blob: b90de6c6646152726d85b3a57b16bdc3ad361b52 [file] [log] [blame]
/*
* QEMU emulation of an Intel IOMMU (VT-d)
* (DMA Remapping device)
*
* Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
* Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "exec/address-spaces.h"
#include "intel_iommu_internal.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_bus.h"
#include "hw/i386/pc.h"
#include "hw/i386/apic-msidef.h"
#include "hw/boards.h"
#include "hw/i386/x86-iommu.h"
#include "hw/pci-host/q35.h"
#include "sysemu/kvm.h"
#include "hw/i386/apic_internal.h"
#include "kvm_i386.h"
#include "trace.h"
/* context entry operations */
#define VTD_CE_GET_RID2PASID(ce) \
((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
/* pe operations */
#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
#define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
if (ret_fr) { \
ret_fr = -ret_fr; \
if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
trace_vtd_fault_disabled(); \
} else { \
vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
} \
goto error; \
} \
}
static void vtd_address_space_refresh_all(IntelIOMMUState *s);
static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
uint64_t wmask, uint64_t w1cmask)
{
stq_le_p(&s->csr[addr], val);
stq_le_p(&s->wmask[addr], wmask);
stq_le_p(&s->w1cmask[addr], w1cmask);
}
static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
{
stq_le_p(&s->womask[addr], mask);
}
static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
uint32_t wmask, uint32_t w1cmask)
{
stl_le_p(&s->csr[addr], val);
stl_le_p(&s->wmask[addr], wmask);
stl_le_p(&s->w1cmask[addr], w1cmask);
}
static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
{
stl_le_p(&s->womask[addr], mask);
}
/* "External" get/set operations */
static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
{
uint64_t oldval = ldq_le_p(&s->csr[addr]);
uint64_t wmask = ldq_le_p(&s->wmask[addr]);
uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
stq_le_p(&s->csr[addr],
((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
}
static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
{
uint32_t oldval = ldl_le_p(&s->csr[addr]);
uint32_t wmask = ldl_le_p(&s->wmask[addr]);
uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
stl_le_p(&s->csr[addr],
((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
}
static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
{
uint64_t val = ldq_le_p(&s->csr[addr]);
uint64_t womask = ldq_le_p(&s->womask[addr]);
return val & ~womask;
}
static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
{
uint32_t val = ldl_le_p(&s->csr[addr]);
uint32_t womask = ldl_le_p(&s->womask[addr]);
return val & ~womask;
}
/* "Internal" get/set operations */
static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
{
return ldq_le_p(&s->csr[addr]);
}
static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
{
return ldl_le_p(&s->csr[addr]);
}
static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
{
stq_le_p(&s->csr[addr], val);
}
static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
uint32_t clear, uint32_t mask)
{
uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
stl_le_p(&s->csr[addr], new_val);
return new_val;
}
static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
uint64_t clear, uint64_t mask)
{
uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
stq_le_p(&s->csr[addr], new_val);
return new_val;
}
static inline void vtd_iommu_lock(IntelIOMMUState *s)
{
qemu_mutex_lock(&s->iommu_lock);
}
static inline void vtd_iommu_unlock(IntelIOMMUState *s)
{
qemu_mutex_unlock(&s->iommu_lock);
}
/* Whether the address space needs to notify new mappings */
static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
{
return as->notifier_flags & IOMMU_NOTIFIER_MAP;
}
/* GHashTable functions */
static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
{
return *((const uint64_t *)v1) == *((const uint64_t *)v2);
}
static guint vtd_uint64_hash(gconstpointer v)
{
return (guint)*(const uint64_t *)v;
}
static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
gpointer user_data)
{
VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
uint16_t domain_id = *(uint16_t *)user_data;
return entry->domain_id == domain_id;
}
/* The shift of an addr for a certain level of paging structure */
static inline uint32_t vtd_slpt_level_shift(uint32_t level)
{
assert(level != 0);
return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
}
static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
{
return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
}
static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
gpointer user_data)
{
VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
return (entry->domain_id == info->domain_id) &&
(((entry->gfn & info->mask) == gfn) ||
(entry->gfn == gfn_tlb));
}
/* Reset all the gen of VTDAddressSpace to zero and set the gen of
* IntelIOMMUState to 1. Must be called with IOMMU lock held.
*/
static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
{
VTDAddressSpace *vtd_as;
VTDBus *vtd_bus;
GHashTableIter bus_it;
uint32_t devfn_it;
trace_vtd_context_cache_reset();
g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
vtd_as = vtd_bus->dev_as[devfn_it];
if (!vtd_as) {
continue;
}
vtd_as->context_cache_entry.context_cache_gen = 0;
}
}
s->context_cache_gen = 1;
}
/* Must be called with IOMMU lock held. */
static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
{
assert(s->iotlb);
g_hash_table_remove_all(s->iotlb);
}
static void vtd_reset_iotlb(IntelIOMMUState *s)
{
vtd_iommu_lock(s);
vtd_reset_iotlb_locked(s);
vtd_iommu_unlock(s);
}
static void vtd_reset_caches(IntelIOMMUState *s)
{
vtd_iommu_lock(s);
vtd_reset_iotlb_locked(s);
vtd_reset_context_cache_locked(s);
vtd_iommu_unlock(s);
}
static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
uint32_t level)
{
return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
}
static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
{
return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
}
/* Must be called with IOMMU lock held */
static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
hwaddr addr)
{
VTDIOTLBEntry *entry;
uint64_t key;
int level;
for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
source_id, level);
entry = g_hash_table_lookup(s->iotlb, &key);
if (entry) {
goto out;
}
}
out:
return entry;
}
/* Must be with IOMMU lock held */
static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
uint16_t domain_id, hwaddr addr, uint64_t slpte,
uint8_t access_flags, uint32_t level)
{
VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
uint64_t *key = g_malloc(sizeof(*key));
uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
trace_vtd_iotlb_reset("iotlb exceeds size limit");
vtd_reset_iotlb_locked(s);
}
entry->gfn = gfn;
entry->domain_id = domain_id;
entry->slpte = slpte;
entry->access_flags = access_flags;
entry->mask = vtd_slpt_level_page_mask(level);
*key = vtd_get_iotlb_key(gfn, source_id, level);
g_hash_table_replace(s->iotlb, key, entry);
}
/* Given the reg addr of both the message data and address, generate an
* interrupt via MSI.
*/
static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
hwaddr mesg_data_reg)
{
MSIMessage msi;
assert(mesg_data_reg < DMAR_REG_SIZE);
assert(mesg_addr_reg < DMAR_REG_SIZE);
msi.address = vtd_get_long_raw(s, mesg_addr_reg);
msi.data = vtd_get_long_raw(s, mesg_data_reg);
trace_vtd_irq_generate(msi.address, msi.data);
apic_get_class()->send_msi(&msi);
}
/* Generate a fault event to software via MSI if conditions are met.
* Notice that the value of FSTS_REG being passed to it should be the one
* before any update.
*/
static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
{
if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
pre_fsts & VTD_FSTS_IQE) {
error_report_once("There are previous interrupt conditions "
"to be serviced by software, fault event "
"is not generated");
return;
}
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
error_report_once("Interrupt Mask set, irq is not generated");
} else {
vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
}
}
/* Check if the Fault (F) field of the Fault Recording Register referenced by
* @index is Set.
*/
static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
{
/* Each reg is 128-bit */
hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
addr += 8; /* Access the high 64-bit half */
assert(index < DMAR_FRCD_REG_NR);
return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
}
/* Update the PPF field of Fault Status Register.
* Should be called whenever change the F field of any fault recording
* registers.
*/
static void vtd_update_fsts_ppf(IntelIOMMUState *s)
{
uint32_t i;
uint32_t ppf_mask = 0;
for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
if (vtd_is_frcd_set(s, i)) {
ppf_mask = VTD_FSTS_PPF;
break;
}
}
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
trace_vtd_fsts_ppf(!!ppf_mask);
}
static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
{
/* Each reg is 128-bit */
hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
addr += 8; /* Access the high 64-bit half */
assert(index < DMAR_FRCD_REG_NR);
vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
vtd_update_fsts_ppf(s);
}
/* Must not update F field now, should be done later */
static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
uint16_t source_id, hwaddr addr,
VTDFaultReason fault, bool is_write)
{
uint64_t hi = 0, lo;
hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
assert(index < DMAR_FRCD_REG_NR);
lo = VTD_FRCD_FI(addr);
hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
if (!is_write) {
hi |= VTD_FRCD_T;
}
vtd_set_quad_raw(s, frcd_reg_addr, lo);
vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
trace_vtd_frr_new(index, hi, lo);
}
/* Try to collapse multiple pending faults from the same requester */
static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
{
uint32_t i;
uint64_t frcd_reg;
hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
frcd_reg = vtd_get_quad_raw(s, addr);
if ((frcd_reg & VTD_FRCD_F) &&
((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
return true;
}
addr += 16; /* 128-bit for each */
}
return false;
}
/* Log and report an DMAR (address translation) fault to software */
static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
hwaddr addr, VTDFaultReason fault,
bool is_write)
{
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
assert(fault < VTD_FR_MAX);
if (fault == VTD_FR_RESERVED_ERR) {
/* This is not a normal fault reason case. Drop it. */
return;
}
trace_vtd_dmar_fault(source_id, fault, addr, is_write);
if (fsts_reg & VTD_FSTS_PFO) {
error_report_once("New fault is not recorded due to "
"Primary Fault Overflow");
return;
}
if (vtd_try_collapse_fault(s, source_id)) {
error_report_once("New fault is not recorded due to "
"compression of faults");
return;
}
if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
error_report_once("Next Fault Recording Reg is used, "
"new fault is not recorded, set PFO field");
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
return;
}
vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
if (fsts_reg & VTD_FSTS_PPF) {
error_report_once("There are pending faults already, "
"fault event is not generated");
vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
s->next_frcd_reg++;
if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
s->next_frcd_reg = 0;
}
} else {
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
VTD_FSTS_FRI(s->next_frcd_reg));
vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
s->next_frcd_reg++;
if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
s->next_frcd_reg = 0;
}
/* This case actually cause the PPF to be Set.
* So generate fault event (interrupt).
*/
vtd_generate_fault_event(s, fsts_reg);
}
}
/* Handle Invalidation Queue Errors of queued invalidation interface error
* conditions.
