| /* |
| * MIPS emulation helpers for qemu. |
| * |
| * Copyright (c) 2004-2005 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu/main-loop.h" |
| #include "cpu.h" |
| #include "internal.h" |
| #include "qemu/host-utils.h" |
| #include "exec/helper-proto.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "sysemu/kvm.h" |
| |
| /*****************************************************************************/ |
| /* Exceptions processing helpers */ |
| |
| void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception, |
| int error_code) |
| { |
| do_raise_exception_err(env, exception, error_code, 0); |
| } |
| |
| void helper_raise_exception(CPUMIPSState *env, uint32_t exception) |
| { |
| do_raise_exception(env, exception, GETPC()); |
| } |
| |
| void helper_raise_exception_debug(CPUMIPSState *env) |
| { |
| do_raise_exception(env, EXCP_DEBUG, 0); |
| } |
| |
| static void raise_exception(CPUMIPSState *env, uint32_t exception) |
| { |
| do_raise_exception(env, exception, 0); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| #define HELPER_LD(name, insn, type) \ |
| static inline type do_##name(CPUMIPSState *env, target_ulong addr, \ |
| int mem_idx, uintptr_t retaddr) \ |
| { \ |
| return (type) cpu_##insn##_data_ra(env, addr, retaddr); \ |
| } |
| #else |
| #define HELPER_LD(name, insn, type) \ |
| static inline type do_##name(CPUMIPSState *env, target_ulong addr, \ |
| int mem_idx, uintptr_t retaddr) \ |
| { \ |
| switch (mem_idx) \ |
| { \ |
| case 0: return (type) cpu_##insn##_kernel_ra(env, addr, retaddr); \ |
| case 1: return (type) cpu_##insn##_super_ra(env, addr, retaddr); \ |
| default: \ |
| case 2: return (type) cpu_##insn##_user_ra(env, addr, retaddr); \ |
| case 3: return (type) cpu_##insn##_error_ra(env, addr, retaddr); \ |
| } \ |
| } |
| #endif |
| HELPER_LD(lw, ldl, int32_t) |
| #if defined(TARGET_MIPS64) |
| HELPER_LD(ld, ldq, int64_t) |
| #endif |
| #undef HELPER_LD |
| |
| #if defined(CONFIG_USER_ONLY) |
| #define HELPER_ST(name, insn, type) \ |
| static inline void do_##name(CPUMIPSState *env, target_ulong addr, \ |
| type val, int mem_idx, uintptr_t retaddr) \ |
| { \ |
| cpu_##insn##_data_ra(env, addr, val, retaddr); \ |
| } |
| #else |
| #define HELPER_ST(name, insn, type) \ |
| static inline void do_##name(CPUMIPSState *env, target_ulong addr, \ |
| type val, int mem_idx, uintptr_t retaddr) \ |
| { \ |
| switch (mem_idx) \ |
| { \ |
| case 0: cpu_##insn##_kernel_ra(env, addr, val, retaddr); break; \ |
| case 1: cpu_##insn##_super_ra(env, addr, val, retaddr); break; \ |
| default: \ |
| case 2: cpu_##insn##_user_ra(env, addr, val, retaddr); break; \ |
| case 3: \ |
| cpu_##insn##_error_ra(env, addr, val, retaddr); \ |
| break; \ |
| } \ |
| } |
| #endif |
| HELPER_ST(sb, stb, uint8_t) |
| HELPER_ST(sw, stl, uint32_t) |
| #if defined(TARGET_MIPS64) |
| HELPER_ST(sd, stq, uint64_t) |
| #endif |
| #undef HELPER_ST |
| |
| /* 64 bits arithmetic for 32 bits hosts */ |
| static inline uint64_t get_HILO(CPUMIPSState *env) |
| { |
| return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0]; |
| } |
| |
| static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO) |
| { |
| env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); |
| return env->active_tc.HI[0] = (int32_t)(HILO >> 32); |
| } |
| |
| static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO) |
| { |
| target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); |
| env->active_tc.HI[0] = (int32_t)(HILO >> 32); |
| return tmp; |
| } |
| |
| /* Multiplication variants of the vr54xx. */ |
| target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 * |
| (int64_t)(int32_t)arg2)); |
| } |
| |
| target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 * |
| (uint64_t)(uint32_t)arg2); |
| } |
| |
| target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 * |
| (int64_t)(int32_t)arg2); |
| } |
| |
| target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 * |
| (int64_t)(int32_t)arg2); |
| } |
| |
| target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HI_LOT0(env, (uint64_t)get_HILO(env) + |
| (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); |
| } |
| |
| target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HIT0_LO(env, (uint64_t)get_HILO(env) + |
| (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); |
| } |
| |
| target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 * |
| (int64_t)(int32_t)arg2); |
| } |
| |
| target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 * |
| (int64_t)(int32_t)arg2); |
| } |
| |
| target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HI_LOT0(env, (uint64_t)get_HILO(env) - |
| (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); |
| } |
| |
| target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HIT0_LO(env, (uint64_t)get_HILO(env) - |
| (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); |
| } |
| |
| target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2); |
| } |
| |
| target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 * |
| (uint64_t)(uint32_t)arg2); |
| } |
| |
| target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 * |
| (int64_t)(int32_t)arg2); |
| } |
| |
