| /* |
| * ARM micro operations |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * Copyright (c) 2005-2007 CodeSourcery, LLC |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include "exec.h" |
| |
| #define REGNAME r0 |
| #define REG (env->regs[0]) |
| #include "op_template.h" |
| |
| #define REGNAME r1 |
| #define REG (env->regs[1]) |
| #include "op_template.h" |
| |
| #define REGNAME r2 |
| #define REG (env->regs[2]) |
| #include "op_template.h" |
| |
| #define REGNAME r3 |
| #define REG (env->regs[3]) |
| #include "op_template.h" |
| |
| #define REGNAME r4 |
| #define REG (env->regs[4]) |
| #include "op_template.h" |
| |
| #define REGNAME r5 |
| #define REG (env->regs[5]) |
| #include "op_template.h" |
| |
| #define REGNAME r6 |
| #define REG (env->regs[6]) |
| #include "op_template.h" |
| |
| #define REGNAME r7 |
| #define REG (env->regs[7]) |
| #include "op_template.h" |
| |
| #define REGNAME r8 |
| #define REG (env->regs[8]) |
| #include "op_template.h" |
| |
| #define REGNAME r9 |
| #define REG (env->regs[9]) |
| #include "op_template.h" |
| |
| #define REGNAME r10 |
| #define REG (env->regs[10]) |
| #include "op_template.h" |
| |
| #define REGNAME r11 |
| #define REG (env->regs[11]) |
| #include "op_template.h" |
| |
| #define REGNAME r12 |
| #define REG (env->regs[12]) |
| #include "op_template.h" |
| |
| #define REGNAME r13 |
| #define REG (env->regs[13]) |
| #include "op_template.h" |
| |
| #define REGNAME r14 |
| #define REG (env->regs[14]) |
| #include "op_template.h" |
| |
| #define REGNAME r15 |
| #define REG (env->regs[15]) |
| #define SET_REG(x) REG = x & ~(uint32_t)1 |
| #include "op_template.h" |
| |
| void OPPROTO op_bx_T0(void) |
| { |
| env->regs[15] = T0 & ~(uint32_t)1; |
| env->thumb = (T0 & 1) != 0; |
| } |
| |
| void OPPROTO op_movl_T0_0(void) |
| { |
| T0 = 0; |
| } |
| |
| void OPPROTO op_movl_T0_im(void) |
| { |
| T0 = PARAM1; |
| } |
| |
| void OPPROTO op_movl_T1_im(void) |
| { |
| T1 = PARAM1; |
| } |
| |
| void OPPROTO op_mov_CF_T1(void) |
| { |
| env->CF = ((uint32_t)T1) >> 31; |
| } |
| |
| void OPPROTO op_movl_T2_im(void) |
| { |
| T2 = PARAM1; |
| } |
| |
| void OPPROTO op_addl_T1_im(void) |
| { |
| T1 += PARAM1; |
| } |
| |
| void OPPROTO op_addl_T1_T2(void) |
| { |
| T1 += T2; |
| } |
| |
| void OPPROTO op_subl_T1_T2(void) |
| { |
| T1 -= T2; |
| } |
| |
| void OPPROTO op_addl_T0_T1(void) |
| { |
| T0 += T1; |
| } |
| |
| void OPPROTO op_addl_T0_T1_cc(void) |
| { |
| unsigned int src1; |
| src1 = T0; |
| T0 += T1; |
| env->NZF = T0; |
| env->CF = T0 < src1; |
| env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0); |
| } |
| |
| void OPPROTO op_adcl_T0_T1(void) |
| { |
| T0 += T1 + env->CF; |
| } |
| |
| void OPPROTO op_adcl_T0_T1_cc(void) |
| { |
| unsigned int src1; |
| src1 = T0; |
| if (!env->CF) { |
| T0 += T1; |
| env->CF = T0 < src1; |
| } else { |
| T0 += T1 + 1; |
| env->CF = T0 <= src1; |
| } |
| env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0); |
| env->NZF = T0; |
| FORCE_RET(); |
| } |
| |
| #define OPSUB(sub, sbc, res, T0, T1) \ |
| \ |
| void OPPROTO op_ ## sub ## l_T0_T1(void) \ |
| { \ |
| res = T0 - T1; \ |
| } \ |
| \ |
| void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \ |
| { \ |
| unsigned int src1; \ |
| src1 = T0; \ |
| T0 -= T1; \ |
| env->NZF = T0; \ |
| env->CF = src1 >= T1; \ |
| env->VF = (src1 ^ T1) & (src1 ^ T0); \ |
| res = T0; \ |
| } \ |
| \ |
| void OPPROTO op_ ## sbc ## l_T0_T1(void) \ |
| { \ |
| res = T0 - T1 + env->CF - 1; \ |
| } \ |
| \ |
| void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \ |
| { \ |
| unsigned int src1; \ |
| src1 = T0; \ |
| if (!env->CF) { \ |
| T0 = T0 - T1 - 1; \ |
| env->CF = src1 > T1; \ |
| } else { \ |
| T0 = T0 - T1; \ |
| env->CF = src1 >= T1; \ |
| } \ |
| env->VF = (src1 ^ T1) & (src1 ^ T0); \ |
| env->NZF = T0; \ |
| res = T0; \ |
| FORCE_RET(); \ |
| } |
| |
| OPSUB(sub, sbc, T0, T0, T1) |
| |
| OPSUB(rsb, rsc, T0, T1, T0) |
| |
| void OPPROTO op_andl_T0_T1(void) |
| { |
| T0 &= T1; |
| } |
| |
| void OPPROTO op_xorl_T0_T1(void) |
| { |
| T0 ^= T1; |
| } |
| |
| void OPPROTO op_orl_T0_T1(void) |
| { |
| T0 |= T1; |
| } |
| |
| void OPPROTO op_bicl_T0_T1(void) |
| { |
| T0 &= ~T1; |
| } |
| |
| void OPPROTO op_notl_T0(void) |
| { |
| T0 = ~T0; |
| } |
| |
| void OPPROTO op_notl_T1(void) |
| { |
| T1 = ~T1; |
| } |