*/
static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
{
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
vtd_generate_fault_event(s, fsts_reg);
}
/* Set the IWC field and try to generate an invalidation completion interrupt */
static void vtd_generate_completion_event(IntelIOMMUState *s)
{
if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
trace_vtd_inv_desc_wait_irq("One pending, skip current");
return;
}
vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
"new event not generated");
return;
} else {
/* Generate the interrupt event */
trace_vtd_inv_desc_wait_irq("Generating complete event");
vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
}
}
static inline bool vtd_root_entry_present(IntelIOMMUState *s,
VTDRootEntry *re,
uint8_t devfn)
{
if (s->root_scalable && devfn > UINT8_MAX / 2) {
return re->hi & VTD_ROOT_ENTRY_P;
}
return re->lo & VTD_ROOT_ENTRY_P;
}
static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
VTDRootEntry *re)
{
dma_addr_t addr;
addr = s->root + index * sizeof(*re);
if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
re->lo = 0;
return -VTD_FR_ROOT_TABLE_INV;
}
re->lo = le64_to_cpu(re->lo);
re->hi = le64_to_cpu(re->hi);
return 0;
}
static inline bool vtd_ce_present(VTDContextEntry *context)
{
return context->lo & VTD_CONTEXT_ENTRY_P;
}
static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
VTDRootEntry *re,
uint8_t index,
VTDContextEntry *ce)
{
dma_addr_t addr, ce_size;
/* we have checked that root entry is present */
ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
VTD_CTX_ENTRY_LEGACY_SIZE;
if (s->root_scalable && index > UINT8_MAX / 2) {
index = index & (~VTD_DEVFN_CHECK_MASK);
addr = re->hi & VTD_ROOT_ENTRY_CTP;
} else {
addr = re->lo & VTD_ROOT_ENTRY_CTP;
}
addr = addr + index * ce_size;
if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
return -VTD_FR_CONTEXT_TABLE_INV;
}
ce->lo = le64_to_cpu(ce->lo);
ce->hi = le64_to_cpu(ce->hi);
if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
ce->val[2] = le64_to_cpu(ce->val[2]);
ce->val[3] = le64_to_cpu(ce->val[3]);
}
return 0;
}
static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
{
return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
}
static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
{
return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
}
/* Whether the pte indicates the address of the page frame */
static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
{
return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
}
/* Get the content of a spte located in @base_addr[@index] */
static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
{
uint64_t slpte;
assert(index < VTD_SL_PT_ENTRY_NR);
if (dma_memory_read(&address_space_memory,
base_addr + index * sizeof(slpte), &slpte,
sizeof(slpte))) {
slpte = (uint64_t)-1;
return slpte;
}
slpte = le64_to_cpu(slpte);
return slpte;
}
/* Given an iova and the level of paging structure, return the offset
* of current level.
*/
static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
{
return (iova >> vtd_slpt_level_shift(level)) &
((1ULL << VTD_SL_LEVEL_BITS) - 1);
}
/* Check Capability Register to see if the @level of page-table is supported */
static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
{
return VTD_CAP_SAGAW_MASK & s->cap &
(1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
}
/* Return true if check passed, otherwise false */
static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
VTDPASIDEntry *pe)
{
switch (VTD_PE_GET_TYPE(pe)) {
case VTD_SM_PASID_ENTRY_FLT:
case VTD_SM_PASID_ENTRY_SLT:
case VTD_SM_PASID_ENTRY_NESTED:
break;
case VTD_SM_PASID_ENTRY_PT:
if (!x86_iommu->pt_supported) {
return false;
}
break;
default:
/* Unknwon type */
return false;
}
return true;
}
static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
uint32_t pasid,
VTDPASIDDirEntry *pdire)
{
uint32_t index;
dma_addr_t addr, entry_size;
index = VTD_PASID_DIR_INDEX(pasid);
entry_size = VTD_PASID_DIR_ENTRY_SIZE;
addr = pasid_dir_base + index * entry_size;
if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
return -VTD_FR_PASID_TABLE_INV;
}
return 0;
}
static int vtd_get_pasid_entry(IntelIOMMUState *s,
uint32_t pasid,
VTDPASIDDirEntry *pdire,
VTDPASIDEntry *pe)
{
uint32_t index;
dma_addr_t addr, entry_size;
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
index = VTD_PASID_TABLE_INDEX(pasid);
entry_size = VTD_PASID_ENTRY_SIZE;
addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
addr = addr + index * entry_size;
if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
return -VTD_FR_PASID_TABLE_INV;
}
/* Do translation type check */
if (!vtd_pe_type_check(x86_iommu, pe)) {
return -VTD_FR_PASID_TABLE_INV;
}
if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
return -VTD_FR_PASID_TABLE_INV;
}
return 0;
}
static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
dma_addr_t pasid_dir_base,
uint32_t pasid,
VTDPASIDEntry *pe)
{
int ret;
VTDPASIDDirEntry pdire;
ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
if (ret) {
return ret;
}
ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
if (ret) {
return ret;
}
return ret;
}
static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
VTDContextEntry *ce,
VTDPASIDEntry *pe)
{
uint32_t pasid;
dma_addr_t pasid_dir_base;
int ret = 0;
pasid = VTD_CE_GET_RID2PASID(ce);
pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
return ret;
}
static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
VTDContextEntry *ce,
bool *pe_fpd_set)
{
int ret;
uint32_t pasid;
dma_addr_t pasid_dir_base;
VTDPASIDDirEntry pdire;
VTDPASIDEntry pe;
pasid = VTD_CE_GET_RID2PASID(ce);
pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
if (ret) {
return ret;
}
if (pdire.val & VTD_PASID_DIR_FPD) {
*pe_fpd_set = true;
return 0;
}
ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
if (ret) {
return ret;
}
if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
*pe_fpd_set = true;
}
return 0;
}
/* Get the page-table level that hardware should use for the second-level
* page-table walk from the Address Width field of context-entry.
*/
static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
{
return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
}
static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
VTDContextEntry *ce)
{
VTDPASIDEntry pe;
if (s->root_scalable) {
vtd_ce_get_rid2pasid_entry(s, ce, &pe);
return VTD_PE_GET_LEVEL(&pe);
}
return vtd_ce_get_level(ce);
}
static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
{
return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
}
static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
VTDContextEntry *ce)
{
VTDPASIDEntry pe;
if (s->root_scalable) {
vtd_ce_get_rid2pasid_entry(s, ce, &pe);
return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
}
return vtd_ce_get_agaw(ce);
}
static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
{
return ce->lo & VTD_CONTEXT_ENTRY_TT;
}
/* Only for Legacy Mode. Return true if check passed, otherwise false */
static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
VTDContextEntry *ce)
{
switch (vtd_ce_get_type(ce)) {
case VTD_CONTEXT_TT_MULTI_LEVEL:
/* Always supported */
break;
case VTD_CONTEXT_TT_DEV_IOTLB:
if (!x86_iommu->dt_supported) {
error_report_once("%s: DT specified but not supported", __func__);
return false;
}
break;
case VTD_CONTEXT_TT_PASS_THROUGH:
if (!x86_iommu->pt_supported) {
error_report_once("%s: PT specified but not supported", __func__);
return false;
}
break;
default:
/* Unknown type */
error_report_once("%s: unknown ce type: %"PRIu32, __func__,
vtd_ce_get_type(ce));
return false;
}
return true;
}
static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
VTDContextEntry *ce, uint8_t aw)
{
uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
return 1ULL << MIN(ce_agaw, aw);
}
/* Return true if IOVA passes range check, otherwise false. */
static inline bool vtd_iova_range_check(IntelIOMMUState *s,
uint64_t iova, VTDContextEntry *ce,
uint8_t aw)
{
/*
* Check if @iova is above 2^X-1, where X is the minimum of MGAW
* in CAP_REG and AW in context-entry.
*/
return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
}
static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
VTDContextEntry *ce)
{
VTDPASIDEntry pe;
if (s->root_scalable) {
vtd_ce_get_rid2pasid_entry(s, ce, &pe);
return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
}
return vtd_ce_get_slpt_base(ce);
}
/*
* Rsvd field masks for spte:
* Index [1] to [4] 4k pages
* Index [5] to [8] large pages
*/
static uint64_t vtd_paging_entry_rsvd_field[9];
static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
{
if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
/* Maybe large page */
return slpte & vtd_paging_entry_rsvd_field[level + 4];
} else {
return slpte & vtd_paging_entry_rsvd_field[level];
}
}
/* Find the VTD address space associated with a given bus number */
static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
{
VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
if (!vtd_bus) {
/*
* Iterate over the registered buses to find the one which
* currently hold this bus number, and update the bus_num
* lookup table:
*/
GHashTableIter iter;
g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
if (pci_bus_num(vtd_bus->bus) == bus_num) {
s->vtd_as_by_bus_num[bus_num] = vtd_bus;
return vtd_bus;
}
}
}
return vtd_bus;
}
/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
* of the translation, can be used for deciding the size of large page.