| target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 * |
| (uint64_t)(uint32_t)arg2); |
| } |
| |
| static inline target_ulong bitswap(target_ulong v) |
| { |
| v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) | |
| ((v & (target_ulong)0x5555555555555555ULL) << 1); |
| v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) | |
| ((v & (target_ulong)0x3333333333333333ULL) << 2); |
| v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) | |
| ((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4); |
| return v; |
| } |
| |
| #ifdef TARGET_MIPS64 |
| target_ulong helper_dbitswap(target_ulong rt) |
| { |
| return bitswap(rt); |
| } |
| #endif |
| |
| target_ulong helper_bitswap(target_ulong rt) |
| { |
| return (int32_t)bitswap(rt); |
| } |
| |
| target_ulong helper_rotx(target_ulong rs, uint32_t shift, uint32_t shiftx, |
| uint32_t stripe) |
| { |
| int i; |
| uint64_t tmp0 = ((uint64_t)rs) << 32 | ((uint64_t)rs & 0xffffffff); |
| uint64_t tmp1 = tmp0; |
| for (i = 0; i <= 46; i++) { |
| int s; |
| if (i & 0x8) { |
| s = shift; |
| } else { |
| s = shiftx; |
| } |
| |
| if (stripe != 0 && !(i & 0x4)) { |
| s = ~s; |
| } |
| if (s & 0x10) { |
| if (tmp0 & (1LL << (i + 16))) { |
| tmp1 |= 1LL << i; |
| } else { |
| tmp1 &= ~(1LL << i); |
| } |
| } |
| } |
| |
| uint64_t tmp2 = tmp1; |
| for (i = 0; i <= 38; i++) { |
| int s; |
| if (i & 0x4) { |
| s = shift; |
| } else { |
| s = shiftx; |
| } |
| |
| if (s & 0x8) { |
| if (tmp1 & (1LL << (i + 8))) { |
| tmp2 |= 1LL << i; |
| } else { |
| tmp2 &= ~(1LL << i); |
| } |
| } |
| } |
| |
| uint64_t tmp3 = tmp2; |
| for (i = 0; i <= 34; i++) { |
| int s; |
| if (i & 0x2) { |
| s = shift; |
| } else { |
| s = shiftx; |
| } |
| if (s & 0x4) { |
| if (tmp2 & (1LL << (i + 4))) { |
| tmp3 |= 1LL << i; |
| } else { |
| tmp3 &= ~(1LL << i); |
| } |
| } |
| } |
| |
| uint64_t tmp4 = tmp3; |
| for (i = 0; i <= 32; i++) { |
| int s; |
| if (i & 0x1) { |
| s = shift; |
| } else { |
| s = shiftx; |
| } |
| if (s & 0x2) { |
| if (tmp3 & (1LL << (i + 2))) { |
| tmp4 |= 1LL << i; |
| } else { |
| tmp4 &= ~(1LL << i); |
| } |
| } |
| } |
| |
| uint64_t tmp5 = tmp4; |
| for (i = 0; i <= 31; i++) { |
| int s; |
| s = shift; |
| if (s & 0x1) { |
| if (tmp4 & (1LL << (i + 1))) { |
| tmp5 |= 1LL << i; |
| } else { |
| tmp5 &= ~(1LL << i); |
| } |
| } |
| } |
| |
| return (int64_t)(int32_t)(uint32_t)tmp5; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| static inline hwaddr do_translate_address(CPUMIPSState *env, |
| target_ulong address, |
| int rw, uintptr_t retaddr) |
| { |
| hwaddr lladdr; |
| CPUState *cs = CPU(mips_env_get_cpu(env)); |
| |
| lladdr = cpu_mips_translate_address(env, address, rw); |
| |
| if (lladdr == -1LL) { |
| cpu_loop_exit_restore(cs, retaddr); |
| } else { |
| return lladdr; |
| } |
| } |
| |
| #define HELPER_LD_ATOMIC(name, insn, almask) \ |
| target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \ |
| { \ |
| if (arg & almask) { \ |
| if (!(env->hflags & MIPS_HFLAG_DM)) { \ |
| env->CP0_BadVAddr = arg; \ |
| } \ |
| do_raise_exception(env, EXCP_AdEL, GETPC()); \ |
| } \ |
| env->lladdr = do_translate_address(env, arg, 0, GETPC()); \ |
| env->llval = do_##insn(env, arg, mem_idx, GETPC()); \ |
| return env->llval; \ |
| } |
| HELPER_LD_ATOMIC(ll, lw, 0x3) |
| #ifdef TARGET_MIPS64 |
| HELPER_LD_ATOMIC(lld, ld, 0x7) |
| #endif |
| #undef HELPER_LD_ATOMIC |
| |
| #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \ |
| target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \ |
| target_ulong arg2, int mem_idx) \ |
| { \ |
| target_long tmp; \ |
| \ |
| if (arg2 & almask) { \ |
| if (!(env->hflags & MIPS_HFLAG_DM)) { \ |
| env->CP0_BadVAddr = arg2; \ |
| } \ |
| do_raise_exception(env, EXCP_AdES, GETPC()); \ |
| } \ |
| if (do_translate_address(env, arg2, 1, GETPC()) == env->lladdr) { \ |
| tmp = do_##ld_insn(env, arg2, mem_idx, GETPC()); \ |
| if (tmp == env->llval) { \ |
| do_##st_insn(env, arg2, arg1, mem_idx, GETPC()); \ |
| return 1; \ |
| } \ |
| } \ |
| return 0; \ |
| } |
| HELPER_ST_ATOMIC(sc, lw, sw, 0x3) |
| #ifdef TARGET_MIPS64 |
| HELPER_ST_ATOMIC(scd, ld, sd, 0x7) |
| #endif |
| #undef HELPER_ST_ATOMIC |
| #endif |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define GET_LMASK(v) ((v) & 3) |
| #define GET_OFFSET(addr, offset) (addr + (offset)) |
| #else |
| #define GET_LMASK(v) (((v) & 3) ^ 3) |
| #define GET_OFFSET(addr, offset) (addr - (offset)) |
| #endif |
| |
| void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2, |
| int mem_idx) |
| { |
| do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC()); |
| |
| if (GET_LMASK(arg2) <= 2) { |
| do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK(arg2) <= 1) { |
| do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK(arg2) == 0) { |
| do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx, |
| GETPC()); |
| } |
| } |
| |
| void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2, |
| int mem_idx) |
| { |
| do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC()); |
| |
| if (GET_LMASK(arg2) >= 1) { |
| do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK(arg2) >= 2) { |
| do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK(arg2) == 3) { |