| |
| void OPPROTO op_logic_T0_cc(void) |
| { |
| env->NZF = T0; |
| } |
| |
| void OPPROTO op_logic_T1_cc(void) |
| { |
| env->NZF = T1; |
| } |
| |
| #define EIP (env->regs[15]) |
| |
| void OPPROTO op_test_eq(void) |
| { |
| if (env->NZF == 0) |
| GOTO_LABEL_PARAM(1);; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_ne(void) |
| { |
| if (env->NZF != 0) |
| GOTO_LABEL_PARAM(1);; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_cs(void) |
| { |
| if (env->CF != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_cc(void) |
| { |
| if (env->CF == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_mi(void) |
| { |
| if ((env->NZF & 0x80000000) != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_pl(void) |
| { |
| if ((env->NZF & 0x80000000) == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_vs(void) |
| { |
| if ((env->VF & 0x80000000) != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_vc(void) |
| { |
| if ((env->VF & 0x80000000) == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_hi(void) |
| { |
| if (env->CF != 0 && env->NZF != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_ls(void) |
| { |
| if (env->CF == 0 || env->NZF == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_ge(void) |
| { |
| if (((env->VF ^ env->NZF) & 0x80000000) == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_lt(void) |
| { |
| if (((env->VF ^ env->NZF) & 0x80000000) != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_gt(void) |
| { |
| if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_le(void) |
| { |
| if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_T0(void) |
| { |
| if (T0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| void OPPROTO op_testn_T0(void) |
| { |
| if (!T0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_goto_tb0(void) |
| { |
| GOTO_TB(op_goto_tb0, PARAM1, 0); |
| } |
| |
| void OPPROTO op_goto_tb1(void) |
| { |
| GOTO_TB(op_goto_tb1, PARAM1, 1); |
| } |
| |
| void OPPROTO op_exit_tb(void) |
| { |
| EXIT_TB(); |
| } |
| |
| void OPPROTO op_movl_T0_cpsr(void) |
| { |
| /* Execution state bits always read as zero. */ |
| T0 = cpsr_read(env) & ~CPSR_EXEC; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_movl_T0_spsr(void) |
| { |
| T0 = env->spsr; |
| } |
| |
| void OPPROTO op_movl_spsr_T0(void) |
| { |
| uint32_t mask = PARAM1; |
| env->spsr = (env->spsr & ~mask) | (T0 & mask); |
| } |
| |
| void OPPROTO op_movl_cpsr_T0(void) |
| { |
| cpsr_write(env, T0, PARAM1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_mul_T0_T1(void) |
| { |
| T0 = T0 * T1; |
| } |
| |
| /* 64 bit unsigned mul */ |
| void OPPROTO op_mull_T0_T1(void) |
| { |
| uint64_t res; |
| res = (uint64_t)T0 * (uint64_t)T1; |
| T1 = res >> 32; |
| T0 = res; |
| } |
| |
| /* 64 bit signed mul */ |
| void OPPROTO op_imull_T0_T1(void) |
| { |
| uint64_t res; |
| res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1); |
| T1 = res >> 32; |
| T0 = res; |
| } |
| |
| /* 48 bit signed mul, top 32 bits */ |
| void OPPROTO op_imulw_T0_T1(void) |
| { |
| uint64_t res; |
| res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1); |
| T0 = res >> 16; |
| } |
| |
| void OPPROTO op_addq_T0_T1(void) |
| { |
| uint64_t res; |
| res = ((uint64_t)T1 << 32) | T0; |
| res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]); |
| T1 = res >> 32; |
| T0 = res; |
| } |
| |
| void OPPROTO op_addq_lo_T0_T1(void) |
| { |
| uint64_t res; |
| res = ((uint64_t)T1 << 32) | T0; |
| res += (uint64_t)(env->regs[PARAM1]); |
| T1 = res >> 32; |
| T0 = res; |
| } |
| |
| /* Dual 16-bit accumulate. */ |
| void OPPROTO op_addq_T0_T1_dual(void) |
| { |
| uint64_t res; |
| res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]); |
| res += (int32_t)T0; |
| res += (int32_t)T1; |
| env->regs[PARAM1] = (uint32_t)res; |
| env->regs[PARAM2] = res >> 32; |
| } |
| |
| /* Dual 16-bit subtract accumulate. */ |
| void OPPROTO op_subq_T0_T1_dual(void) |
| { |
| uint64_t res; |
| res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]); |
| res += (int32_t)T0; |
| res -= (int32_t)T1; |
| env->regs[PARAM1] = (uint32_t)res; |
| env->regs[PARAM2] = res >> 32; |
| } |
| |
| void OPPROTO op_logicq_cc(void) |
| { |
| env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0); |
| } |
| |
| /* memory access */ |
| |
| #define MEMSUFFIX _raw |
| #include "op_mem.h" |
| |