*/
static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
uint64_t iova, bool is_write,
uint64_t *slptep, uint32_t *slpte_level,
bool *reads, bool *writes, uint8_t aw_bits)
{
dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
uint32_t level = vtd_get_iova_level(s, ce);
uint32_t offset;
uint64_t slpte;
uint64_t access_right_check;
if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
__func__, iova);
return -VTD_FR_ADDR_BEYOND_MGAW;
}
/* FIXME: what is the Atomics request here? */
access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
while (true) {
offset = vtd_iova_level_offset(iova, level);
slpte = vtd_get_slpte(addr, offset);
if (slpte == (uint64_t)-1) {
error_report_once("%s: detected read error on DMAR slpte "
"(iova=0x%" PRIx64 ")", __func__, iova);
if (level == vtd_get_iova_level(s, ce)) {
/* Invalid programming of context-entry */
return -VTD_FR_CONTEXT_ENTRY_INV;
} else {
return -VTD_FR_PAGING_ENTRY_INV;
}
}
*reads = (*reads) && (slpte & VTD_SL_R);
*writes = (*writes) && (slpte & VTD_SL_W);
if (!(slpte & access_right_check)) {
error_report_once("%s: detected slpte permission error "
"(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
"slpte=0x%" PRIx64 ", write=%d)", __func__,
iova, level, slpte, is_write);
return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
}
if (vtd_slpte_nonzero_rsvd(slpte, level)) {
error_report_once("%s: detected splte reserve non-zero "
"iova=0x%" PRIx64 ", level=0x%" PRIx32
"slpte=0x%" PRIx64 ")", __func__, iova,
level, slpte);
return -VTD_FR_PAGING_ENTRY_RSVD;
}
if (vtd_is_last_slpte(slpte, level)) {
*slptep = slpte;
*slpte_level = level;
return 0;
}
addr = vtd_get_slpte_addr(slpte, aw_bits);
level--;
}
}
typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
/**
* Constant information used during page walking
*
* @hook_fn: hook func to be called when detected page
* @private: private data to be passed into hook func
* @notify_unmap: whether we should notify invalid entries
* @as: VT-d address space of the device
* @aw: maximum address width
* @domain: domain ID of the page walk
*/
typedef struct {
VTDAddressSpace *as;
vtd_page_walk_hook hook_fn;
void *private;
bool notify_unmap;
uint8_t aw;
uint16_t domain_id;
} vtd_page_walk_info;
static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
{
VTDAddressSpace *as = info->as;
vtd_page_walk_hook hook_fn = info->hook_fn;
void *private = info->private;
DMAMap target = {
.iova = entry->iova,
.size = entry->addr_mask,
.translated_addr = entry->translated_addr,
.perm = entry->perm,
};
DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
return 0;
}
assert(hook_fn);
/* Update local IOVA mapped ranges */
if (entry->perm) {
if (mapped) {
/* If it's exactly the same translation, skip */
if (!memcmp(mapped, &target, sizeof(target))) {
trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
entry->translated_addr);
return 0;
} else {
/*
* Translation changed. Normally this should not
* happen, but it can happen when with buggy guest
* OSes. Note that there will be a small window that
* we don't have map at all. But that's the best
* effort we can do. The ideal way to emulate this is
* atomically modify the PTE to follow what has
* changed, but we can't. One example is that vfio
* driver only has VFIO_IOMMU_[UN]MAP_DMA but no
* interface to modify a mapping (meanwhile it seems
* meaningless to even provide one). Anyway, let's
* mark this as a TODO in case one day we'll have
* a better solution.
*/
IOMMUAccessFlags cache_perm = entry->perm;
int ret;
/* Emulate an UNMAP */
entry->perm = IOMMU_NONE;
trace_vtd_page_walk_one(info->domain_id,
entry->iova,
entry->translated_addr,
entry->addr_mask,
entry->perm);
ret = hook_fn(entry, private);
if (ret) {
return ret;
}
/* Drop any existing mapping */
iova_tree_remove(as->iova_tree, &target);
/* Recover the correct permission */
entry->perm = cache_perm;
}
}
iova_tree_insert(as->iova_tree, &target);
} else {
if (!mapped) {
/* Skip since we didn't map this range at all */
trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
return 0;
}
iova_tree_remove(as->iova_tree, &target);
}
trace_vtd_page_walk_one(info->domain_id, entry->iova,
entry->translated_addr, entry->addr_mask,
entry->perm);
return hook_fn(entry, private);
}
/**
* vtd_page_walk_level - walk over specific level for IOVA range
*
* @addr: base GPA addr to start the walk
* @start: IOVA range start address
* @end: IOVA range end address (start <= addr < end)
* @read: whether parent level has read permission
* @write: whether parent level has write permission
* @info: constant information for the page walk
*/
static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
uint64_t end, uint32_t level, bool read,
bool write, vtd_page_walk_info *info)
{
bool read_cur, write_cur, entry_valid;
uint32_t offset;
uint64_t slpte;
uint64_t subpage_size, subpage_mask;
IOMMUTLBEntry entry;
uint64_t iova = start;
uint64_t iova_next;
int ret = 0;
trace_vtd_page_walk_level(addr, level, start, end);
subpage_size = 1ULL << vtd_slpt_level_shift(level);
subpage_mask = vtd_slpt_level_page_mask(level);
while (iova < end) {
iova_next = (iova & subpage_mask) + subpage_size;
offset = vtd_iova_level_offset(iova, level);
slpte = vtd_get_slpte(addr, offset);
if (slpte == (uint64_t)-1) {
trace_vtd_page_walk_skip_read(iova, iova_next);
goto next;
}
if (vtd_slpte_nonzero_rsvd(slpte, level)) {
trace_vtd_page_walk_skip_reserve(iova, iova_next);
goto next;
}
/* Permissions are stacked with parents' */
read_cur = read && (slpte & VTD_SL_R);
write_cur = write && (slpte & VTD_SL_W);
/*
* As long as we have either read/write permission, this is a
* valid entry. The rule works for both page entries and page
* table entries.
*/
entry_valid = read_cur | write_cur;
if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
/*
* This is a valid PDE (or even bigger than PDE). We need
* to walk one further level.
*/
ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
iova, MIN(iova_next, end), level - 1,
read_cur, write_cur, info);
} else {
/*
* This means we are either:
*
* (1) the real page entry (either 4K page, or huge page)
* (2) the whole range is invalid
*
* In either case, we send an IOTLB notification down.
*/
entry.target_as = &address_space_memory;
entry.iova = iova & subpage_mask;
entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
entry.addr_mask = ~subpage_mask;
/* NOTE: this is only meaningful if entry_valid == true */
entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
ret = vtd_page_walk_one(&entry, info);
}
if (ret < 0) {
return ret;
}
next:
iova = iova_next;
}
return 0;
}
/**
* vtd_page_walk - walk specific IOVA range, and call the hook
*
* @s: intel iommu state
* @ce: context entry to walk upon
* @start: IOVA address to start the walk
* @end: IOVA range end address (start <= addr < end)
* @info: page walking information struct
*/
static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
uint64_t start, uint64_t end,
vtd_page_walk_info *info)
{
dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
uint32_t level = vtd_get_iova_level(s, ce);
if (!vtd_iova_range_check(s, start, ce, info->aw)) {
return -VTD_FR_ADDR_BEYOND_MGAW;
}
if (!vtd_iova_range_check(s, end, ce, info->aw)) {
/* Fix end so that it reaches the maximum */
end = vtd_iova_limit(s, ce, info->aw);
}
return vtd_page_walk_level(addr, start, end, level, true, true, info);
}
static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
VTDRootEntry *re)
{
/* Legacy Mode reserved bits check */
if (!s->root_scalable &&
(re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
goto rsvd_err;
/* Scalable Mode reserved bits check */
if (s->root_scalable &&
((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
(re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
goto rsvd_err;
return 0;
rsvd_err:
error_report_once("%s: invalid root entry: hi=0x%"PRIx64
", lo=0x%"PRIx64,
__func__, re->hi, re->lo);
return -VTD_FR_ROOT_ENTRY_RSVD;
}
static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
VTDContextEntry *ce)
{
if (!s->root_scalable &&
(ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
error_report_once("%s: invalid context entry: hi=%"PRIx64
", lo=%"PRIx64" (reserved nonzero)",
__func__, ce->hi, ce->lo);
return -VTD_FR_CONTEXT_ENTRY_RSVD;
}
if (s->root_scalable &&
(ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
ce->val[2] ||
ce->val[3])) {
error_report_once("%s: invalid context entry: val[3]=%"PRIx64
", val[2]=%"PRIx64
", val[1]=%"PRIx64
", val[0]=%"PRIx64" (reserved nonzero)",
__func__, ce->val[3], ce->val[2],
ce->val[1], ce->val[0]);
return -VTD_FR_CONTEXT_ENTRY_RSVD;
}
return 0;
}
static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
VTDContextEntry *ce)
{
VTDPASIDEntry pe;
/*
* Make sure in Scalable Mode, a present context entry
* has valid rid2pasid setting, which includes valid
* rid2pasid field and corresponding pasid entry setting
*/
return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
}
/* Map a device to its corresponding domain (context-entry) */
static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
uint8_t devfn, VTDContextEntry *ce)
{
VTDRootEntry re;
int ret_fr;
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
ret_fr = vtd_get_root_entry(s, bus_num, &re);
if (ret_fr) {
return ret_fr;
}
if (!vtd_root_entry_present(s, &re, devfn)) {
/* Not error - it's okay we don't have root entry. */
trace_vtd_re_not_present(bus_num);
return -VTD_FR_ROOT_ENTRY_P;
}
ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
if (ret_fr) {
return ret_fr;
}
ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
if (ret_fr) {
return ret_fr;
}
if (!vtd_ce_present(ce)) {
/* Not error - it's okay we don't have context entry. */
trace_vtd_ce_not_present(bus_num, devfn);
return -VTD_FR_CONTEXT_ENTRY_P;
}
ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
if (ret_fr) {
return ret_fr;
}
/* Check if the programming of context-entry is valid */
if (!s->root_scalable &&
!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
error_report_once("%s: invalid context entry: hi=%"PRIx64
", lo=%"PRIx64" (level %d not supported)",
__func__, ce->hi, ce->lo,
vtd_ce_get_level(ce));
return -VTD_FR_CONTEXT_ENTRY_INV;
}
if (!s->root_scalable) {
/* Do translation type check */
if (!vtd_ce_type_check(x86_iommu, ce)) {
/* Errors dumped in vtd_ce_type_check() */
return -VTD_FR_CONTEXT_ENTRY_INV;
}
} else {
/*
* Check if the programming of context-entry.rid2pasid
* and corresponding pasid setting is valid, and thus
* avoids to check pasid entry fetching result in future
* helper function calling.
*/
ret_fr = vtd_ce_rid2pasid_check(s, ce);
if (ret_fr) {
return ret_fr;
}
}
return 0;
}
static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
void *private)
{
memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
return 0;
}
static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
VTDContextEntry *ce)
{
VTDPASIDEntry pe;
if (s->root_scalable) {
vtd_ce_get_rid2pasid_entry(s, ce, &pe);
return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
}
return VTD_CONTEXT_ENTRY_DID(ce->hi);
}
static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
VTDContextEntry *ce,
hwaddr addr, hwaddr size)
{
IntelIOMMUState *s = vtd_as->iommu_state;
vtd_page_walk_info info = {
.hook_fn = vtd_sync_shadow_page_hook,
.private = (void *)&vtd_as->iommu,
.notify_unmap = true,
.aw = s->aw_bits,
.as = vtd_as,
.domain_id = vtd_get_domain_id(s, ce),
};
return vtd_page_walk(s, ce, addr, addr + size, &info);
}
static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
{
int ret;
VTDContextEntry ce;
IOMMUNotifier *n;
ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
pci_bus_num(vtd_as->bus),
vtd_as->devfn, &ce);
if (ret) {
if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
/*
* It's a valid scenario to have a context entry that is
* not present. For example, when a device is removed
* from an existing domain then the context entry will be
* zeroed by the guest before it was put into another
* domain. When this happens, instead of synchronizing
* the shadow pages we should invalidate all existing
* mappings and notify the backends.
