| /* |
| * Common CPU TLB handling |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "config.h" |
| #include "cpu.h" |
| #include "exec-all.h" |
| #include "memory.h" |
| |
| #include "cputlb.h" |
| |
| #define WANT_EXEC_OBSOLETE |
| #include "exec-obsolete.h" |
| |
| //#define DEBUG_TLB |
| //#define DEBUG_TLB_CHECK |
| |
| /* statistics */ |
| int tlb_flush_count; |
| |
| static const CPUTLBEntry s_cputlb_empty_entry = { |
| .addr_read = -1, |
| .addr_write = -1, |
| .addr_code = -1, |
| .addend = -1, |
| }; |
| |
| /* NOTE: |
| * If flush_global is true (the usual case), flush all tlb entries. |
| * If flush_global is false, flush (at least) all tlb entries not |
| * marked global. |
| * |
| * Since QEMU doesn't currently implement a global/not-global flag |
| * for tlb entries, at the moment tlb_flush() will also flush all |
| * tlb entries in the flush_global == false case. This is OK because |
| * CPU architectures generally permit an implementation to drop |
| * entries from the TLB at any time, so flushing more entries than |
| * required is only an efficiency issue, not a correctness issue. |
| */ |
| void tlb_flush(CPUArchState *env, int flush_global) |
| { |
| int i; |
| |
| #if defined(DEBUG_TLB) |
| printf("tlb_flush:\n"); |
| #endif |
| /* must reset current TB so that interrupts cannot modify the |
| links while we are modifying them */ |
| env->current_tb = NULL; |
| |
| for (i = 0; i < CPU_TLB_SIZE; i++) { |
| int mmu_idx; |
| |
| for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
| env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; |
| } |
| } |
| |
| memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
| |
| env->tlb_flush_addr = -1; |
| env->tlb_flush_mask = 0; |
| tlb_flush_count++; |
| } |
| |
| static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
| { |
| if (addr == (tlb_entry->addr_read & |
| (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
| addr == (tlb_entry->addr_write & |
| (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
| addr == (tlb_entry->addr_code & |
| (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| *tlb_entry = s_cputlb_empty_entry; |
| } |
| } |
| |
| void tlb_flush_page(CPUArchState *env, target_ulong addr) |
| { |
| int i; |
| int mmu_idx; |
| |
| #if defined(DEBUG_TLB) |
| printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
| #endif |
| /* Check if we need to flush due to large pages. */ |
| if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { |
| #if defined(DEBUG_TLB) |
| printf("tlb_flush_page: forced full flush (" |
| TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", |
| env->tlb_flush_addr, env->tlb_flush_mask); |
| #endif |
| tlb_flush(env, 1); |
| return; |
| } |
| /* must reset current TB so that interrupts cannot modify the |
| links while we are modifying them */ |
| env->current_tb = NULL; |
| |
| addr &= TARGET_PAGE_MASK; |
| i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
| tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); |
| } |
| |
| tb_flush_jmp_cache(env, addr); |
| } |
| |
| /* update the TLBs so that writes to code in the virtual page 'addr' |
| can be detected */ |
| void tlb_protect_code(ram_addr_t ram_addr) |
| { |
| cpu_physical_memory_reset_dirty(ram_addr, |
| ram_addr + TARGET_PAGE_SIZE, |
| CODE_DIRTY_FLAG); |
| } |
| |
| /* update the TLB so that writes in physical page 'phys_addr' are no longer |
| tested for self modifying code */ |
| void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr, |
| target_ulong vaddr) |
| { |
| cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG); |
| } |
| |
| static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) |
| { |
| return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; |
| } |
| |
| void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, |
| uintptr_t length) |
| { |
| uintptr_t addr; |
| |
| if (tlb_is_dirty_ram(tlb_entry)) { |
| addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; |
| if ((addr - start) < length) { |
| tlb_entry->addr_write |= TLB_NOTDIRTY; |
| } |
| } |
| } |
| |
| static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
| { |
| ram_addr_t ram_addr; |
| void *p; |
| |
| if (tlb_is_dirty_ram(tlb_entry)) { |
| p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK) |
| + tlb_entry->addend); |
| ram_addr = qemu_ram_addr_from_host_nofail(p); |
| if (!cpu_physical_memory_is_dirty(ram_addr)) { |
| tlb_entry->addr_write |= TLB_NOTDIRTY; |
| } |
| } |
| } |
| |
| void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length) |
| { |
| CPUArchState *env; |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| int mmu_idx; |
| |
| for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
| unsigned int i; |
| |
| for (i = 0; i < CPU_TLB_SIZE; i++) { |
| tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], |
| start1, length); |
| } |
| } |
| } |
| } |
| |
| static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
| { |
| if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { |
| tlb_entry->addr_write = vaddr; |
| } |
| } |
| |
| /* update the TLB corresponding to virtual page vaddr |
| so that it is no longer dirty */ |
| void tlb_set_dirty(CPUArchState *env, target_ulong vaddr) |
| { |
| int i; |
| int mmu_idx; |
| |
| vaddr &= TARGET_PAGE_MASK; |
| i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
| tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); |
| } |
| } |
| |
| /* Our TLB does not support large pages, so remember the area covered by |
| large pages and trigger a full TLB flush if these are invalidated. */ |
| static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, |
| target_ulong size) |
| { |
| target_ulong mask = ~(size - 1); |
| |
| if (env->tlb_flush_addr == (target_ulong)-1) { |
| env->tlb_flush_addr = vaddr & mask; |
| env->tlb_flush_mask = mask; |
| return; |
| } |
| /* Extend the existing region to include the new page. |
| This is a compromise between unnecessary flushes and the cost |
| of maintaining a full variable size TLB. */ |
| mask &= env->tlb_flush_mask; |
| while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { |
| mask <<= 1; |
| } |
| env->tlb_flush_addr &= mask; |
| env->tlb_flush_mask = mask; |
| } |
| |
| /* Add a new TLB entry. At most one entry for a given virtual address |
| is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the |
| supplied size is only used by tlb_flush_page. */ |
| void tlb_set_page(CPUArchState *env, target_ulong vaddr, |
| target_phys_addr_t paddr, int prot, |
| int mmu_idx, target_ulong size) |
| { |
| MemoryRegionSection *section; |
| unsigned int index; |
| target_ulong address; |
| target_ulong code_address; |
| uintptr_t addend; |
| CPUTLBEntry *te; |
| target_phys_addr_t iotlb; |
| |
| assert(size >= TARGET_PAGE_SIZE); |
| if (size != TARGET_PAGE_SIZE) { |
| tlb_add_large_page(env, vaddr, size); |
| } |
| section = phys_page_find(paddr >> TARGET_PAGE_BITS); |
| #if defined(DEBUG_TLB) |
| printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx |
| " prot=%x idx=%d pd=0x%08lx\n", |
| vaddr, paddr, prot, mmu_idx, pd); |
| #endif |
| |
| address = vaddr; |
| if (!(memory_region_is_ram(section->mr) || |
| memory_region_is_romd(section->mr))) { |
| /* IO memory case (romd handled later) */ |
| address |= TLB_MMIO; |
| } |
| if (memory_region_is_ram(section->mr) || |
| memory_region_is_romd(section->mr)) { |
| addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) |
| + memory_region_section_addr(section, paddr); |
| } else { |
| addend = 0; |
| } |
| |
| code_address = address; |
| iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot, |
| &address); |
| |
| index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| env->iotlb[mmu_idx][index] = iotlb - vaddr; |
| te = &env->tlb_table[mmu_idx][index]; |
| te->addend = addend - vaddr; |
| if (prot & PAGE_READ) { |
| te->addr_read = address; |
| } else { |
| te->addr_read = -1; |
| } |
| |
| if (prot & PAGE_EXEC) { |
| te->addr_code = code_address; |
| } else { |
| te->addr_code = -1; |
| } |
| if (prot & PAGE_WRITE) { |
| if ((memory_region_is_ram(section->mr) && section->readonly) |
| || memory_region_is_romd(section->mr)) { |
| /* Write access calls the I/O callback. */ |
| te->addr_write = address | TLB_MMIO; |
| } else if (memory_region_is_ram(section->mr) |
| && !cpu_physical_memory_is_dirty( |
| section->mr->ram_addr |
| + memory_region_section_addr(section, paddr))) { |
| te->addr_write = address | TLB_NOTDIRTY; |
| } else { |
| te->addr_write = address; |
| } |
| } else { |
| te->addr_write = -1; |
| } |
| } |
| |
| /* NOTE: this function can trigger an exception */ |
| /* NOTE2: the returned address is not exactly the physical address: it |
| * is actually a ram_addr_t (in system mode; the user mode emulation |
| * version of this function returns a guest virtual address). |
| */ |
| tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) |
| { |
| int mmu_idx, page_index, pd; |
| void *p; |
| MemoryRegion *mr; |
| |
| page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| mmu_idx = cpu_mmu_index(env1); |
| if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != |
| (addr & TARGET_PAGE_MASK))) { |
| #ifdef CONFIG_TCG_PASS_AREG0 |
| cpu_ldub_code(env1, addr); |
| #else |
| ldub_code(addr); |
| #endif |
| } |
| pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK; |
| mr = iotlb_to_region(pd); |
| if (memory_region_is_unassigned(mr)) { |
| #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC) |
| cpu_unassigned_access(env1, addr, 0, 1, 0, 4); |
| #else |
| cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" |
| TARGET_FMT_lx "\n", addr); |
| #endif |
| } |
| p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); |
| return qemu_ram_addr_from_host_nofail(p); |
| } |
| |
| #define MMUSUFFIX _cmmu |
| #undef GETPC |
| #define GETPC() ((uintptr_t)0) |
| #define env cpu_single_env |
| #define SOFTMMU_CODE_ACCESS |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| #undef env |