| #if !defined(CONFIG_USER_ONLY) |
| #define MEMSUFFIX _user |
| #include "op_mem.h" |
| #define MEMSUFFIX _kernel |
| #include "op_mem.h" |
| #endif |
| |
| void OPPROTO op_clrex(void) |
| { |
| cpu_lock(); |
| helper_clrex(env); |
| cpu_unlock(); |
| } |
| |
| /* shifts */ |
| |
| /* Used by NEON. */ |
| void OPPROTO op_shll_T0_im(void) |
| { |
| T1 = T1 << PARAM1; |
| } |
| |
| /* T1 based */ |
| |
| void OPPROTO op_shll_T1_im(void) |
| { |
| T1 = T1 << PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T1_im(void) |
| { |
| T1 = (uint32_t)T1 >> PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T1_0(void) |
| { |
| T1 = 0; |
| } |
| |
| void OPPROTO op_sarl_T1_im(void) |
| { |
| T1 = (int32_t)T1 >> PARAM1; |
| } |
| |
| void OPPROTO op_sarl_T1_0(void) |
| { |
| T1 = (int32_t)T1 >> 31; |
| } |
| |
| void OPPROTO op_rorl_T1_im(void) |
| { |
| int shift; |
| shift = PARAM1; |
| T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift)); |
| } |
| |
| void OPPROTO op_rrxl_T1(void) |
| { |
| T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31); |
| } |
| |
| /* T1 based, set C flag */ |
| void OPPROTO op_shll_T1_im_cc(void) |
| { |
| env->CF = (T1 >> (32 - PARAM1)) & 1; |
| T1 = T1 << PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T1_im_cc(void) |
| { |
| env->CF = (T1 >> (PARAM1 - 1)) & 1; |
| T1 = (uint32_t)T1 >> PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T1_0_cc(void) |
| { |
| env->CF = (T1 >> 31) & 1; |
| T1 = 0; |
| } |
| |
| void OPPROTO op_sarl_T1_im_cc(void) |
| { |
| env->CF = (T1 >> (PARAM1 - 1)) & 1; |
| T1 = (int32_t)T1 >> PARAM1; |
| } |
| |
| void OPPROTO op_sarl_T1_0_cc(void) |
| { |
| env->CF = (T1 >> 31) & 1; |
| T1 = (int32_t)T1 >> 31; |
| } |
| |
| void OPPROTO op_rorl_T1_im_cc(void) |
| { |
| int shift; |
| shift = PARAM1; |
| env->CF = (T1 >> (shift - 1)) & 1; |
| T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift)); |
| } |
| |
| void OPPROTO op_rrxl_T1_cc(void) |
| { |
| uint32_t c; |
| c = T1 & 1; |
| T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31); |
| env->CF = c; |
| } |
| |
| /* T2 based */ |
| void OPPROTO op_shll_T2_im(void) |
| { |
| T2 = T2 << PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T2_im(void) |
| { |
| T2 = (uint32_t)T2 >> PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T2_0(void) |
| { |
| T2 = 0; |
| } |
| |
| void OPPROTO op_sarl_T2_im(void) |
| { |
| T2 = (int32_t)T2 >> PARAM1; |
| } |
| |
| void OPPROTO op_sarl_T2_0(void) |
| { |
| T2 = (int32_t)T2 >> 31; |
| } |
| |
| void OPPROTO op_rorl_T2_im(void) |
| { |
| int shift; |
| shift = PARAM1; |
| T2 = ((uint32_t)T2 >> shift) | (T2 << (32 - shift)); |
| } |
| |
| void OPPROTO op_rrxl_T2(void) |
| { |
| T2 = ((uint32_t)T2 >> 1) | ((uint32_t)env->CF << 31); |
| } |
| |
| /* T1 based, use T0 as shift count */ |
| |
| void OPPROTO op_shll_T1_T0(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) |
| T1 = 0; |
| else |
| T1 = T1 << shift; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_shrl_T1_T0(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) |
| T1 = 0; |
| else |
| T1 = (uint32_t)T1 >> shift; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_sarl_T1_T0(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) |
| shift = 31; |
| T1 = (int32_t)T1 >> shift; |
| } |
| |
| void OPPROTO op_rorl_T1_T0(void) |
| { |
| int shift; |
| shift = T0 & 0x1f; |
| if (shift) { |
| T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift)); |
| } |
| FORCE_RET(); |
| } |
| |
| /* T1 based, use T0 as shift count and compute CF */ |
| |
| void OPPROTO op_shll_T1_T0_cc(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) { |
| if (shift == 32) |
| env->CF = T1 & 1; |
| else |
| env->CF = 0; |
| T1 = 0; |
| } else if (shift != 0) { |
| env->CF = (T1 >> (32 - shift)) & 1; |
| T1 = T1 << shift; |
| } |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_shrl_T1_T0_cc(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) { |
| if (shift == 32) |
| env->CF = (T1 >> 31) & 1; |
| else |
| env->CF = 0; |
| T1 = 0; |
| } else if (shift != 0) { |
| env->CF = (T1 >> (shift - 1)) & 1; |
| T1 = (uint32_t)T1 >> shift; |
| } |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_sarl_T1_T0_cc(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) { |
| env->CF = (T1 >> 31) & 1; |
| T1 = (int32_t)T1 >> 31; |
| } else if (shift != 0) { |