*/
IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
vtd_address_space_unmap(vtd_as, n);
}
ret = 0;
}
return ret;
}
return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
}
/*
* Check if specific device is configed to bypass address
* translation for DMA requests. In Scalable Mode, bypass
* 1st-level translation or 2nd-level translation, it depends
* on PGTT setting.
*/
static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
{
IntelIOMMUState *s;
VTDContextEntry ce;
VTDPASIDEntry pe;
int ret;
assert(as);
s = as->iommu_state;
ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
as->devfn, &ce);
if (ret) {
/*
* Possibly failed to parse the context entry for some reason
* (e.g., during init, or any guest configuration errors on
* context entries). We should assume PT not enabled for
* safety.
*/
return false;
}
if (s->root_scalable) {
ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
if (ret) {
error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
__func__, ret);
return false;
}
return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
}
return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
}
/* Return whether the device is using IOMMU translation. */
static bool vtd_switch_address_space(VTDAddressSpace *as)
{
bool use_iommu;
/* Whether we need to take the BQL on our own */
bool take_bql = !qemu_mutex_iothread_locked();
assert(as);
use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
trace_vtd_switch_address_space(pci_bus_num(as->bus),
VTD_PCI_SLOT(as->devfn),
VTD_PCI_FUNC(as->devfn),
use_iommu);
/*
* It's possible that we reach here without BQL, e.g., when called
* from vtd_pt_enable_fast_path(). However the memory APIs need
* it. We'd better make sure we have had it already, or, take it.
*/
if (take_bql) {
qemu_mutex_lock_iothread();
}
/* Turn off first then on the other */
if (use_iommu) {
memory_region_set_enabled(&as->sys_alias, false);
memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
} else {
memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
memory_region_set_enabled(&as->sys_alias, true);
}
if (take_bql) {
qemu_mutex_unlock_iothread();
}
return use_iommu;
}
static void vtd_switch_address_space_all(IntelIOMMUState *s)
{
GHashTableIter iter;
VTDBus *vtd_bus;
int i;
g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
for (i = 0; i < PCI_DEVFN_MAX; i++) {
if (!vtd_bus->dev_as[i]) {
continue;
}
vtd_switch_address_space(vtd_bus->dev_as[i]);
}
}
}
static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
{
return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
}
static const bool vtd_qualified_faults[] = {
[VTD_FR_RESERVED] = false,
[VTD_FR_ROOT_ENTRY_P] = false,
[VTD_FR_CONTEXT_ENTRY_P] = true,
[VTD_FR_CONTEXT_ENTRY_INV] = true,
[VTD_FR_ADDR_BEYOND_MGAW] = true,
[VTD_FR_WRITE] = true,
[VTD_FR_READ] = true,
[VTD_FR_PAGING_ENTRY_INV] = true,
[VTD_FR_ROOT_TABLE_INV] = false,
[VTD_FR_CONTEXT_TABLE_INV] = false,
[VTD_FR_ROOT_ENTRY_RSVD] = false,
[VTD_FR_PAGING_ENTRY_RSVD] = true,
[VTD_FR_CONTEXT_ENTRY_TT] = true,
[VTD_FR_PASID_TABLE_INV] = false,
[VTD_FR_RESERVED_ERR] = false,
[VTD_FR_MAX] = false,
};
/* To see if a fault condition is "qualified", which is reported to software
* only if the FPD field in the context-entry used to process the faulting
* request is 0.
*/
static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
{
return vtd_qualified_faults[fault];
}
static inline bool vtd_is_interrupt_addr(hwaddr addr)
{
return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
}
static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
{
VTDBus *vtd_bus;
VTDAddressSpace *vtd_as;
bool success = false;
vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
if (!vtd_bus) {
goto out;
}
vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
if (!vtd_as) {
goto out;
}
if (vtd_switch_address_space(vtd_as) == false) {
/* We switched off IOMMU region successfully. */
success = true;
}
out:
trace_vtd_pt_enable_fast_path(source_id, success);
}
/* Map dev to context-entry then do a paging-structures walk to do a iommu
* translation.
*
* Called from RCU critical section.
*
* @bus_num: The bus number
* @devfn: The devfn, which is the combined of device and function number
* @is_write: The access is a write operation
* @entry: IOMMUTLBEntry that contain the addr to be translated and result
*
* Returns true if translation is successful, otherwise false.
*/
static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
uint8_t devfn, hwaddr addr, bool is_write,
IOMMUTLBEntry *entry)
{
IntelIOMMUState *s = vtd_as->iommu_state;
VTDContextEntry ce;
uint8_t bus_num = pci_bus_num(bus);
VTDContextCacheEntry *cc_entry;
uint64_t slpte, page_mask;
uint32_t level;
uint16_t source_id = vtd_make_source_id(bus_num, devfn);
int ret_fr;
bool is_fpd_set = false;
bool reads = true;
bool writes = true;
uint8_t access_flags;
VTDIOTLBEntry *iotlb_entry;
/*
* We have standalone memory region for interrupt addresses, we
* should never receive translation requests in this region.
*/
assert(!vtd_is_interrupt_addr(addr));
vtd_iommu_lock(s);
cc_entry = &vtd_as->context_cache_entry;
/* Try to fetch slpte form IOTLB */
iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
if (iotlb_entry) {
trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
iotlb_entry->domain_id);
slpte = iotlb_entry->slpte;
access_flags = iotlb_entry->access_flags;
page_mask = iotlb_entry->mask;
goto out;
}
/* Try to fetch context-entry from cache first */
if (cc_entry->context_cache_gen == s->context_cache_gen) {
trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
cc_entry->context_entry.lo,
cc_entry->context_cache_gen);
ce = cc_entry->context_entry;
is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
if (!is_fpd_set && s->root_scalable) {
ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
}
} else {
ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
if (!ret_fr && !is_fpd_set && s->root_scalable) {
ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
}
VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
/* Update context-cache */
trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
cc_entry->context_cache_gen,
s->context_cache_gen);
cc_entry->context_entry = ce;
cc_entry->context_cache_gen = s->context_cache_gen;
}
/*
* We don't need to translate for pass-through context entries.
* Also, let's ignore IOTLB caching as well for PT devices.
*/
if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
entry->iova = addr & VTD_PAGE_MASK_4K;
entry->translated_addr = entry->iova;
entry->addr_mask = ~VTD_PAGE_MASK_4K;
entry->perm = IOMMU_RW;
trace_vtd_translate_pt(source_id, entry->iova);
/*
* When this happens, it means firstly caching-mode is not
* enabled, and this is the first passthrough translation for
* the device. Let's enable the fast path for passthrough.
*
* When passthrough is disabled again for the device, we can
* capture it via the context entry invalidation, then the
* IOMMU region can be swapped back.
*/
vtd_pt_enable_fast_path(s, source_id);
vtd_iommu_unlock(s);
return true;
}
ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
&reads, &writes, s->aw_bits);
VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
page_mask = vtd_slpt_level_page_mask(level);
access_flags = IOMMU_ACCESS_FLAG(reads, writes);
vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
access_flags, level);
out:
vtd_iommu_unlock(s);
entry->iova = addr & page_mask;
entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
entry->addr_mask = ~page_mask;
entry->perm = access_flags;
return true;
error:
vtd_iommu_unlock(s);
entry->iova = 0;
entry->translated_addr = 0;
entry->addr_mask = 0;
entry->perm = IOMMU_NONE;
return false;
}
static void vtd_root_table_setup(IntelIOMMUState *s)
{
s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
s->root_extended = s->root & VTD_RTADDR_RTT;
if (s->scalable_mode) {
s->root_scalable = s->root & VTD_RTADDR_SMT;
}
s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
trace_vtd_reg_dmar_root(s->root, s->root_extended);
}
static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
uint32_t index, uint32_t mask)
{
x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
}
static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
{
uint64_t value = 0;
value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
s->intr_eime = value & VTD_IRTA_EIME;
/* Notify global invalidation */
vtd_iec_notify_all(s, true, 0, 0);
trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
}
static void vtd_iommu_replay_all(IntelIOMMUState *s)
{
VTDAddressSpace *vtd_as;
QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
vtd_sync_shadow_page_table(vtd_as);
}
}
static void vtd_context_global_invalidate(IntelIOMMUState *s)
{
trace_vtd_inv_desc_cc_global();
/* Protects context cache */
vtd_iommu_lock(s);
s->context_cache_gen++;
if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
vtd_reset_context_cache_locked(s);
}
vtd_iommu_unlock(s);
vtd_address_space_refresh_all(s);
/*
* From VT-d spec 6.5.2.1, a global context entry invalidation
* should be followed by a IOTLB global invalidation, so we should
* be safe even without this. Hoewever, let's replay the region as
* well to be safer, and go back here when we need finer tunes for
* VT-d emulation codes.
*/
vtd_iommu_replay_all(s);
}
/* Do a context-cache device-selective invalidation.
* @func_mask: FM field after shifting
*/
static void vtd_context_device_invalidate(IntelIOMMUState *s,
uint16_t source_id,
uint16_t func_mask)
{
uint16_t mask;
VTDBus *vtd_bus;
VTDAddressSpace *vtd_as;
uint8_t bus_n, devfn;
uint16_t devfn_it;
trace_vtd_inv_desc_cc_devices(source_id, func_mask);
switch (func_mask & 3) {
case 0:
mask = 0; /* No bits in the SID field masked */
break;
case 1:
mask = 4; /* Mask bit 2 in the SID field */
break;
case 2:
mask = 6; /* Mask bit 2:1 in the SID field */
break;
case 3:
mask = 7; /* Mask bit 2:0 in the SID field */
break;
}
mask = ~mask;
bus_n = VTD_SID_TO_BUS(source_id);
vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
if (vtd_bus) {
devfn = VTD_SID_TO_DEVFN(source_id);
for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
vtd_as = vtd_bus->dev_as[devfn_it];
if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
VTD_PCI_FUNC(devfn_it));
vtd_iommu_lock(s);
vtd_as->context_cache_entry.context_cache_gen = 0;
vtd_iommu_unlock(s);
/*
* Do switch address space when needed, in case if the
* device passthrough bit is switched.