| do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx, |
| GETPC()); |
| } |
| } |
| |
| #if defined(TARGET_MIPS64) |
| /* "half" load and stores. We must do the memory access inline, |
| or fault handling won't work. */ |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define GET_LMASK64(v) ((v) & 7) |
| #else |
| #define GET_LMASK64(v) (((v) & 7) ^ 7) |
| #endif |
| |
| void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2, |
| int mem_idx) |
| { |
| do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC()); |
| |
| if (GET_LMASK64(arg2) <= 6) { |
| do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) <= 5) { |
| do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) <= 4) { |
| do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) <= 3) { |
| do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) <= 2) { |
| do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) <= 1) { |
| do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) <= 0) { |
| do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx, |
| GETPC()); |
| } |
| } |
| |
| void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2, |
| int mem_idx) |
| { |
| do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC()); |
| |
| if (GET_LMASK64(arg2) >= 1) { |
| do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) >= 2) { |
| do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) >= 3) { |
| do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) >= 4) { |
| do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) >= 5) { |
| do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) >= 6) { |
| do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx, |
| GETPC()); |
| } |
| |
| if (GET_LMASK64(arg2) == 7) { |
| do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx, |
| GETPC()); |
| } |
| } |
| #endif /* TARGET_MIPS64 */ |
| |
| static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 }; |
| |
| void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist, |
| uint32_t mem_idx) |
| { |
| target_ulong base_reglist = reglist & 0xf; |
| target_ulong do_r31 = reglist & 0x10; |
| |
| if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) { |
| target_ulong i; |
| |
| for (i = 0; i < base_reglist; i++) { |
| env->active_tc.gpr[multiple_regs[i]] = |
| (target_long)do_lw(env, addr, mem_idx, GETPC()); |
| addr += 4; |
| } |
| } |
| |
| if (do_r31) { |
| env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx, |
| GETPC()); |
| } |
| } |
| |
| void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist, |
| uint32_t mem_idx) |
| { |
| target_ulong base_reglist = reglist & 0xf; |
| target_ulong do_r31 = reglist & 0x10; |
| |
| if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) { |
| target_ulong i; |
| |
| for (i = 0; i < base_reglist; i++) { |
| do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx, |
| GETPC()); |
| addr += 4; |
| } |
| } |
| |
| if (do_r31) { |
| do_sw(env, addr, env->active_tc.gpr[31], mem_idx, GETPC()); |
| } |
| } |
| |
| #if defined(TARGET_MIPS64) |
| void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist, |
| uint32_t mem_idx) |
| { |
| target_ulong base_reglist = reglist & 0xf; |
| target_ulong do_r31 = reglist & 0x10; |
| |
| if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) { |
| target_ulong i; |
| |
| for (i = 0; i < base_reglist; i++) { |
| env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx, |
| GETPC()); |
| addr += 8; |
| } |
| } |
| |
| if (do_r31) { |
| env->active_tc.gpr[31] = do_ld(env, addr, mem_idx, GETPC()); |
| } |
| } |
| |
| void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist, |
| uint32_t mem_idx) |
| { |
| target_ulong base_reglist = reglist & 0xf; |
| target_ulong do_r31 = reglist & 0x10; |
| |
| if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) { |
| target_ulong i; |
| |
| for (i = 0; i < base_reglist; i++) { |
| do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx, |
| GETPC()); |
| addr += 8; |
| } |
| } |
| |
| if (do_r31) { |
| do_sd(env, addr, env->active_tc.gpr[31], mem_idx, GETPC()); |
| } |
| } |
| #endif |
| |
| #ifndef CONFIG_USER_ONLY |
| /* SMP helpers. */ |
| static bool mips_vpe_is_wfi(MIPSCPU *c) |
| { |
| CPUState *cpu = CPU(c); |
| CPUMIPSState *env = &c->env; |
| |
| /* If the VPE is halted but otherwise active, it means it's waiting for |
| an interrupt. */ |
| return cpu->halted && mips_vpe_active(env); |
| } |
| |
| static bool mips_vp_is_wfi(MIPSCPU *c) |
| { |
| CPUState *cpu = CPU(c); |
| CPUMIPSState *env = &c->env; |
| |
| return cpu->halted && mips_vp_active(env); |
| } |
| |
| static inline void mips_vpe_wake(MIPSCPU *c) |
| { |
| /* Don't set ->halted = 0 directly, let it be done via cpu_has_work |
| because there might be other conditions that state that c should |
| be sleeping. */ |
| cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE); |
| } |
| |
| static inline void mips_vpe_sleep(MIPSCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| |
| /* The VPE was shut off, really go to bed. |
| Reset any old _WAKE requests. */ |
| cs->halted = 1; |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE); |
| } |
| |