| env->CF = (T1 >> (shift - 1)) & 1; |
| T1 = (int32_t)T1 >> shift; |
| } |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_rorl_T1_T0_cc(void) |
| { |
| int shift1, shift; |
| shift1 = T0 & 0xff; |
| shift = shift1 & 0x1f; |
| if (shift == 0) { |
| if (shift1 != 0) |
| env->CF = (T1 >> 31) & 1; |
| } else { |
| env->CF = (T1 >> (shift - 1)) & 1; |
| T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift)); |
| } |
| FORCE_RET(); |
| } |
| |
| /* misc */ |
| void OPPROTO op_clz_T0(void) |
| { |
| int count; |
| for (count = 32; T0 > 0; count--) |
| T0 = T0 >> 1; |
| T0 = count; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_sarl_T0_im(void) |
| { |
| T0 = (int32_t)T0 >> PARAM1; |
| } |
| |
| /* Sign/zero extend */ |
| void OPPROTO op_sxth_T0(void) |
| { |
| T0 = (int16_t)T0; |
| } |
| |
| void OPPROTO op_sxth_T1(void) |
| { |
| T1 = (int16_t)T1; |
| } |
| |
| void OPPROTO op_sxtb_T1(void) |
| { |
| T1 = (int8_t)T1; |
| } |
| |
| void OPPROTO op_uxtb_T1(void) |
| { |
| T1 = (uint8_t)T1; |
| } |
| |
| void OPPROTO op_uxth_T1(void) |
| { |
| T1 = (uint16_t)T1; |
| } |
| |
| void OPPROTO op_sxtb16_T1(void) |
| { |
| uint32_t res; |
| res = (uint16_t)(int8_t)T1; |
| res |= (uint32_t)(int8_t)(T1 >> 16) << 16; |
| T1 = res; |
| } |
| |
| void OPPROTO op_uxtb16_T1(void) |
| { |
| uint32_t res; |
| res = (uint16_t)(uint8_t)T1; |
| res |= (uint32_t)(uint8_t)(T1 >> 16) << 16; |
| T1 = res; |
| } |
| |
| #define SIGNBIT (uint32_t)0x80000000 |
| /* saturating arithmetic */ |
| void OPPROTO op_addl_T0_T1_setq(void) |
| { |
| uint32_t res; |
| |
| res = T0 + T1; |
| if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) |
| env->QF = 1; |
| |
| T0 = res; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_addl_T0_T1_saturate(void) |
| { |
| uint32_t res; |
| |
| res = T0 + T1; |
| if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) { |
| env->QF = 1; |
| if (T0 & SIGNBIT) |
| T0 = 0x80000000; |
| else |
| T0 = 0x7fffffff; |
| } |
| else |
| T0 = res; |
| |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_subl_T0_T1_saturate(void) |
| { |
| uint32_t res; |
| |
| res = T0 - T1; |
| if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) { |
| env->QF = 1; |
| if (T0 & SIGNBIT) |
| T0 = 0x80000000; |
| else |
| T0 = 0x7fffffff; |
| } |
| else |
| T0 = res; |
| |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_double_T1_saturate(void) |
| { |
| int32_t val; |
| |
| val = T1; |
| if (val >= 0x40000000) { |
| T1 = 0x7fffffff; |
| env->QF = 1; |
| } else if (val <= (int32_t)0xc0000000) { |
| T1 = 0x80000000; |
| env->QF = 1; |
| } else { |
| T1 = val << 1; |
| } |
| FORCE_RET(); |
| } |
| |
| /* Unsigned saturating arithmetic for NEON. */ |
| void OPPROTO op_addl_T0_T1_usaturate(void) |
| { |
| uint32_t res; |
| |
| res = T0 + T1; |
| if (res < T0) { |
| env->QF = 1; |
| T0 = 0xffffffff; |
| } else { |
| T0 = res; |
| } |
| |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_subl_T0_T1_usaturate(void) |
| { |
| uint32_t res; |
| |
| res = T0 - T1; |
| if (res > T0) { |
| env->QF = 1; |
| T0 = 0; |
| } else { |
| T0 = res; |
| } |
| |
| FORCE_RET(); |
| } |
| |
| /* Thumb shift by immediate */ |
| void OPPROTO op_shll_T0_im_thumb_cc(void) |
| { |
| int shift; |
| shift = PARAM1; |
| if (shift != 0) { |
| env->CF = (T0 >> (32 - shift)) & 1; |
| T0 = T0 << shift; |
| } |
| env->NZF = T0; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_shll_T0_im_thumb(void) |
| { |
| T0 = T0 << PARAM1; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_shrl_T0_im_thumb_cc(void) |
| { |
| int shift; |
| |
| shift = PARAM1; |
| if (shift == 0) { |
| env->CF = ((uint32_t)T0) >> 31; |
| T0 = 0; |
| } else { |
| env->CF = (T0 >> (shift - 1)) & 1; |
| T0 = T0 >> shift; |
| } |
| env->NZF = T0; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_shrl_T0_im_thumb(void) |
| { |
| int shift; |
| |
| shift = PARAM1; |
| if (shift == 0) { |
| T0 = 0; |
| } else { |
| T0 = T0 >> shift; |
| } |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_sarl_T0_im_thumb_cc(void) |
| { |
| int shift; |
| |
| shift = PARAM1; |
| if (shift == 0) { |
| T0 = ((int32_t)T0) >> 31; |
| env->CF = T0 & 1; |
| } else { |
| env->CF = (T0 >> (shift - 1)) & 1; |
| T0 = ((int32_t)T0) >> shift; |
| } |
| env->NZF = T0; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_sarl_T0_im_thumb(void) |
