blob: 9bd6e44f73fde3c7e359895247aa67f25ea9b57e [file] [log] [blame]
/*
* Copyright (C) 2018, Emilio G. Cota <cota@braap.org>
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include <inttypes.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <glib.h>
#include <qemu-plugin.h>
QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
#define MAX_CPUS 8 /* lets not go nuts */
typedef struct {
uint64_t insn_count;
} InstructionCount;
static InstructionCount counts[MAX_CPUS];
static uint64_t inline_insn_count;
static bool do_inline;
static bool do_size;
static GArray *sizes;
typedef struct {
char *match_string;
uint64_t hits[MAX_CPUS];
uint64_t last_hit[MAX_CPUS];
uint64_t total_delta[MAX_CPUS];
GPtrArray *history[MAX_CPUS];
} Match;
static GArray *matches;
typedef struct {
Match *match;
uint64_t vaddr;
uint64_t hits;
char *disas;
} Instruction;
static void vcpu_insn_exec_before(unsigned int cpu_index, void *udata)
{
unsigned int i = cpu_index % MAX_CPUS;
InstructionCount *c = &counts[i];
c->insn_count++;
}
static void vcpu_insn_matched_exec_before(unsigned int cpu_index, void *udata)
{
unsigned int i = cpu_index % MAX_CPUS;
Instruction *insn = (Instruction *) udata;
Match *match = insn->match;
g_autoptr(GString) ts = g_string_new("");
insn->hits++;
g_string_append_printf(ts, "0x%" PRIx64 ", '%s', %"PRId64 " hits",
insn->vaddr, insn->disas, insn->hits);
uint64_t icount = counts[i].insn_count;
uint64_t delta = icount - match->last_hit[i];
match->hits[i]++;
match->total_delta[i] += delta;
g_string_append_printf(ts,
", %"PRId64" match hits, "
"Δ+%"PRId64 " since last match,"
" %"PRId64 " avg insns/match\n",
match->hits[i], delta,
match->total_delta[i] / match->hits[i]);
match->last_hit[i] = icount;
qemu_plugin_outs(ts->str);
g_ptr_array_add(match->history[i], insn);
}
static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
size_t n = qemu_plugin_tb_n_insns(tb);
size_t i;
for (i = 0; i < n; i++) {
struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
if (do_inline) {
qemu_plugin_register_vcpu_insn_exec_inline(
insn, QEMU_PLUGIN_INLINE_ADD_U64, &inline_insn_count, 1);
} else {
uint64_t vaddr = qemu_plugin_insn_vaddr(insn);
qemu_plugin_register_vcpu_insn_exec_cb(
insn, vcpu_insn_exec_before, QEMU_PLUGIN_CB_NO_REGS,
GUINT_TO_POINTER(vaddr));
}
if (do_size) {
size_t sz = qemu_plugin_insn_size(insn);
if (sz > sizes->len) {
g_array_set_size(sizes, sz);
}
unsigned long *cnt = &g_array_index(sizes, unsigned long, sz);
(*cnt)++;
}
/*
* If we are tracking certain instructions we will need more
* information about the instruction which we also need to
* save if there is a hit.
*/
if (matches) {
char *insn_disas = qemu_plugin_insn_disas(insn);
int j;
for (j = 0; j < matches->len; j++) {
Match *m = &g_array_index(matches, Match, j);
if (g_str_has_prefix(insn_disas, m->match_string)) {
Instruction *rec = g_new0(Instruction, 1);
rec->disas = g_strdup(insn_disas);
rec->vaddr = qemu_plugin_insn_vaddr(insn);
rec->match = m;
qemu_plugin_register_vcpu_insn_exec_cb(
insn, vcpu_insn_matched_exec_before,
QEMU_PLUGIN_CB_NO_REGS, rec);
}
}
g_free(insn_disas);
}
}
}
static void plugin_exit(qemu_plugin_id_t id, void *p)
{
g_autoptr(GString) out = g_string_new(NULL);
int i;
if (do_size) {
for (i = 0; i <= sizes->len; i++) {
unsigned long *cnt = &g_array_index(sizes, unsigned long, i);
if (*cnt) {
g_string_append_printf(out,
"len %d bytes: %ld insns\n", i, *cnt);
}
}
} else if (do_inline) {
g_string_append_printf(out, "insns: %" PRIu64 "\n", inline_insn_count);
} else {
uint64_t total_insns = 0;
for (i = 0; i < MAX_CPUS; i++) {
InstructionCount *c = &counts[i];
if (c->insn_count) {
g_string_append_printf(out, "cpu %d insns: %" PRIu64 "\n",
i, c->insn_count);
total_insns += c->insn_count;
}
}
g_string_append_printf(out, "total insns: %" PRIu64 "\n",
total_insns);
}
qemu_plugin_outs(out->str);
}
/* Add a match to the array of matches */
static void parse_match(char *match)
{
Match new_match = { .match_string = match };
int i;
for (i = 0; i < MAX_CPUS; i++) {
new_match.history[i] = g_ptr_array_new();
}
if (!matches) {
matches = g_array_new(false, true, sizeof(Match));
}
g_array_append_val(matches, new_match);
}
QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id,
const qemu_info_t *info,
int argc, char **argv)
{
for (int i = 0; i < argc; i++) {
char *opt = argv[i];
g_autofree char **tokens = g_strsplit(opt, "=", 2);
if (g_strcmp0(tokens[0], "inline") == 0) {
if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_inline)) {
fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
return -1;
}
} else if (g_strcmp0(tokens[0], "sizes") == 0) {
if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_size)) {
fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
return -1;
}
} else if (g_strcmp0(tokens[0], "match") == 0) {
parse_match(tokens[1]);
} else {
fprintf(stderr, "option parsing failed: %s\n", opt);
return -1;
}
}
if (do_size) {
sizes = g_array_new(true, true, sizeof(unsigned long));
}
qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
return 0;
}