| static inline void mips_tc_wake(MIPSCPU *cpu, int tc) |
| { |
| CPUMIPSState *c = &cpu->env; |
| |
| /* FIXME: TC reschedule. */ |
| if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) { |
| mips_vpe_wake(cpu); |
| } |
| } |
| |
| static inline void mips_tc_sleep(MIPSCPU *cpu, int tc) |
| { |
| CPUMIPSState *c = &cpu->env; |
| |
| /* FIXME: TC reschedule. */ |
| if (!mips_vpe_active(c)) { |
| mips_vpe_sleep(cpu); |
| } |
| } |
| |
| /** |
| * mips_cpu_map_tc: |
| * @env: CPU from which mapping is performed. |
| * @tc: Should point to an int with the value of the global TC index. |
| * |
| * This function will transform @tc into a local index within the |
| * returned #CPUMIPSState. |
| */ |
| /* FIXME: This code assumes that all VPEs have the same number of TCs, |
| which depends on runtime setup. Can probably be fixed by |
| walking the list of CPUMIPSStates. */ |
| static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc) |
| { |
| MIPSCPU *cpu; |
| CPUState *cs; |
| CPUState *other_cs; |
| int vpe_idx; |
| int tc_idx = *tc; |
| |
| if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) { |
| /* Not allowed to address other CPUs. */ |
| *tc = env->current_tc; |
| return env; |
| } |
| |
| cs = CPU(mips_env_get_cpu(env)); |
| vpe_idx = tc_idx / cs->nr_threads; |
| *tc = tc_idx % cs->nr_threads; |
| other_cs = qemu_get_cpu(vpe_idx); |
| if (other_cs == NULL) { |
| return env; |
| } |
| cpu = MIPS_CPU(other_cs); |
| return &cpu->env; |
| } |
| |
| /* The per VPE CP0_Status register shares some fields with the per TC |
| CP0_TCStatus registers. These fields are wired to the same registers, |
| so changes to either of them should be reflected on both registers. |
| |
| Also, EntryHi shares the bottom 8 bit ASID with TCStauts. |
| |
| These helper call synchronizes the regs for a given cpu. */ |
| |
| /* Called for updates to CP0_Status. Defined in "cpu.h" for gdbstub.c. */ |
| /* static inline void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, |
| int tc); */ |
| |
| /* Called for updates to CP0_TCStatus. */ |
| static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc, |
| target_ulong v) |
| { |
| uint32_t status; |
| uint32_t tcu, tmx, tasid, tksu; |
| uint32_t mask = ((1U << CP0St_CU3) |
| | (1 << CP0St_CU2) |
| | (1 << CP0St_CU1) |
| | (1 << CP0St_CU0) |
| | (1 << CP0St_MX) |
| | (3 << CP0St_KSU)); |
| |
| tcu = (v >> CP0TCSt_TCU0) & 0xf; |
| tmx = (v >> CP0TCSt_TMX) & 0x1; |
| tasid = v & cpu->CP0_EntryHi_ASID_mask; |
| tksu = (v >> CP0TCSt_TKSU) & 0x3; |
| |
| status = tcu << CP0St_CU0; |
| status |= tmx << CP0St_MX; |
| status |= tksu << CP0St_KSU; |
| |
| cpu->CP0_Status &= ~mask; |
| cpu->CP0_Status |= status; |
| |
| /* Sync the TASID with EntryHi. */ |
| cpu->CP0_EntryHi &= ~cpu->CP0_EntryHi_ASID_mask; |
| cpu->CP0_EntryHi |= tasid; |
| |
| compute_hflags(cpu); |
| } |
| |
| /* Called for updates to CP0_EntryHi. */ |
| static void sync_c0_entryhi(CPUMIPSState *cpu, int tc) |
| { |
| int32_t *tcst; |
| uint32_t asid, v = cpu->CP0_EntryHi; |
| |
| asid = v & cpu->CP0_EntryHi_ASID_mask; |
| |
| if (tc == cpu->current_tc) { |
| tcst = &cpu->active_tc.CP0_TCStatus; |
| } else { |
| tcst = &cpu->tcs[tc].CP0_TCStatus; |
| } |
| |
| *tcst &= ~cpu->CP0_EntryHi_ASID_mask; |
| *tcst |= asid; |
| } |
| |
| /* CP0 helpers */ |
| target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env) |
| { |
| return env->mvp->CP0_MVPControl; |
| } |
| |
| target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env) |
| { |
| return env->mvp->CP0_MVPConf0; |
| } |
| |
| target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env) |
| { |
| return env->mvp->CP0_MVPConf1; |
| } |
| |
| target_ulong helper_mfc0_random(CPUMIPSState *env) |
| { |
| return (int32_t)cpu_mips_get_random(env); |
| } |
| |
| target_ulong helper_mfc0_tcstatus(CPUMIPSState *env) |
| { |
| return env->active_tc.CP0_TCStatus; |
| } |
| |
| target_ulong helper_mftc0_tcstatus(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCStatus; |
| else |
| return other->tcs[other_tc].CP0_TCStatus; |
| } |
| |
| target_ulong helper_mfc0_tcbind(CPUMIPSState *env) |
| { |
| return env->active_tc.CP0_TCBind; |
| } |
| |
| target_ulong helper_mftc0_tcbind(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCBind; |
| else |
| return other->tcs[other_tc].CP0_TCBind; |
| } |
| |
| target_ulong helper_mfc0_tcrestart(CPUMIPSState *env) |
| { |
| return env->active_tc.PC; |
| } |
| |
| target_ulong helper_mftc0_tcrestart(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.PC; |
| else |
| return other->tcs[other_tc].PC; |
| } |
| |
| target_ulong helper_mfc0_tchalt(CPUMIPSState *env) |
| { |
| return env->active_tc.CP0_TCHalt; |
| } |
| |
| target_ulong helper_mftc0_tchalt(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCHalt; |
| else |
| return other->tcs[other_tc].CP0_TCHalt; |
| } |
| |
| target_ulong helper_mfc0_tccontext(CPUMIPSState *env) |
| { |
| return env->active_tc.CP0_TCContext; |
| } |
| |
| target_ulong helper_mftc0_tccontext(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCContext; |
| else |
| return other->tcs[other_tc].CP0_TCContext; |
| } |
| |
| target_ulong helper_mfc0_tcschedule(CPUMIPSState *env) |