| { |
| int shift; |
| |
| shift = PARAM1; |
| if (shift == 0) { |
| env->CF = T0 & 1; |
| } else { |
| T0 = ((int32_t)T0) >> shift; |
| } |
| FORCE_RET(); |
| } |
| |
| /* exceptions */ |
| |
| void OPPROTO op_swi(void) |
| { |
| env->exception_index = EXCP_SWI; |
| cpu_loop_exit(); |
| } |
| |
| void OPPROTO op_undef_insn(void) |
| { |
| env->exception_index = EXCP_UDEF; |
| cpu_loop_exit(); |
| } |
| |
| void OPPROTO op_debug(void) |
| { |
| env->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(); |
| } |
| |
| void OPPROTO op_wfi(void) |
| { |
| env->exception_index = EXCP_HLT; |
| env->halted = 1; |
| cpu_loop_exit(); |
| } |
| |
| void OPPROTO op_bkpt(void) |
| { |
| env->exception_index = EXCP_BKPT; |
| cpu_loop_exit(); |
| } |
| |
| void OPPROTO op_exception_exit(void) |
| { |
| env->exception_index = EXCP_EXCEPTION_EXIT; |
| cpu_loop_exit(); |
| } |
| |
| /* VFP support. We follow the convention used for VFP instrunctions: |
| Single precition routines have a "s" suffix, double precision a |
| "d" suffix. */ |
| |
| #define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void) |
| |
| #define VFP_BINOP(name) \ |
| VFP_OP(name, s) \ |
| { \ |
| FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \ |
| } \ |
| VFP_OP(name, d) \ |
| { \ |
| FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \ |
| } |
| VFP_BINOP(add) |
| VFP_BINOP(sub) |
| VFP_BINOP(mul) |
| VFP_BINOP(div) |
| #undef VFP_BINOP |
| |
| #define VFP_HELPER(name) \ |
| VFP_OP(name, s) \ |
| { \ |
| do_vfp_##name##s(); \ |
| } \ |
| VFP_OP(name, d) \ |
| { \ |
| do_vfp_##name##d(); \ |
| } |
| VFP_HELPER(abs) |
| VFP_HELPER(sqrt) |
| VFP_HELPER(cmp) |
| VFP_HELPER(cmpe) |
| #undef VFP_HELPER |
| |
| /* XXX: Will this do the right thing for NANs. Should invert the signbit |
| without looking at the rest of the value. */ |
| VFP_OP(neg, s) |
| { |
| FT0s = float32_chs(FT0s); |
| } |
| |
| VFP_OP(neg, d) |
| { |
| FT0d = float64_chs(FT0d); |
| } |
| |
| VFP_OP(F1_ld0, s) |
| { |
| union { |
| uint32_t i; |
| float32 s; |
| } v; |
| v.i = 0; |
| FT1s = v.s; |
| } |
| |
| VFP_OP(F1_ld0, d) |
| { |
| union { |
| uint64_t i; |
| float64 d; |
| } v; |
| v.i = 0; |
| FT1d = v.d; |
| } |
| |
| /* Helper routines to perform bitwise copies between float and int. */ |
| static inline float32 vfp_itos(uint32_t i) |
| { |
| union { |
| uint32_t i; |
| float32 s; |
| } v; |
| |
| v.i = i; |
| return v.s; |
| } |
| |
| static inline uint32_t vfp_stoi(float32 s) |
| { |
| union { |
| uint32_t i; |
| float32 s; |
| } v; |
| |
| v.s = s; |
| return v.i; |
| } |
| |
| static inline float64 vfp_itod(uint64_t i) |
| { |
| union { |
| uint64_t i; |
| float64 d; |
| } v; |
| |
| v.i = i; |
| return v.d; |
| } |
| |
| static inline uint64_t vfp_dtoi(float64 d) |
| { |
| union { |
| uint64_t i; |
| float64 d; |
| } v; |
| |
| v.d = d; |
| return v.i; |
| } |
| |
| /* Integer to float conversion. */ |
| VFP_OP(uito, s) |
| { |
| FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status); |
| } |
| |
| VFP_OP(uito, d) |
| { |
| FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status); |
| } |
| |
| VFP_OP(sito, s) |
| { |
| FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status); |
| } |
| |
| VFP_OP(sito, d) |
| { |
| FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status); |
| } |
| |
| /* Float to integer conversion. */ |
| VFP_OP(toui, s) |
| { |
| FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(toui, d) |
| { |
| FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(tosi, s) |
| { |
| FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(tosi, d) |
| { |
| FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status)); |
| } |
| |
| /* TODO: Set rounding mode properly. */ |
| VFP_OP(touiz, s) |
| { |
| FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(touiz, d) |
| { |
| FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(tosiz, s) |
| { |
| FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(tosiz, d) |
| { |
| FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status)); |
| } |
| |
| /* floating point conversion */ |
| VFP_OP(fcvtd, s) |
| { |
| FT0d = float32_to_float64(FT0s, &env->vfp.fp_status); |
| } |
| |
| VFP_OP(fcvts, d) |
| { |
| FT0s = float64_to_float32(FT0d, &env->vfp.fp_status); |
| } |
| |
| /* VFP3 fixed point conversion. */ |
