ |
| reg_field_info[FIELD].offset) |
| #define fGET_FIELD(VAL, FIELD) |
| #define fSET_FIELD(VAL, FIELD, NEWVAL) |
| #define fBARRIER() |
| #define fSYNCH() |
| #define fISYNC() |
| #define fDCFETCH(REG) \ |
| do { (void)REG; } while (0) /* Nothing to do in qemu */ |
| #define fICINVA(REG) \ |
| do { (void)REG; } while (0) /* Nothing to do in qemu */ |
| #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS) |
| #define fDCCLEANA(REG) \ |
| do { (void)REG; } while (0) /* Nothing to do in qemu */ |
| #define fDCCLEANINVA(REG) \ |
| do { (void)REG; } while (0) /* Nothing to do in qemu */ |
| |
| #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0) |
| |
| #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \ |
| STRBITNUM) /* Nothing */ |
| |
| |
| #endif |