| { |
| return env->active_tc.CP0_TCSchedule; |
| } |
| |
| target_ulong helper_mftc0_tcschedule(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCSchedule; |
| else |
| return other->tcs[other_tc].CP0_TCSchedule; |
| } |
| |
| target_ulong helper_mfc0_tcschefback(CPUMIPSState *env) |
| { |
| return env->active_tc.CP0_TCScheFBack; |
| } |
| |
| target_ulong helper_mftc0_tcschefback(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCScheFBack; |
| else |
| return other->tcs[other_tc].CP0_TCScheFBack; |
| } |
| |
| target_ulong helper_mfc0_count(CPUMIPSState *env) |
| { |
| int32_t count; |
| qemu_mutex_lock_iothread(); |
| count = (int32_t) cpu_mips_get_count(env); |
| qemu_mutex_unlock_iothread(); |
| return count; |
| } |
| |
| target_ulong helper_mfc0_saar(CPUMIPSState *env) |
| { |
| if ((env->CP0_SAARI & 0x3f) < 2) { |
| return (int32_t) env->CP0_SAAR[env->CP0_SAARI & 0x3f]; |
| } |
| return 0; |
| } |
| |
| target_ulong helper_mfhc0_saar(CPUMIPSState *env) |
| { |
| if ((env->CP0_SAARI & 0x3f) < 2) { |
| return env->CP0_SAAR[env->CP0_SAARI & 0x3f] >> 32; |
| } |
| return 0; |
| } |
| |
| target_ulong helper_mftc0_entryhi(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| return other->CP0_EntryHi; |
| } |
| |
| target_ulong helper_mftc0_cause(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| int32_t tccause; |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) { |
| tccause = other->CP0_Cause; |
| } else { |
| tccause = other->CP0_Cause; |
| } |
| |
| return tccause; |
| } |
| |
| target_ulong helper_mftc0_status(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| return other->CP0_Status; |
| } |
| |
| target_ulong helper_mfc0_lladdr(CPUMIPSState *env) |
| { |
| return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift); |
| } |
| |
| target_ulong helper_mfc0_maar(CPUMIPSState *env) |
| { |
| return (int32_t) env->CP0_MAAR[env->CP0_MAARI]; |
| } |
| |
| target_ulong helper_mfhc0_maar(CPUMIPSState *env) |
| { |
| return env->CP0_MAAR[env->CP0_MAARI] >> 32; |
| } |
| |
| target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel) |
| { |
| return (int32_t)env->CP0_WatchLo[sel]; |
| } |
| |
| target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel) |
| { |
| return env->CP0_WatchHi[sel]; |
| } |
| |
| target_ulong helper_mfc0_debug(CPUMIPSState *env) |
| { |
| target_ulong t0 = env->CP0_Debug; |
| if (env->hflags & MIPS_HFLAG_DM) |
| t0 |= 1 << CP0DB_DM; |
| |
| return t0; |
| } |
| |
| target_ulong helper_mftc0_debug(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| int32_t tcstatus; |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| tcstatus = other->active_tc.CP0_Debug_tcstatus; |
| else |
| tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus; |
| |
| /* XXX: Might be wrong, check with EJTAG spec. */ |
| return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | |
| (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); |
| } |
| |
| #if defined(TARGET_MIPS64) |
| target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env) |
| { |
| return env->active_tc.PC; |
| } |
| |
| target_ulong helper_dmfc0_tchalt(CPUMIPSState *env) |
| { |
| return env->active_tc.CP0_TCHalt; |
| } |
| |
| target_ulong helper_dmfc0_tccontext(CPUMIPSState *env) |
| { |
| return env->active_tc.CP0_TCContext; |
| } |
| |
| target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env) |
| { |
| return env->active_tc.CP0_TCSchedule; |
| } |
| |
| target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env) |
| { |
| return env->active_tc.CP0_TCScheFBack; |
| } |
| |
| target_ulong helper_dmfc0_lladdr(CPUMIPSState *env) |
| { |
| return env->lladdr >> env->CP0_LLAddr_shift; |
| } |
| |
| target_ulong helper_dmfc0_maar(CPUMIPSState *env) |
| { |
| return env->CP0_MAAR[env->CP0_MAARI]; |
| } |
| |
| target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel) |
| { |
| return env->CP0_WatchLo[sel]; |
| } |
| |
| target_ulong helper_dmfc0_saar(CPUMIPSState *env) |
| { |
| if ((env->CP0_SAARI & 0x3f) < 2) { |
| return env->CP0_SAAR[env->CP0_SAARI & 0x3f]; |
| } |
| return 0; |
| } |
| #endif /* TARGET_MIPS64 */ |
| |
| void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t index_p = env->CP0_Index & 0x80000000; |
| uint32_t tlb_index = arg1 & 0x7fffffff; |
| if (tlb_index < env->tlb->nb_tlb) { |
| if (env->insn_flags & ISA_MIPS32R6) { |
| index_p |= arg1 & 0x80000000; |
| } |
| env->CP0_Index = index_p | tlb_index; |
| } |
| } |
| |
| void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) |
| mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) | |
| (1 << CP0MVPCo_EVP); |
| if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (1 << CP0MVPCo_STLB); |
| newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask); |
| |
| // TODO: Enable/disable shared TLB, enable/disable VPEs. |
| |
| env->mvp->CP0_MVPControl = newval; |
| } |
| |
| void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t mask; |
| uint32_t newval; |
| |
| mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | |
| (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); |
| newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask); |
| |
| /* Yield scheduler intercept not implemented. */ |