*/
vtd_switch_address_space(vtd_as);
/*
* So a device is moving out of (or moving into) a
* domain, resync the shadow page table.
* This won't bring bad even if we have no such
* notifier registered - the IOMMU notification
* framework will skip MAP notifications if that
* happened.
*/
vtd_sync_shadow_page_table(vtd_as);
}
}
}
}
/* Context-cache invalidation
* Returns the Context Actual Invalidation Granularity.
* @val: the content of the CCMD_REG
*/
static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
{
uint64_t caig;
uint64_t type = val & VTD_CCMD_CIRG_MASK;
switch (type) {
case VTD_CCMD_DOMAIN_INVL:
/* Fall through */
case VTD_CCMD_GLOBAL_INVL:
caig = VTD_CCMD_GLOBAL_INVL_A;
vtd_context_global_invalidate(s);
break;
case VTD_CCMD_DEVICE_INVL:
caig = VTD_CCMD_DEVICE_INVL_A;
vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
break;
default:
error_report_once("%s: invalid context: 0x%" PRIx64,
__func__, val);
caig = 0;
}
return caig;
}
static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
{
trace_vtd_inv_desc_iotlb_global();
vtd_reset_iotlb(s);
vtd_iommu_replay_all(s);
}
static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
{
VTDContextEntry ce;
VTDAddressSpace *vtd_as;
trace_vtd_inv_desc_iotlb_domain(domain_id);
vtd_iommu_lock(s);
g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
&domain_id);
vtd_iommu_unlock(s);
QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
vtd_as->devfn, &ce) &&
domain_id == vtd_get_domain_id(s, &ce)) {
vtd_sync_shadow_page_table(vtd_as);
}
}
}
static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
uint16_t domain_id, hwaddr addr,
uint8_t am)
{
VTDAddressSpace *vtd_as;
VTDContextEntry ce;
int ret;
hwaddr size = (1 << am) * VTD_PAGE_SIZE;
QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
vtd_as->devfn, &ce);
if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
if (vtd_as_has_map_notifier(vtd_as)) {
/*
* As long as we have MAP notifications registered in
* any of our IOMMU notifiers, we need to sync the
* shadow page table.
*/
vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
} else {
/*
* For UNMAP-only notifiers, we don't need to walk the
* page tables. We just deliver the PSI down to
* invalidate caches.
*/
IOMMUTLBEntry entry = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = 0,
.addr_mask = size - 1,
.perm = IOMMU_NONE,
};
memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
}
}
}
}
static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
hwaddr addr, uint8_t am)
{
VTDIOTLBPageInvInfo info;
trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
assert(am <= VTD_MAMV);
info.domain_id = domain_id;
info.addr = addr;
info.mask = ~((1 << am) - 1);
vtd_iommu_lock(s);
g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
vtd_iommu_unlock(s);
vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
}
/* Flush IOTLB
* Returns the IOTLB Actual Invalidation Granularity.
* @val: the content of the IOTLB_REG
*/
static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
{
uint64_t iaig;
uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
uint16_t domain_id;
hwaddr addr;
uint8_t am;
switch (type) {
case VTD_TLB_GLOBAL_FLUSH:
iaig = VTD_TLB_GLOBAL_FLUSH_A;
vtd_iotlb_global_invalidate(s);
break;
case VTD_TLB_DSI_FLUSH:
domain_id = VTD_TLB_DID(val);
iaig = VTD_TLB_DSI_FLUSH_A;
vtd_iotlb_domain_invalidate(s, domain_id);
break;
case VTD_TLB_PSI_FLUSH:
domain_id = VTD_TLB_DID(val);
addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
am = VTD_IVA_AM(addr);
addr = VTD_IVA_ADDR(addr);
if (am > VTD_MAMV) {
error_report_once("%s: address mask overflow: 0x%" PRIx64,
__func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
iaig = 0;
break;
}
iaig = VTD_TLB_PSI_FLUSH_A;
vtd_iotlb_page_invalidate(s, domain_id, addr, am);
break;
default:
error_report_once("%s: invalid granularity: 0x%" PRIx64,
__func__, val);
iaig = 0;
}
return iaig;
}
static void vtd_fetch_inv_desc(IntelIOMMUState *s);
static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
{
return s->qi_enabled && (s->iq_tail == s->iq_head) &&
(s->iq_last_desc_type == VTD_INV_DESC_WAIT);
}
static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
{
uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
trace_vtd_inv_qi_enable(en);
if (en) {
s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
/* 2^(x+8) entries */
s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
s->qi_enabled = true;
trace_vtd_inv_qi_setup(s->iq, s->iq_size);
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
if (s->iq_tail != 0) {
/*
* This is a spec violation but Windows guests are known to set up
* Queued Invalidation this way so we allow the write and process
* Invalidation Descriptors right away.
*/
trace_vtd_warn_invalid_qi_tail(s->iq_tail);
if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
vtd_fetch_inv_desc(s);
}
}
} else {
if (vtd_queued_inv_disable_check(s)) {
/* disable Queued Invalidation */
vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
s->iq_head = 0;
s->qi_enabled = false;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
} else {
error_report_once("%s: detected improper state when disable QI "
"(head=0x%x, tail=0x%x, last_type=%d)",
__func__,
s->iq_head, s->iq_tail, s->iq_last_desc_type);
}
}
}
/* Set Root Table Pointer */
static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
{
vtd_root_table_setup(s);
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
vtd_reset_caches(s);
vtd_address_space_refresh_all(s);
}
/* Set Interrupt Remap Table Pointer */
static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
{
vtd_interrupt_remap_table_setup(s);
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
}
/* Handle Translation Enable/Disable */
static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
{
if (s->dmar_enabled == en) {
return;
}
trace_vtd_dmar_enable(en);
if (en) {
s->dmar_enabled = true;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
} else {
s->dmar_enabled = false;
/* Clear the index of Fault Recording Register */
s->next_frcd_reg = 0;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
}
vtd_reset_caches(s);
vtd_address_space_refresh_all(s);
}
/* Handle Interrupt Remap Enable/Disable */
static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
{
trace_vtd_ir_enable(en);
if (en) {
s->intr_enabled = true;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
} else {
s->intr_enabled = false;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
}
}
/* Handle write to Global Command Register */
static void vtd_handle_gcmd_write(IntelIOMMUState *s)
{
uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
uint32_t changed = status ^ val;
trace_vtd_reg_write_gcmd(status, val);
if (changed & VTD_GCMD_TE) {
/* Translation enable/disable */
vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
}
if (val & VTD_GCMD_SRTP) {
/* Set/update the root-table pointer */
vtd_handle_gcmd_srtp(s);
}
if (changed & VTD_GCMD_QIE) {
/* Queued Invalidation Enable */
vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
}
if (val & VTD_GCMD_SIRTP) {
/* Set/update the interrupt remapping root-table pointer */
vtd_handle_gcmd_sirtp(s);
}
if (changed & VTD_GCMD_IRE) {
/* Interrupt remap enable/disable */
vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
}
}
/* Handle write to Context Command Register */
static void vtd_handle_ccmd_write(IntelIOMMUState *s)
{
uint64_t ret;
uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
/* Context-cache invalidation request */
if (val & VTD_CCMD_ICC) {
if (s->qi_enabled) {
error_report_once("Queued Invalidation enabled, "
"should not use register-based invalidation");
return;
}
ret = vtd_context_cache_invalidate(s, val);
/* Invalidation completed. Change something to show */
vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
ret);
}
}
/* Handle write to IOTLB Invalidation Register */
static void vtd_handle_iotlb_write(IntelIOMMUState *s)
{
uint64_t ret;
uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
/* IOTLB invalidation request */
if (val & VTD_TLB_IVT) {
if (s->qi_enabled) {
error_report_once("Queued Invalidation enabled, "
"should not use register-based invalidation");
return;
}
ret = vtd_iotlb_flush(s, val);
/* Invalidation completed. Change something to show */
vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
VTD_TLB_FLUSH_GRANU_MASK_A, ret);
}
}
/* Fetch an Invalidation Descriptor from the Invalidation Queue */
static bool vtd_get_inv_desc(IntelIOMMUState *s,
VTDInvDesc *inv_desc)
{
dma_addr_t base_addr = s->iq;
uint32_t offset = s->iq_head;
uint32_t dw = s->iq_dw ? 32 : 16;
dma_addr_t addr = base_addr + offset * dw;
if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
error_report_once("Read INV DESC failed.");
return false;
}
inv_desc->lo = le64_to_cpu(inv_desc->lo);
inv_desc->hi = le64_to_cpu(inv_desc->hi);
if (dw == 32) {
inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
}
return true;
}
static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
{
if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
(inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
" (reserved nonzero)", __func__, inv_desc->hi,
inv_desc->lo);
return false;
}
if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
/* Status Write */
uint32_t status_data = (uint32_t)(inv_desc->lo >>
VTD_INV_DESC_WAIT_DATA_SHIFT);
assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
/* FIXME: need to be masked with HAW? */
dma_addr_t status_addr = inv_desc->hi;
trace_vtd_inv_desc_wait_sw(status_addr, status_data);
status_data = cpu_to_le32(status_data);
if (dma_memory_write(&address_space_memory, status_addr, &status_data,
sizeof(status_data))) {
trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
return false;
}
} else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
/* Interrupt flag */
vtd_generate_completion_event(s);
} else {
error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
" (unknown type)", __func__, inv_desc->hi,
inv_desc->lo);
return false;
}
return true;
}
static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
VTDInvDesc *inv_desc)
{
uint16_t sid, fmask;
if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
" (reserved nonzero)", __func__, inv_desc->hi,
inv_desc->lo);
return false;
}
switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
case VTD_INV_DESC_CC_DOMAIN:
trace_vtd_inv_desc_cc_domain(
(uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
/* Fall through */
case VTD_INV_DESC_CC_GLOBAL:
vtd_context_global_invalidate(s);
break;
case VTD_INV_DESC_CC_DEVICE:
sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
vtd_context_device_invalidate(s, sid, fmask);
break;
default:
error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
" (invalid type)", __func__, inv_desc->hi,
inv_desc->lo);
return false;
}
return true;
}
static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
{
uint16_t domain_id;
uint8_t am;
hwaddr addr;
if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
(inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
", lo=0x%"PRIx64" (reserved bits unzero)\n",
__func__, inv_desc->hi, inv_desc->lo);
return false;
}
switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
case VTD_INV_DESC_IOTLB_GLOBAL:
vtd_iotlb_global_invalidate(s);
break;
case VTD_INV_DESC_IOTLB_DOMAIN:
domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
vtd_iotlb_domain_invalidate(s, domain_id);
break;
case VTD_INV_DESC_IOTLB_PAGE:
domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
if (am > VTD_MAMV) {
error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
__func__, inv_desc->hi, inv_desc->lo,
am, (unsigned)VTD_MAMV);
return false;
}
vtd_iotlb_page_invalidate(s, domain_id, addr, am);
break;
default:
error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
__func__, inv_desc->hi, inv_desc->lo,
inv_desc->lo & VTD_INV_DESC_IOTLB_G);
return false;
}
return true;
}
static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
VTDInvDesc *inv_desc)
{
trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
inv_desc->iec.index,
inv_desc->iec.index_mask);
vtd_iec_notify_all(s, !inv_desc->iec.granularity,
inv_desc->iec.index,
inv_desc->iec.index_mask);
return true;
}
static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
VTDInvDesc *inv_desc)
{
VTDAddressSpace *vtd_dev_as;
IOMMUTLBEntry entry;
struct VTDBus *vtd_bus;
hwaddr addr;
uint64_t sz;
uint16_t sid;
uint8_t devfn;
bool size;
uint8_t bus_num;
addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
devfn = sid & 0xff;
bus_num = sid >> 8;
size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
(inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
", lo=%"PRIx64" (reserved nonzero)", __func__,
inv_desc->hi, inv_desc->lo);
return false;
}
vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
if (!vtd_bus) {
goto done;
}
vtd_dev_as = vtd_bus->dev_as[devfn];
if (!vtd_dev_as) {
goto done;
}
/* According to ATS spec table 2.4:
* S = 0, bits 15:12 = xxxx range size: 4K
* S = 1, bits 15:12 = xxx0 range size: 8K
* S = 1, bits 15:12 = xx01 range size: 16K
* S = 1, bits 15:12 = x011 range size: 32K
* S = 1, bits 15:12 = 0111 range size: 64K
* ...