| #define VFP_CONV_FIX(name, p, ftype, itype, sign) \ |
| VFP_OP(name##to, p) \ |
| { \ |
| ftype tmp; \ |
| tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(FT0##p), \ |
| &env->vfp.fp_status); \ |
| FT0##p = ftype##_scalbn(tmp, PARAM1, &env->vfp.fp_status); \ |
| } \ |
| VFP_OP(to##name, p) \ |
| { \ |
| ftype tmp; \ |
| tmp = ftype##_scalbn(FT0##p, PARAM1, &env->vfp.fp_status); \ |
| FT0##p = vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \ |
| &env->vfp.fp_status)); \ |
| } |
| |
| VFP_CONV_FIX(sh, d, float64, int16, ) |
| VFP_CONV_FIX(sl, d, float64, int32, ) |
| VFP_CONV_FIX(uh, d, float64, uint16, u) |
| VFP_CONV_FIX(ul, d, float64, uint32, u) |
| VFP_CONV_FIX(sh, s, float32, int16, ) |
| VFP_CONV_FIX(sl, s, float32, int32, ) |
| VFP_CONV_FIX(uh, s, float32, uint16, u) |
| VFP_CONV_FIX(ul, s, float32, uint32, u) |
| |
| /* Get and Put values from registers. */ |
| VFP_OP(getreg_F0, d) |
| { |
| FT0d = *(float64 *)((char *) env + PARAM1); |
| } |
| |
| VFP_OP(getreg_F0, s) |
| { |
| FT0s = *(float32 *)((char *) env + PARAM1); |
| } |
| |
| VFP_OP(getreg_F1, d) |
| { |
| FT1d = *(float64 *)((char *) env + PARAM1); |
| } |
| |
| VFP_OP(getreg_F1, s) |
| { |
| FT1s = *(float32 *)((char *) env + PARAM1); |
| } |
| |
| VFP_OP(setreg_F0, d) |
| { |
| *(float64 *)((char *) env + PARAM1) = FT0d; |
| } |
| |
| VFP_OP(setreg_F0, s) |
| { |
| *(float32 *)((char *) env + PARAM1) = FT0s; |
| } |
| |
| void OPPROTO op_vfp_movl_T0_fpscr(void) |
| { |
| do_vfp_get_fpscr (); |
| } |
| |
| void OPPROTO op_vfp_movl_T0_fpscr_flags(void) |
| { |
| T0 = env->vfp.xregs[ARM_VFP_FPSCR] & (0xf << 28); |
| } |
| |
| void OPPROTO op_vfp_movl_fpscr_T0(void) |
| { |
| do_vfp_set_fpscr(); |
| } |
| |
| void OPPROTO op_vfp_movl_T0_xreg(void) |
| { |
| T0 = env->vfp.xregs[PARAM1]; |
| } |
| |
| void OPPROTO op_vfp_movl_xreg_T0(void) |
| { |
| env->vfp.xregs[PARAM1] = T0; |
| } |
| |
| /* Move between FT0s to T0 */ |
| void OPPROTO op_vfp_mrs(void) |
| { |
| T0 = vfp_stoi(FT0s); |
| } |
| |
| void OPPROTO op_vfp_msr(void) |
| { |
| FT0s = vfp_itos(T0); |
| } |
| |
| /* Move between FT0d and {T0,T1} */ |
| void OPPROTO op_vfp_mrrd(void) |
| { |
| CPU_DoubleU u; |
| |
| u.d = FT0d; |
| T0 = u.l.lower; |
| T1 = u.l.upper; |
| } |
| |
| void OPPROTO op_vfp_mdrr(void) |
| { |
| CPU_DoubleU u; |
| |
| u.l.lower = T0; |
| u.l.upper = T1; |
| FT0d = u.d; |
| } |
| |
| /* Load immediate. PARAM1 is the 32 most significant bits of the value. */ |
| void OPPROTO op_vfp_fconstd(void) |
| { |
| CPU_DoubleU u; |
| u.l.upper = PARAM1; |
| u.l.lower = 0; |
| FT0d = u.d; |
| } |
| |
| void OPPROTO op_vfp_fconsts(void) |
| { |
| FT0s = vfp_itos(PARAM1); |
| } |
| |
| /* Copy the most significant bit of T0 to all bits of T1. */ |
| void OPPROTO op_signbit_T1_T0(void) |
| { |
| T1 = (int32_t)T0 >> 31; |
| } |
| |
| void OPPROTO op_movl_cp_T0(void) |
| { |
| helper_set_cp(env, PARAM1, T0); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_movl_T0_cp(void) |
| { |
| T0 = helper_get_cp(env, PARAM1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_movl_cp15_T0(void) |
| { |
| helper_set_cp15(env, PARAM1, T0); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_movl_T0_cp15(void) |
| { |
| T0 = helper_get_cp15(env, PARAM1); |
| FORCE_RET(); |
| } |
| |
| /* Access to user mode registers from privileged modes. */ |
| void OPPROTO op_movl_T0_user(void) |
| { |
| int regno = PARAM1; |
| if (regno == 13) { |
| T0 = env->banked_r13[0]; |
| } else if (regno == 14) { |
| T0 = env->banked_r14[0]; |
| } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { |
| T0 = env->usr_regs[regno - 8]; |
| } else { |
| T0 = env->regs[regno]; |
| } |
| FORCE_RET(); |
| } |
| |
| |
| void OPPROTO op_movl_user_T0(void) |
| { |
| int regno = PARAM1; |
| if (regno == 13) { |
| env->banked_r13[0] = T0; |
| } else if (regno == 14) { |
| env->banked_r14[0] = T0; |
| } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { |
| env->usr_regs[regno - 8] = T0; |
| } else { |
| env->regs[regno] = T0; |
| } |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_movl_T0_T1(void) |
| { |
| T0 = T1; |
| } |
| |
| void OPPROTO op_movl_T0_T2(void) |
| { |
| T0 = T2; |
| } |
| |
| void OPPROTO op_movl_T1_T0(void) |
| { |
| T1 = T0; |
| } |
| |
| void OPPROTO op_movl_T1_T2(void) |
| { |
| T1 = T2; |
| } |
| |
| void OPPROTO op_movl_T2_T0(void) |
| { |
| T2 = T0; |