| /* Gating storage scheduler intercept not implemented. */ |
| |
| // TODO: Enable/disable TCs. |
| |
| env->CP0_VPEControl = newval; |
| } |
| |
| void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| uint32_t mask; |
| uint32_t newval; |
| |
| mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | |
| (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); |
| newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask); |
| |
| /* TODO: Enable/disable TCs. */ |
| |
| other->CP0_VPEControl = newval; |
| } |
| |
| target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| /* FIXME: Mask away return zero on read bits. */ |
| return other->CP0_VPEControl; |
| } |
| |
| target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| return other->CP0_VPEConf0; |
| } |
| |
| void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) { |
| if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA)) |
| mask |= (0xff << CP0VPEC0_XTC); |
| mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); |
| } |
| newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask); |
| |
| // TODO: TC exclusive handling due to ERL/EXL. |
| |
| env->CP0_VPEConf0 = newval; |
| } |
| |
| void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); |
| newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask); |
| |
| /* TODO: TC exclusive handling due to ERL/EXL. */ |
| other->CP0_VPEConf0 = newval; |
| } |
| |
| void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) | |
| (0xff << CP0VPEC1_NCP1); |
| newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask); |
| |
| /* UDI not implemented. */ |
| /* CP2 not implemented. */ |
| |
| // TODO: Handle FPU (CP1) binding. |
| |
| env->CP0_VPEConf1 = newval; |
| } |
| |
| void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1) |
| { |
| /* Yield qualifier inputs not implemented. */ |
| env->CP0_YQMask = 0x00000000; |
| } |
| |
| void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_VPEOpt = arg1 & 0x0000ffff; |
| } |
| |
| #define MTC0_ENTRYLO_MASK(env) ((env->PAMask >> 6) & 0x3FFFFFFF) |
| |
| void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1) |
| { |
| /* 1k pages not implemented */ |
| target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE)); |
| env->CP0_EntryLo0 = (arg1 & MTC0_ENTRYLO_MASK(env)) |
| | (rxi << (CP0EnLo_XI - 30)); |
| } |
| |
| #if defined(TARGET_MIPS64) |
| #define DMTC0_ENTRYLO_MASK(env) (env->PAMask >> 6) |
| |
| void helper_dmtc0_entrylo0(CPUMIPSState *env, uint64_t arg1) |
| { |
| uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32); |
| env->CP0_EntryLo0 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi; |
| } |
| #endif |
| |
| void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t mask = env->CP0_TCStatus_rw_bitmask; |
| uint32_t newval; |
| |
| newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask); |
| |
| env->active_tc.CP0_TCStatus = newval; |
| sync_c0_tcstatus(env, env->current_tc, newval); |
| } |
| |
| void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_TCStatus = arg1; |
| else |
| other->tcs[other_tc].CP0_TCStatus = arg1; |
| sync_c0_tcstatus(other, other_tc, arg1); |
| } |
| |
| void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t mask = (1 << CP0TCBd_TBE); |
| uint32_t newval; |
| |
| if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (1 << CP0TCBd_CurVPE); |
| newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask); |
| env->active_tc.CP0_TCBind = newval; |
| } |
| |
| void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| uint32_t mask = (1 << CP0TCBd_TBE); |
| uint32_t newval; |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (1 << CP0TCBd_CurVPE); |
| if (other_tc == other->current_tc) { |
| newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask); |
| other->active_tc.CP0_TCBind = newval; |
| } else { |
| newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask); |
| other->tcs[other_tc].CP0_TCBind = newval; |
| } |
| } |
| |
| void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->active_tc.PC = arg1; |
| env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); |
| env->lladdr = 0ULL; |
| /* MIPS16 not implemented. */ |
| } |
| |
| void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) { |
| other->active_tc.PC = arg1; |
| other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); |
| other->lladdr = 0ULL; |
| /* MIPS16 not implemented. */ |
| } else { |
| other->tcs[other_tc].PC = arg1; |
| other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS); |
| other->lladdr = 0ULL; |
| /* MIPS16 not implemented. */ |
| } |
| } |
| |
| void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1) |
| { |
| MIPSCPU *cpu = mips_env_get_cpu(env); |
| |
| env->active_tc.CP0_TCHalt = arg1 & 0x1; |
| |
| // TODO: Halt TC / Restart (if allocated+active) TC. |
| if (env->active_tc.CP0_TCHalt & 1) { |
| mips_tc_sleep(cpu, env->current_tc); |
| } else { |
| mips_tc_wake(cpu, env->current_tc); |
| } |
| } |
| |
| void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| MIPSCPU *other_cpu = mips_env_get_cpu(other); |
| |
| // TODO: Halt TC / Restart (if allocated+active) TC. |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_TCHalt = arg1; |