*/
if (size) {
sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
addr &= ~(sz - 1);
} else {
sz = VTD_PAGE_SIZE;
}
entry.target_as = &vtd_dev_as->as;
entry.addr_mask = sz - 1;
entry.iova = addr;
entry.perm = IOMMU_NONE;
entry.translated_addr = 0;
memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
done:
return true;
}
static bool vtd_process_inv_desc(IntelIOMMUState *s)
{
VTDInvDesc inv_desc;
uint8_t desc_type;
trace_vtd_inv_qi_head(s->iq_head);
if (!vtd_get_inv_desc(s, &inv_desc)) {
s->iq_last_desc_type = VTD_INV_DESC_NONE;
return false;
}
desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
/* FIXME: should update at first or at last? */
s->iq_last_desc_type = desc_type;
switch (desc_type) {
case VTD_INV_DESC_CC:
trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
if (!vtd_process_context_cache_desc(s, &inv_desc)) {
return false;
}
break;
case VTD_INV_DESC_IOTLB:
trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
if (!vtd_process_iotlb_desc(s, &inv_desc)) {
return false;
}
break;
/*
* TODO: the entity of below two cases will be implemented in future series.
* To make guest (which integrates scalable mode support patch set in
* iommu driver) work, just return true is enough so far.
*/
case VTD_INV_DESC_PC:
break;
case VTD_INV_DESC_PIOTLB:
break;
case VTD_INV_DESC_WAIT:
trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
if (!vtd_process_wait_desc(s, &inv_desc)) {
return false;
}
break;
case VTD_INV_DESC_IEC:
trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
return false;
}
break;
case VTD_INV_DESC_DEVICE:
trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
return false;
}
break;
default:
error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
" (unknown type)", __func__, inv_desc.hi,
inv_desc.lo);
return false;
}
s->iq_head++;
if (s->iq_head == s->iq_size) {
s->iq_head = 0;
}
return true;
}
/* Try to fetch and process more Invalidation Descriptors */
static void vtd_fetch_inv_desc(IntelIOMMUState *s)
{
trace_vtd_inv_qi_fetch();
if (s->iq_tail >= s->iq_size) {
/* Detects an invalid Tail pointer */
error_report_once("%s: detected invalid QI tail "
"(tail=0x%x, size=0x%x)",
__func__, s->iq_tail, s->iq_size);
vtd_handle_inv_queue_error(s);
return;
}
while (s->iq_head != s->iq_tail) {
if (!vtd_process_inv_desc(s)) {
/* Invalidation Queue Errors */
vtd_handle_inv_queue_error(s);
break;
}
/* Must update the IQH_REG in time */
vtd_set_quad_raw(s, DMAR_IQH_REG,
(((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
VTD_IQH_QH_MASK);
}
}
/* Handle write to Invalidation Queue Tail Register */
static void vtd_handle_iqt_write(IntelIOMMUState *s)
{
uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
__func__, val);
return;
}
s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
trace_vtd_inv_qi_tail(s->iq_tail);
if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
/* Process Invalidation Queue here */
vtd_fetch_inv_desc(s);
}
}
static void vtd_handle_fsts_write(IntelIOMMUState *s)
{
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
trace_vtd_fsts_clear_ip();
}
/* FIXME: when IQE is Clear, should we try to fetch some Invalidation
* Descriptors if there are any when Queued Invalidation is enabled?
*/
}
static void vtd_handle_fectl_write(IntelIOMMUState *s)
{
uint32_t fectl_reg;
/* FIXME: when software clears the IM field, check the IP field. But do we
* need to compare the old value and the new value to conclude that
* software clears the IM field? Or just check if the IM field is zero?
*/
fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
trace_vtd_reg_write_fectl(fectl_reg);
if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
}
}
static void vtd_handle_ics_write(IntelIOMMUState *s)
{
uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
trace_vtd_reg_ics_clear_ip();
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
}
}
static void vtd_handle_iectl_write(IntelIOMMUState *s)
{
uint32_t iectl_reg;
/* FIXME: when software clears the IM field, check the IP field. But do we
* need to compare the old value and the new value to conclude that
* software clears the IM field? Or just check if the IM field is zero?
*/
iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
trace_vtd_reg_write_iectl(iectl_reg);
if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
}
}
static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
{
IntelIOMMUState *s = opaque;
uint64_t val;
trace_vtd_reg_read(addr, size);
if (addr + size > DMAR_REG_SIZE) {
error_report_once("%s: MMIO over range: addr=0x%" PRIx64
" size=0x%u", __func__, addr, size);
return (uint64_t)-1;
}
switch (addr) {
/* Root Table Address Register, 64-bit */
case DMAR_RTADDR_REG:
if (size == 4) {
val = s->root & ((1ULL << 32) - 1);
} else {
val = s->root;
}
break;
case DMAR_RTADDR_REG_HI:
assert(size == 4);
val = s->root >> 32;
break;
/* Invalidation Queue Address Register, 64-bit */
case DMAR_IQA_REG:
val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
if (size == 4) {
val = val & ((1ULL << 32) - 1);
}
break;
case DMAR_IQA_REG_HI:
assert(size == 4);
val = s->iq >> 32;
break;
default:
if (size == 4) {
val = vtd_get_long(s, addr);
} else {
val = vtd_get_quad(s, addr);
}
}
return val;
}
static void vtd_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
IntelIOMMUState *s = opaque;
trace_vtd_reg_write(addr, size, val);
if (addr + size > DMAR_REG_SIZE) {
error_report_once("%s: MMIO over range: addr=0x%" PRIx64
" size=0x%u", __func__, addr, size);
return;
}
switch (addr) {
/* Global Command Register, 32-bit */
case DMAR_GCMD_REG:
vtd_set_long(s, addr, val);
vtd_handle_gcmd_write(s);
break;
/* Context Command Register, 64-bit */
case DMAR_CCMD_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
vtd_handle_ccmd_write(s);
}
break;
case DMAR_CCMD_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_ccmd_write(s);
break;
/* IOTLB Invalidation Register, 64-bit */
case DMAR_IOTLB_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
vtd_handle_iotlb_write(s);
}
break;
case DMAR_IOTLB_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_iotlb_write(s);
break;
/* Invalidate Address Register, 64-bit */
case DMAR_IVA_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
break;
case DMAR_IVA_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Fault Status Register, 32-bit */
case DMAR_FSTS_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_fsts_write(s);
break;
/* Fault Event Control Register, 32-bit */
case DMAR_FECTL_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_fectl_write(s);
break;
/* Fault Event Data Register, 32-bit */
case DMAR_FEDATA_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Fault Event Address Register, 32-bit */
case DMAR_FEADDR_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
/*
* While the register is 32-bit only, some guests (Xen...) write to
* it with 64-bit.