| } |
| |
| /* ARMv6 Media instructions. */ |
| |
| /* Note that signed overflow is undefined in C. The following routines are |
| careful to use unsigned types where modulo arithmetic is required. |
| Failure to do so _will_ break on newer gcc. */ |
| |
| /* Signed saturating arithmetic. */ |
| |
| /* Perform 16-bit signed satruating addition. */ |
| static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed satruating addition. */ |
| static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| /* Perform 16-bit signed satruating subtraction. */ |
| static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed satruating subtraction. */ |
| static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); |
| #define PFX q |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned saturating arithmetic. */ |
| static inline uint16_t add16_usat(uint16_t a, uint8_t b) |
| { |
| uint16_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xffff; |
| return res; |
| } |
| |
| static inline uint16_t sub16_usat(uint16_t a, uint8_t b) |
| { |
| if (a < b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| static inline uint8_t add8_usat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xff; |
| return res; |
| } |
| |
| static inline uint8_t sub8_usat(uint8_t a, uint8_t b) |
| { |
| if (a < b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); |
| #define PFX uq |
| |
| #include "op_addsub.h" |
| |
| /* Signed modulo arithmetic. */ |
| #define SARITH16(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \ |
| RESULT(sum, n, 16); \ |
| if (sum >= 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SARITH8(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \ |
| RESULT(sum, n, 8); \ |
| if (sum >= 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| |
| #define ADD16(a, b, n) SARITH16(a, b, n, +) |
| #define SUB16(a, b, n) SARITH16(a, b, n, -) |
| #define ADD8(a, b, n) SARITH8(a, b, n, +) |
| #define SUB8(a, b, n) SARITH8(a, b, n, -) |
| #define PFX s |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned modulo arithmetic. */ |
| #define ADD16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define ADD8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SUB16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SUB8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define PFX u |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Halved signed arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define PFX sh |
| |
| #include "op_addsub.h" |
| |
| /* Halved unsigned arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define PFX uh |
| |
| #include "op_addsub.h" |
| |
| void OPPROTO op_pkhtb_T0_T1(void) |
| { |
| T0 = (T0 & 0xffff0000) | (T1 & 0xffff); |
| } |
| |
| void OPPROTO op_pkhbt_T0_T1(void) |
| { |
| T0 = (T0 & 0xffff) | (T1 & 0xffff0000); |
| } |
| void OPPROTO op_rev_T0(void) |
| { |
| T0 = ((T0 & 0xff000000) >> 24) |
| | ((T0 & 0x00ff0000) >> 8) |
| | ((T0 & 0x0000ff00) << 8) |
| | ((T0 & 0x000000ff) << 24); |
| } |
| |
| void OPPROTO op_revh_T0(void) |
| { |
| T0 = (T0 >> 16) | (T0 << 16); |
| } |
| |
| void OPPROTO op_rev16_T0(void) |
| { |
| T0 = ((T0 & 0xff000000) >> 8) |
| | ((T0 & 0x00ff0000) << 8) |
| | ((T0 & 0x0000ff00) >> 8) |
| | ((T0 & 0x000000ff) << 8); |
| } |
| |
| void OPPROTO op_revsh_T0(void) |
| { |
| T0 = (int16_t)( ((T0 & 0x0000ff00) >> 8) |
| | ((T0 & 0x000000ff) << 8)); |
| } |
| |
| void OPPROTO op_rbit_T0(void) |
| { |
| T0 = ((T0 & 0xff000000) >> 24) |
| | ((T0 & 0x00ff0000) >> 8) |
| | ((T0 & 0x0000ff00) << 8) |
| | ((T0 & 0x000000ff) << 24); |
| T0 = ((T0 & 0xf0f0f0f0) >> 4) |
| | ((T0 & 0x0f0f0f0f) << 4); |
| T0 = ((T0 & 0x88888888) >> 3) |
| | ((T0 & 0x44444444) >> 1) |
| | ((T0 & 0x22222222) << 1) |
| | ((T0 & 0x11111111) << 3); |
| } |
| |
| /* Swap low and high halfwords. */ |
| void OPPROTO op_swap_half_T1(void) |
| { |
| T1 = (T1 >> 16) | (T1 << 16); |
| FORCE_RET(); |
| } |
| |
| /* Dual 16-bit signed multiply. */ |
| void OPPROTO op_mul_dual_T0_T1(void) |
| { |
| int32_t low; |
| int32_t high; |
| low = (int32_t)(int16_t)T0 * (int32_t)(int16_t)T1; |
| high = (((int32_t)T0) >> 16) * (((int32_t)T1) >> 16); |
| T0 = low; |
| T1 = high; |
| } |
| |
| void OPPROTO op_sel_T0_T1(void) |
| { |
| uint32_t mask; |
| uint32_t flags; |
| |
| flags = env->GE; |
| mask = 0; |
| if (flags & 1) |
| mask |= 0xff; |