| else |
| other->tcs[other_tc].CP0_TCHalt = arg1; |
| |
| if (arg1 & 1) { |
| mips_tc_sleep(other_cpu, other_tc); |
| } else { |
| mips_tc_wake(other_cpu, other_tc); |
| } |
| } |
| |
| void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->active_tc.CP0_TCContext = arg1; |
| } |
| |
| void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_TCContext = arg1; |
| else |
| other->tcs[other_tc].CP0_TCContext = arg1; |
| } |
| |
| void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->active_tc.CP0_TCSchedule = arg1; |
| } |
| |
| void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_TCSchedule = arg1; |
| else |
| other->tcs[other_tc].CP0_TCSchedule = arg1; |
| } |
| |
| void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->active_tc.CP0_TCScheFBack = arg1; |
| } |
| |
| void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_TCScheFBack = arg1; |
| else |
| other->tcs[other_tc].CP0_TCScheFBack = arg1; |
| } |
| |
| void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1) |
| { |
| /* 1k pages not implemented */ |
| target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE)); |
| env->CP0_EntryLo1 = (arg1 & MTC0_ENTRYLO_MASK(env)) |
| | (rxi << (CP0EnLo_XI - 30)); |
| } |
| |
| #if defined(TARGET_MIPS64) |
| void helper_dmtc0_entrylo1(CPUMIPSState *env, uint64_t arg1) |
| { |
| uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32); |
| env->CP0_EntryLo1 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi; |
| } |
| #endif |
| |
| void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF); |
| } |
| |
| void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask) |
| { |
| uint64_t mask = arg1 >> (TARGET_PAGE_BITS + 1); |
| if (!(env->insn_flags & ISA_MIPS32R6) || (arg1 == ~0) || |
| (mask == 0x0000 || mask == 0x0003 || mask == 0x000F || |
| mask == 0x003F || mask == 0x00FF || mask == 0x03FF || |
| mask == 0x0FFF || mask == 0x3FFF || mask == 0xFFFF)) { |
| env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1)); |
| } |
| } |
| |
| void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1) |
| { |
| update_pagemask(env, arg1, &env->CP0_PageMask); |
| } |
| |
| void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1) |
| { |
| /* SmartMIPS not implemented */ |
| /* 1k pages not implemented */ |
| env->CP0_PageGrain = (arg1 & env->CP0_PageGrain_rw_bitmask) | |
| (env->CP0_PageGrain & ~env->CP0_PageGrain_rw_bitmask); |
| compute_hflags(env); |
| restore_pamask(env); |
| } |
| |
| void helper_mtc0_segctl0(CPUMIPSState *env, target_ulong arg1) |
| { |
| CPUState *cs = CPU(mips_env_get_cpu(env)); |
| |
| env->CP0_SegCtl0 = arg1 & CP0SC0_MASK; |
| tlb_flush(cs); |
| } |
| |
| void helper_mtc0_segctl1(CPUMIPSState *env, target_ulong arg1) |
| { |
| CPUState *cs = CPU(mips_env_get_cpu(env)); |
| |
| env->CP0_SegCtl1 = arg1 & CP0SC1_MASK; |
| tlb_flush(cs); |
| } |
| |
| void helper_mtc0_segctl2(CPUMIPSState *env, target_ulong arg1) |
| { |
| CPUState *cs = CPU(mips_env_get_cpu(env)); |
| |
| env->CP0_SegCtl2 = arg1 & CP0SC2_MASK; |
| tlb_flush(cs); |
| } |
| |
| void helper_mtc0_pwfield(CPUMIPSState *env, target_ulong arg1) |
| { |
| #if defined(TARGET_MIPS64) |
| uint64_t mask = 0x3F3FFFFFFFULL; |
| uint32_t old_ptei = (env->CP0_PWField >> CP0PF_PTEI) & 0x3FULL; |
| uint32_t new_ptei = (arg1 >> CP0PF_PTEI) & 0x3FULL; |
| |
| if ((env->insn_flags & ISA_MIPS32R6)) { |
| if (((arg1 >> CP0PF_BDI) & 0x3FULL) < 12) { |
| mask &= ~(0x3FULL << CP0PF_BDI); |
| } |
| if (((arg1 >> CP0PF_GDI) & 0x3FULL) < 12) { |
| mask &= ~(0x3FULL << CP0PF_GDI); |
| } |
| if (((arg1 >> CP0PF_UDI) & 0x3FULL) < 12) { |
| mask &= ~(0x3FULL << CP0PF_UDI); |
| } |
| if (((arg1 >> CP0PF_MDI) & 0x3FULL) < 12) { |
| mask &= ~(0x3FULL << CP0PF_MDI); |
| } |
| if (((arg1 >> CP0PF_PTI) & 0x3FULL) < 12) { |
| mask &= ~(0x3FULL << CP0PF_PTI); |
| } |
| } |
| env->CP0_PWField = arg1 & mask; |
| |
| if ((new_ptei >= 32) || |
| ((env->insn_flags & ISA_MIPS32R6) && |
| (new_ptei == 0 || new_ptei == 1))) { |
| env->CP0_PWField = (env->CP0_PWField & ~0x3FULL) | |
| (old_ptei << CP0PF_PTEI); |
| } |
| #else |
| uint32_t mask = 0x3FFFFFFF; |
| uint32_t old_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F; |
| uint32_t new_ptew = (arg1 >> CP0PF_PTEW) & 0x3F; |
| |
| if ((env->insn_flags & ISA_MIPS32R6)) { |
| if (((arg1 >> CP0PF_GDW) & 0x3F) < 12) { |
| mask &= ~(0x3F << CP0PF_GDW); |
| } |
| if (((arg1 >> CP0PF_UDW) & 0x3F) < 12) { |
| mask &= ~(0x3F << CP0PF_UDW); |
| } |
| if (((arg1 >> CP0PF_MDW) & 0x3F) < 12) { |
| mask &= ~(0x3F << CP0PF_MDW); |
| } |
| if (((arg1 >> CP0PF_PTW) & 0x3F) < 12) { |
| mask &= ~(0x3F << CP0PF_PTW); |
| } |
| } |
| env->CP0_PWField = arg1 & mask; |
| |
| if ((new_ptew >= 32) || |
| ((env->insn_flags & ISA_MIPS32R6) && |
| (new_ptew == 0 || new_ptew == 1))) { |
| env->CP0_PWField = (env->CP0_PWField & ~0x3F) | |
| (old_ptew << CP0PF_PTEW); |
| } |
| #endif |
| } |
| |
| void helper_mtc0_pwsize(CPUMIPSState *env, target_ulong arg1) |
| { |
| #if defined(TARGET_MIPS64) |
| env->CP0_PWSize = arg1 & 0x3F7FFFFFFFULL; |
| #else |
| env->CP0_PWSize = arg1 & 0x3FFFFFFF; |
| #endif |
| } |
| |
| void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1) |