*/
vtd_set_quad(s, addr, val);
}
break;
/* Fault Event Upper Address Register, 32-bit */
case DMAR_FEUADDR_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Protected Memory Enable Register, 32-bit */
case DMAR_PMEN_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Root Table Address Register, 64-bit */
case DMAR_RTADDR_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
break;
case DMAR_RTADDR_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Invalidation Queue Tail Register, 64-bit */
case DMAR_IQT_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
vtd_handle_iqt_write(s);
break;
case DMAR_IQT_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
/* 19:63 of IQT_REG is RsvdZ, do nothing here */
break;
/* Invalidation Queue Address Register, 64-bit */
case DMAR_IQA_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
if (s->ecap & VTD_ECAP_SMTS &&
val & VTD_IQA_DW_MASK) {
s->iq_dw = true;
} else {
s->iq_dw = false;
}
break;
case DMAR_IQA_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Invalidation Completion Status Register, 32-bit */
case DMAR_ICS_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_ics_write(s);
break;
/* Invalidation Event Control Register, 32-bit */
case DMAR_IECTL_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_iectl_write(s);
break;
/* Invalidation Event Data Register, 32-bit */
case DMAR_IEDATA_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Invalidation Event Address Register, 32-bit */
case DMAR_IEADDR_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Invalidation Event Upper Address Register, 32-bit */
case DMAR_IEUADDR_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Fault Recording Registers, 128-bit */
case DMAR_FRCD_REG_0_0:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
break;
case DMAR_FRCD_REG_0_1:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
case DMAR_FRCD_REG_0_2:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
/* May clear bit 127 (Fault), update PPF */
vtd_update_fsts_ppf(s);
}
break;
case DMAR_FRCD_REG_0_3:
assert(size == 4);
vtd_set_long(s, addr, val);
/* May clear bit 127 (Fault), update PPF */
vtd_update_fsts_ppf(s);
break;
case DMAR_IRTA_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
break;
case DMAR_IRTA_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
default:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
}
}
static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
IOMMUAccessFlags flag, int iommu_idx)
{
VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
IntelIOMMUState *s = vtd_as->iommu_state;
IOMMUTLBEntry iotlb = {
/* We'll fill in the rest later. */
.target_as = &address_space_memory,
};
bool success;
if (likely(s->dmar_enabled)) {
success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
addr, flag & IOMMU_WO, &iotlb);
} else {
/* DMAR disabled, passthrough, use 4k-page*/
iotlb.iova = addr & VTD_PAGE_MASK_4K;
iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
iotlb.perm = IOMMU_RW;
success = true;
}
if (likely(success)) {
trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
VTD_PCI_SLOT(vtd_as->devfn),
VTD_PCI_FUNC(vtd_as->devfn),
iotlb.iova, iotlb.translated_addr,
iotlb.addr_mask);
} else {
error_report_once("%s: detected translation failure "
"(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
__func__, pci_bus_num(vtd_as->bus),
VTD_PCI_SLOT(vtd_as->devfn),
VTD_PCI_FUNC(vtd_as->devfn),
addr);
}
return iotlb;
}
static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
IOMMUNotifierFlag old,
IOMMUNotifierFlag new)
{
VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
IntelIOMMUState *s = vtd_as->iommu_state;
if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
error_report("We need to set caching-mode=1 for intel-iommu to enable "
"device assignment with IOMMU protection.");
exit(1);
}
/* Update per-address-space notifier flags */
vtd_as->notifier_flags = new;
if (old == IOMMU_NOTIFIER_NONE) {
QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
} else if (new == IOMMU_NOTIFIER_NONE) {
QLIST_REMOVE(vtd_as, next);
}
}
static int vtd_post_load(void *opaque, int version_id)
{
IntelIOMMUState *iommu = opaque;
/*
* Memory regions are dynamically turned on/off depending on
* context entry configurations from the guest. After migration,
* we need to make sure the memory regions are still correct.
*/
vtd_switch_address_space_all(iommu);
return 0;
}
static const VMStateDescription vtd_vmstate = {
.name = "iommu-intel",
.version_id = 1,
.minimum_version_id = 1,
.priority = MIG_PRI_IOMMU,
.post_load = vtd_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT64(root, IntelIOMMUState),
VMSTATE_UINT64(intr_root, IntelIOMMUState),
VMSTATE_UINT64(iq, IntelIOMMUState),
VMSTATE_UINT32(intr_size, IntelIOMMUState),
VMSTATE_UINT16(iq_head, IntelIOMMUState),
VMSTATE_UINT16(iq_tail, IntelIOMMUState),
VMSTATE_UINT16(iq_size, IntelIOMMUState),
VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
VMSTATE_BOOL(root_extended, IntelIOMMUState),
VMSTATE_BOOL(root_scalable, IntelIOMMUState),
VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
VMSTATE_BOOL(intr_eime, IntelIOMMUState),
VMSTATE_END_OF_LIST()
}
};
static const MemoryRegionOps vtd_mem_ops = {
.read = vtd_mem_read,
.write = vtd_mem_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 8,
},
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static Property vtd_properties[] = {
DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
ON_OFF_AUTO_AUTO),
DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
VTD_HOST_ADDRESS_WIDTH),
DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
DEFINE_PROP_END_OF_LIST(),
};
/* Read IRTE entry with specific index */
static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
VTD_IR_TableEntry *entry, uint16_t sid)
{
static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
{0xffff, 0xfffb, 0xfff9, 0xfff8};
dma_addr_t addr = 0x00;
uint16_t mask, source_id;
uint8_t bus, bus_max, bus_min;
addr = iommu->intr_root + index * sizeof(*entry);
if (dma_memory_read(&address_space_memory, addr, entry,
sizeof(*entry))) {
error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
__func__, index, addr);
return -VTD_FR_IR_ROOT_INVAL;
}
trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
le64_to_cpu(entry->data[0]));
if (!entry->irte.present) {
error_report_once("%s: detected non-present IRTE "
"(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
__func__, index, le64_to_cpu(entry->data[1]),
le64_to_cpu(entry->data[0]));
return -VTD_FR_IR_ENTRY_P;
}
if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
entry->irte.__reserved_2) {
error_report_once("%s: detected non-zero reserved IRTE "
"(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
__func__, index, le64_to_cpu(entry->data[1]),
le64_to_cpu(entry->data[0]));
return -VTD_FR_IR_IRTE_RSVD;
}
if (sid != X86_IOMMU_SID_INVALID) {
/* Validate IRTE SID */
source_id = le32_to_cpu(entry->irte.source_id);
switch (entry->irte.sid_vtype) {
case VTD_SVT_NONE:
break;
case VTD_SVT_ALL:
mask = vtd_svt_mask[entry->irte.sid_q];
if ((source_id & mask) != (sid & mask)) {
error_report_once("%s: invalid IRTE SID "
"(index=%u, sid=%u, source_id=%u)",
__func__, index, sid, source_id);
return -VTD_FR_IR_SID_ERR;
}
break;
case VTD_SVT_BUS:
bus_max = source_id >> 8;
bus_min = source_id & 0xff;
bus = sid >> 8;
if (bus > bus_max || bus < bus_min) {
error_report_once("%s: invalid SVT_BUS "
"(index=%u, bus=%u, min=%u, max=%u)",
__func__, index, bus, bus_min, bus_max);
return -VTD_FR_IR_SID_ERR;
}
break;
default:
error_report_once("%s: detected invalid IRTE SVT "
"(index=%u, type=%d)", __func__,
index, entry->irte.sid_vtype);
/* Take this as verification failure. */
return -VTD_FR_IR_SID_ERR;
break;
}
}
return 0;
}
/* Fetch IRQ information of specific IR index */
static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
X86IOMMUIrq *irq, uint16_t sid)
{
VTD_IR_TableEntry irte = {};
int ret = 0;
ret = vtd_irte_get(iommu, index, &irte, sid);
if (ret) {
return ret;
}
irq->trigger_mode = irte.irte.trigger_mode;
irq->vector = irte.irte.vector;
irq->delivery_mode = irte.irte.delivery_mode;
irq->dest = le32_to_cpu(irte.irte.dest_id);
if (!iommu->intr_eime) {
#define VTD_IR_APIC_DEST_MASK (0xff00ULL)
#define VTD_IR_APIC_DEST_SHIFT (8)
irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
VTD_IR_APIC_DEST_SHIFT;
}
irq->dest_mode = irte.irte.dest_mode;
irq->redir_hint = irte.irte.redir_hint;
trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
irq->delivery_mode, irq->dest, irq->dest_mode);
return 0;
}
/* Interrupt remapping for MSI/MSI-X entry */
static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
MSIMessage *origin,
MSIMessage *translated,
uint16_t sid)
{
int ret = 0;
VTD_IR_MSIAddress addr;
uint16_t index;
X86IOMMUIrq irq = {};
assert(origin && translated);
trace_vtd_ir_remap_msi_req(origin->address, origin->data);
if (!iommu || !iommu->intr_enabled) {
memcpy(translated, origin, sizeof(*origin));
goto out;
}
if (origin->address & VTD_MSI_ADDR_HI_MASK) {
error_report_once("%s: MSI address high 32 bits non-zero detected: "
"address=0x%" PRIx64, __func__, origin->address);
return -VTD_FR_IR_REQ_RSVD;
}
addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
if (addr.addr.__head != 0xfee) {
error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
__func__, addr.data);
return -VTD_FR_IR_REQ_RSVD;
}
/* This is compatible mode. */
if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
memcpy(translated, origin, sizeof(*origin));
goto out;
}
index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
#define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
#define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
if (addr.addr.sub_valid) {
/* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
}
ret = vtd_remap_irq_get(iommu, index, &irq, sid);
if (ret) {
return ret;
}
if (addr.addr.sub_valid) {
trace_vtd_ir_remap_type("MSI");
if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
error_report_once("%s: invalid IR MSI "
"(sid=%u, address=0x%" PRIx64
", data=0x%" PRIx32 ")",
__func__, sid, origin->address, origin->data);
return -VTD_FR_IR_REQ_RSVD;
}
} else {
uint8_t vector = origin->data & 0xff;
uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
trace_vtd_ir_remap_type("IOAPIC");
/* IOAPIC entry vector should be aligned with IRTE vector
* (see vt-d spec 5.1.5.1). */
if (vector != irq.vector) {
trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
}
/* The Trigger Mode field must match the Trigger Mode in the IRTE.
* (see vt-d spec 5.1.5.1). */
if (trigger_mode != irq.trigger_mode) {
trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
irq.trigger_mode);
}
}
/*
* We'd better keep the last two bits, assuming that guest OS
* might modify it. Keep it does not hurt after all.
*/
irq.msi_addr_last_bits = addr.addr.__not_care;
/* Translate X86IOMMUIrq to MSI message */
x86_iommu_irq_to_msi_message(&irq, translated);
out:
trace_vtd_ir_remap_msi(origin->address, origin->data,
translated->address, translated->data);
return 0;
}
static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
MSIMessage *dst, uint16_t sid)
{
return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
src, dst, sid);
}
static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
return MEMTX_OK;
}
static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
int ret = 0;
MSIMessage from = {}, to = {};
uint16_t sid = X86_IOMMU_SID_INVALID;
from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
from.data = (uint32_t) value;
if (!attrs.unspecified) {
/* We have explicit Source ID */
sid = attrs.requester_id;
}
ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
if (ret) {
/* TODO: report error */
/* Drop this interrupt */
return MEMTX_ERROR;
}
apic_get_class()->send_msi(&to);
return MEMTX_OK;
}
static const MemoryRegionOps vtd_mem_ir_ops = {
.read_with_attrs = vtd_mem_ir_read,
.write_with_attrs = vtd_mem_ir_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
{
uintptr_t key = (uintptr_t)bus;
VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
VTDAddressSpace *vtd_dev_as;
char name[128];
if (!vtd_bus) {
uintptr_t *new_key = g_malloc(sizeof(*new_key));
*new_key = (uintptr_t)bus;
/* No corresponding free() */
vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
PCI_DEVFN_MAX);
vtd_bus->bus = bus;
g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
}
vtd_dev_as = vtd_bus->dev_as[devfn];
if (!vtd_dev_as) {
snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
vtd_dev_as->bus = bus;
vtd_dev_as->devfn = (uint8_t)devfn;
vtd_dev_as->iommu_state = s;
vtd_dev_as->context_cache_entry.context_cache_gen = 0;
vtd_dev_as->iova_tree = iova_tree_new();
/*
* Memory region relationships looks like (Address range shows
* only lower 32 bits to make it short in length...):
*
* |-----------------+-------------------+----------|
* | Name | Address range | Priority |
* |-----------------+-------------------+----------+
* | vtd_root | 00000000-ffffffff | 0 |
* | intel_iommu | 00000000-ffffffff | 1 |
* | vtd_sys_alias | 00000000-ffffffff | 1 |
* | intel_iommu_ir | fee00000-feefffff | 64 |
* |-----------------+-------------------+----------|
*
* We enable/disable DMAR by switching enablement for
* vtd_sys_alias and intel_iommu regions. IR region is always
* enabled.