| if (flags & 2) |
| mask |= 0xff00; |
| if (flags & 4) |
| mask |= 0xff0000; |
| if (flags & 8) |
| mask |= 0xff000000; |
| T0 = (T0 & mask) | (T1 & ~mask); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_roundqd_T0_T1(void) |
| { |
| T0 = T1 + ((uint32_t)T0 >> 31); |
| } |
| |
| /* Signed saturation. */ |
| static inline uint32_t do_ssat(int32_t val, int shift) |
| { |
| int32_t top; |
| uint32_t mask; |
| |
| shift = PARAM1; |
| top = val >> shift; |
| mask = (1u << shift) - 1; |
| if (top > 0) { |
| env->QF = 1; |
| return mask; |
| } else if (top < -1) { |
| env->QF = 1; |
| return ~mask; |
| } |
| return val; |
| } |
| |
| /* Unsigned saturation. */ |
| static inline uint32_t do_usat(int32_t val, int shift) |
| { |
| uint32_t max; |
| |
| shift = PARAM1; |
| max = (1u << shift) - 1; |
| if (val < 0) { |
| env->QF = 1; |
| return 0; |
| } else if (val > max) { |
| env->QF = 1; |
| return max; |
| } |
| return val; |
| } |
| |
| /* Signed saturate. */ |
| void OPPROTO op_ssat_T1(void) |
| { |
| T0 = do_ssat(T0, PARAM1); |
| FORCE_RET(); |
| } |
| |
| /* Dual halfword signed saturate. */ |
| void OPPROTO op_ssat16_T1(void) |
| { |
| uint32_t res; |
| |
| res = (uint16_t)do_ssat((int16_t)T0, PARAM1); |
| res |= do_ssat(((int32_t)T0) >> 16, PARAM1) << 16; |
| T0 = res; |
| FORCE_RET(); |
| } |
| |
| /* Unsigned saturate. */ |
| void OPPROTO op_usat_T1(void) |
| { |
| T0 = do_usat(T0, PARAM1); |
| FORCE_RET(); |
| } |
| |
| /* Dual halfword unsigned saturate. */ |
| void OPPROTO op_usat16_T1(void) |
| { |
| uint32_t res; |
| |
| res = (uint16_t)do_usat((int16_t)T0, PARAM1); |
| res |= do_usat(((int32_t)T0) >> 16, PARAM1) << 16; |
| T0 = res; |
| FORCE_RET(); |
| } |
| |
| /* Dual 16-bit add. */ |
| void OPPROTO op_add16_T1_T2(void) |
| { |
| uint32_t mask; |
| mask = (T0 & T1) & 0x8000; |
| T0 ^= ~0x8000; |
| T1 ^= ~0x8000; |
| T0 = (T0 + T1) ^ mask; |
| } |
| |
| static inline uint8_t do_usad(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return b - a; |
| } |
| |
| /* Unsigned sum of absolute byte differences. */ |
| void OPPROTO op_usad8_T0_T1(void) |
| { |
| uint32_t sum; |
| sum = do_usad(T0, T1); |
| sum += do_usad(T0 >> 8, T1 >> 8); |
| sum += do_usad(T0 >> 16, T1 >>16); |
| sum += do_usad(T0 >> 24, T1 >> 24); |
| T0 = sum; |
| } |
| |
| /* Thumb-2 instructions. */ |
| |
| /* Insert T1 into T0. Result goes in T1. */ |
| void OPPROTO op_bfi_T1_T0(void) |
| { |
| int shift = PARAM1; |
| uint32_t mask = PARAM2; |
| uint32_t bits; |
| |
| bits = (T1 << shift) & mask; |
| T1 = (T0 & ~mask) | bits; |
| } |
| |
| /* Unsigned bitfield extract. */ |
| void OPPROTO op_ubfx_T1(void) |
| { |
| uint32_t shift = PARAM1; |
| uint32_t mask = PARAM2; |
| |
| T1 >>= shift; |
| T1 &= mask; |
| } |
| |
| /* Signed bitfield extract. */ |
| void OPPROTO op_sbfx_T1(void) |
| { |
| uint32_t shift = PARAM1; |
| uint32_t width = PARAM2; |
| int32_t val; |
| |
| val = T1 << (32 - (shift + width)); |
| T1 = val >> (32 - width); |
| } |
| |
| void OPPROTO op_movtop_T0_im(void) |
| { |
| T0 = (T0 & 0xffff) | PARAM1; |
| } |
| |
| /* Used by table branch instructions. */ |
| void OPPROTO op_jmp_T0_im(void) |
| { |
| env->regs[15] = PARAM1 + (T0 << 1); |
| } |
| |
| void OPPROTO op_set_condexec(void) |
| { |
| env->condexec_bits = PARAM1; |
| } |
| |
| void OPPROTO op_sdivl_T0_T1(void) |
| { |
| int32_t num; |
| int32_t den; |
| num = T0; |
| den = T1; |
| if (den == 0) |
| T0 = 0; |
| else |
| T0 = num / den; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_udivl_T0_T1(void) |
| { |
| uint32_t num; |
| uint32_t den; |
| num = T0; |
| den = T1; |
| if (den == 0) |
| T0 = 0; |
| else |
| T0 = num / den; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_movl_T1_r13_banked(void) |
| { |
| T1 = helper_get_r13_banked(env, PARAM1); |
| } |
| |
| void OPPROTO op_movl_r13_T1_banked(void) |
| { |
| helper_set_r13_banked(env, PARAM1, T1); |
| } |
| |
| void OPPROTO op_v7m_mrs_T0(void) |
| { |
| T0 = helper_v7m_mrs(env, PARAM1); |
| } |
| |
| void OPPROTO op_v7m_msr_T0(void) |
| { |
| helper_v7m_msr(env, PARAM1, T0); |
| } |
| |
| void OPPROTO op_movl_T0_sp(void) |
| { |
| if (PARAM1 == env->v7m.current_sp) |
| T0 = env->regs[13]; |
| else |
| T0 = env->v7m.other_sp; |
| FORCE_RET(); |
| } |
| |
| #include "op_neon.h" |
| |
| /* iwMMXt support */ |
| #include "op_iwmmxt.c" |