*/
memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
"intel_iommu_dmar",
UINT64_MAX);
memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
"vtd_sys_alias", get_system_memory(),
0, memory_region_size(get_system_memory()));
memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
&vtd_mem_ir_ops, s, "intel_iommu_ir",
VTD_INTERRUPT_ADDR_SIZE);
memory_region_init(&vtd_dev_as->root, OBJECT(s),
"vtd_root", UINT64_MAX);
memory_region_add_subregion_overlap(&vtd_dev_as->root,
VTD_INTERRUPT_ADDR_FIRST,
&vtd_dev_as->iommu_ir, 64);
address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
&vtd_dev_as->sys_alias, 1);
memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
MEMORY_REGION(&vtd_dev_as->iommu),
1);
vtd_switch_address_space(vtd_dev_as);
}
return vtd_dev_as;
}
/* Unmap the whole range in the notifier's scope. */
static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
{
IOMMUTLBEntry entry;
hwaddr size;
hwaddr start = n->start;
hwaddr end = n->end;
IntelIOMMUState *s = as->iommu_state;
DMAMap map;
/*
* Note: all the codes in this function has a assumption that IOVA
* bits are no more than VTD_MGAW bits (which is restricted by
* VT-d spec), otherwise we need to consider overflow of 64 bits.
*/
if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
/*
* Don't need to unmap regions that is bigger than the whole
* VT-d supported address space size
*/
end = VTD_ADDRESS_SIZE(s->aw_bits);
}
assert(start <= end);
size = end - start;
if (ctpop64(size) != 1) {
/*
* This size cannot format a correct mask. Let's enlarge it to
* suite the minimum available mask.
*/
int n = 64 - clz64(size);
if (n > s->aw_bits) {
/* should not happen, but in case it happens, limit it */
n = s->aw_bits;
}
size = 1ULL << n;
}
entry.target_as = &address_space_memory;
/* Adjust iova for the size */
entry.iova = n->start & ~(size - 1);
/* This field is meaningless for unmap */
entry.translated_addr = 0;
entry.perm = IOMMU_NONE;
entry.addr_mask = size - 1;
trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
VTD_PCI_SLOT(as->devfn),
VTD_PCI_FUNC(as->devfn),
entry.iova, size);
map.iova = entry.iova;
map.size = entry.addr_mask;
iova_tree_remove(as->iova_tree, &map);
memory_region_notify_one(n, &entry);
}
static void vtd_address_space_unmap_all(IntelIOMMUState *s)
{
VTDAddressSpace *vtd_as;
IOMMUNotifier *n;
QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
vtd_address_space_unmap(vtd_as, n);
}
}
}
static void vtd_address_space_refresh_all(IntelIOMMUState *s)
{
vtd_address_space_unmap_all(s);
vtd_switch_address_space_all(s);
}
static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
{
memory_region_notify_one((IOMMUNotifier *)private, entry);
return 0;
}
static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
{
VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
IntelIOMMUState *s = vtd_as->iommu_state;
uint8_t bus_n = pci_bus_num(vtd_as->bus);
VTDContextEntry ce;
/*
* The replay can be triggered by either a invalidation or a newly
* created entry. No matter what, we release existing mappings
* (it means flushing caches for UNMAP-only registers).
*/
vtd_address_space_unmap(vtd_as, n);
if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
"legacy mode",
bus_n, PCI_SLOT(vtd_as->devfn),
PCI_FUNC(vtd_as->devfn),
vtd_get_domain_id(s, &ce),
ce.hi, ce.lo);
if (vtd_as_has_map_notifier(vtd_as)) {
/* This is required only for MAP typed notifiers */
vtd_page_walk_info info = {
.hook_fn = vtd_replay_hook,
.private = (void *)n,
.notify_unmap = false,
.aw = s->aw_bits,
.as = vtd_as,
.domain_id = vtd_get_domain_id(s, &ce),
};
vtd_page_walk(s, &ce, 0, ~0ULL, &info);
}
} else {
trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
PCI_FUNC(vtd_as->devfn));
}
return;
}
/* Do the initialization. It will also be called when reset, so pay
* attention when adding new initialization stuff.
*/
static void vtd_init(IntelIOMMUState *s)
{
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
memset(s->csr, 0, DMAR_REG_SIZE);
memset(s->wmask, 0, DMAR_REG_SIZE);
memset(s->w1cmask, 0, DMAR_REG_SIZE);
memset(s->womask, 0, DMAR_REG_SIZE);
s->root = 0;
s->root_extended = false;
s->root_scalable = false;
s->dmar_enabled = false;
s->intr_enabled = false;
s->iq_head = 0;
s->iq_tail = 0;
s->iq = 0;
s->iq_size = 0;
s->qi_enabled = false;
s->iq_last_desc_type = VTD_INV_DESC_NONE;
s->iq_dw = false;
s->next_frcd_reg = 0;
s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
if (s->dma_drain) {
s->cap |= VTD_CAP_DRAIN;
}
if (s->aw_bits == VTD_HOST_AW_48BIT) {
s->cap |= VTD_CAP_SAGAW_48bit;
}
s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
/*
* Rsvd field masks for spte
*/
vtd_paging_entry_rsvd_field[0] = ~0ULL;
vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
if (x86_iommu_ir_supported(x86_iommu)) {
s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
if (s->intr_eim == ON_OFF_AUTO_ON) {
s->ecap |= VTD_ECAP_EIM;
}
assert(s->intr_eim != ON_OFF_AUTO_AUTO);
}
if (x86_iommu->dt_supported) {
s->ecap |= VTD_ECAP_DT;
}
if (x86_iommu->pt_supported) {
s->ecap |= VTD_ECAP_PT;
}
if (s->caching_mode) {
s->cap |= VTD_CAP_CM;
}
/* TODO: read cap/ecap from host to decide which cap to be exposed. */
if (s->scalable_mode) {
s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
}
vtd_reset_caches(s);
/* Define registers with default values and bit semantics */
vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
/* Advanced Fault Logging not supported */
vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
/* Treated as RsvdZ when EIM in ECAP_REG is not supported
* vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
*/
vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
/* Treated as RO for implementations that PLMR and PHMR fields reported
* as Clear in the CAP_REG.
* vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
*/
vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
/* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
/* IOTLB registers */
vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
/* Fault Recording Registers, 128-bit */
vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
/*
* Interrupt remapping registers.
*/
vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
}
/* Should not reset address_spaces when reset because devices will still use
* the address space they got at first (won't ask the bus again).
*/
static void vtd_reset(DeviceState *dev)
{
IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
vtd_init(s);
vtd_address_space_refresh_all(s);
}
static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
{
IntelIOMMUState *s = opaque;
VTDAddressSpace *vtd_as;
assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
vtd_as = vtd_find_add_as(s, bus, devfn);
return &vtd_as->as;
}
static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
{
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
error_setg(errp, "eim=on cannot be selected without intremap=on");
return false;
}
if (s->intr_eim == ON_OFF_AUTO_AUTO) {
s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
&& x86_iommu_ir_supported(x86_iommu) ?
ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
}
if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
if (!kvm_irqchip_in_kernel()) {
error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
return false;
}
if (!kvm_enable_x2apic()) {
error_setg(errp, "eim=on requires support on the KVM side"
"(X2APIC_API, first shipped in v4.7)");
return false;
}
}
/* Currently only address widths supported are 39 and 48 bits */
if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
(s->aw_bits != VTD_HOST_AW_48BIT)) {
error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
return false;
}
if (s->scalable_mode && !s->dma_drain) {
error_setg(errp, "Need to set dma_drain for scalable mode");
return false;
}
return true;
}
static void vtd_realize(DeviceState *dev, Error **errp)
{
MachineState *ms = MACHINE(qdev_get_machine());
PCMachineState *pcms = PC_MACHINE(ms);
PCIBus *bus = pcms->bus;
IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
x86_iommu->type = TYPE_INTEL;
if (!vtd_decide_config(s, errp)) {
return;
}
QLIST_INIT(&s->vtd_as_with_notifiers);
qemu_mutex_init(&s->iommu_lock);
memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
"intel_iommu", DMAR_REG_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
/* No corresponding destroy */
s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
g_free, g_free);
s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
g_free, g_free);
vtd_init(s);
sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
/* Pseudo address space under root PCI bus. */
pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
}
static void vtd_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
dc->reset = vtd_reset;
dc->vmsd = &vtd_vmstate;
dc->props = vtd_properties;
dc->hotpluggable = false;
x86_class->realize = vtd_realize;
x86_class->int_remap = vtd_int_remap;
/* Supported by the pc-q35-* machine types */
dc->user_creatable = true;
}
static const TypeInfo vtd_info = {
.name = TYPE_INTEL_IOMMU_DEVICE,
.parent = TYPE_X86_IOMMU_DEVICE,
.instance_size = sizeof(IntelIOMMUState),
.class_init = vtd_class_init,
};
static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = vtd_iommu_translate;
imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
imrc->replay = vtd_iommu_replay;
}
static const TypeInfo vtd_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_INTEL_IOMMU_MEMORY_REGION,
.class_init = vtd_iommu_memory_region_class_init,
};
static void vtd_register_types(void)
{
type_register_static(&vtd_info);
type_register_static(&vtd_iommu_memory_region_info);
}
type_init(vtd_register_types)