| { |
| if (env->insn_flags & ISA_MIPS32R6) { |
| if (arg1 < env->tlb->nb_tlb) { |
| env->CP0_Wired = arg1; |
| } |
| } else { |
| env->CP0_Wired = arg1 % env->tlb->nb_tlb; |
| } |
| } |
| |
| void helper_mtc0_pwctl(CPUMIPSState *env, target_ulong arg1) |
| { |
| #if defined(TARGET_MIPS64) |
| /* PWEn = 0. Hardware page table walking is not implemented. */ |
| env->CP0_PWCtl = (env->CP0_PWCtl & 0x000000C0) | (arg1 & 0x5C00003F); |
| #else |
| env->CP0_PWCtl = (arg1 & 0x800000FF); |
| #endif |
| } |
| |
| void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask; |
| } |
| |
| void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask; |
| } |
| |
| void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask; |
| } |
| |
| void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask; |
| } |
| |
| void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask; |
| } |
| |
| void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t mask = 0x0000000F; |
| |
| if ((env->CP0_Config1 & (1 << CP0C1_PC)) && |
| (env->insn_flags & ISA_MIPS32R6)) { |
| mask |= (1 << 4); |
| } |
| if (env->insn_flags & ISA_MIPS32R6) { |
| mask |= (1 << 5); |
| } |
| if (env->CP0_Config3 & (1 << CP0C3_ULRI)) { |
| mask |= (1 << 29); |
| |
| if (arg1 & (1 << 29)) { |
| env->hflags |= MIPS_HFLAG_HWRENA_ULR; |
| } else { |
| env->hflags &= ~MIPS_HFLAG_HWRENA_ULR; |
| } |
| } |
| |
| env->CP0_HWREna = arg1 & mask; |
| } |
| |
| void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1) |
| { |
| qemu_mutex_lock_iothread(); |
| cpu_mips_store_count(env, arg1); |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| void helper_mtc0_saari(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t target = arg1 & 0x3f; |
| if (target <= 1) { |
| env->CP0_SAARI = target; |
| } |
| } |
| |
| void helper_mtc0_saar(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t target = env->CP0_SAARI & 0x3f; |
| if (target < 2) { |
| env->CP0_SAAR[target] = arg1 & 0x00000ffffffff03fULL; |
| switch (target) { |
| case 0: |
| if (env->itu) { |
| itc_reconfigure(env->itu); |
| } |
| break; |
| } |
| } |
| } |
| |
| void helper_mthc0_saar(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t target = env->CP0_SAARI & 0x3f; |
| if (target < 2) { |
| env->CP0_SAAR[target] = |
| (((uint64_t) arg1 << 32) & 0x00000fff00000000ULL) | |
| (env->CP0_SAAR[target] & 0x00000000ffffffffULL); |
| switch (target) { |
| case 0: |
| if (env->itu) { |
| itc_reconfigure(env->itu); |
| } |
| break; |
| } |
| } |
| } |
| |
| void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1) |
| { |
| target_ulong old, val, mask; |
| mask = (TARGET_PAGE_MASK << 1) | env->CP0_EntryHi_ASID_mask; |
| if (((env->CP0_Config4 >> CP0C4_IE) & 0x3) >= 2) { |
| mask |= 1 << CP0EnHi_EHINV; |
| } |
| |
| /* 1k pages not implemented */ |
| #if defined(TARGET_MIPS64) |
| if (env->insn_flags & ISA_MIPS32R6) { |
| int entryhi_r = extract64(arg1, 62, 2); |
| int config0_at = extract32(env->CP0_Config0, 13, 2); |
| bool no_supervisor = (env->CP0_Status_rw_bitmask & 0x8) == 0; |
| if ((entryhi_r == 2) || |
| (entryhi_r == 1 && (no_supervisor || config0_at == 1))) { |
| /* skip EntryHi.R field if new value is reserved */ |
| mask &= ~(0x3ull << 62); |
| } |
| } |
| mask &= env->SEGMask; |
| #endif |
| old = env->CP0_EntryHi; |
| val = (arg1 & mask) | (old & ~mask); |
| env->CP0_EntryHi = val; |
| if (env->CP0_Config3 & (1 << CP0C3_MT)) { |
| sync_c0_entryhi(env, env->current_tc); |
| } |
| /* If the ASID changes, flush qemu's TLB. */ |
| if ((old & env->CP0_EntryHi_ASID_mask) != |
| (val & env->CP0_EntryHi_ASID_mask)) { |
| tlb_flush(CPU(mips_env_get_cpu(env))); |
| } |
| } |
| |
| void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| other->CP0_EntryHi = arg1; |
| sync_c0_entryhi(other, other_tc); |
| } |
| |
| void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1) |
| { |
| qemu_mutex_lock_iothread(); |
| cpu_mips_store_compare(env, arg1); |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1) |
| { |
| MIPSCPU *cpu = mips_env_get_cpu(env); |
| uint32_t val, old; |
| |
| old = env->CP0_Status; |
| cpu_mips_store_status(env, arg1); |
| val = env->CP0_Status; |
| |
| if (qemu_loglevel_mask(CPU_LOG_EXEC)) { |
| qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x", |
| old, old & env->CP0_Cause & CP0Ca_IP_mask, |
| val, val & env->CP0_Cause & CP0Ca_IP_mask, |
| env->CP0_Cause); |
| switch (cpu_mmu_index(env, false)) { |
| case 3: |
| qemu_log(", ERL\n"); |
| break; |
| case MIPS_HFLAG_UM: qemu_log(", UM\n"); break; |
| case MIPS_HFLAG_SM: qemu_log(", SM\n"); break; |
| case MIPS_HFLAG_KM: qemu_log("\n"); break; |
| default: |
| cpu_abort(CPU(cpu), "Invalid MMU mode!\n"); |
| break; |
| } |
| } |
| } |
| |
| void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| uint32_t mask = env->CP0_Status_rw_bitmask & ~0xf1000018; |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| other->CP0_Status = (other->CP0_Status & ~mask) | (arg1 & mask); |
| sync_c0_status(env, other, other_tc); |
| } |
| |
| void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0); |
| } |
| |
| void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1) |
| { |
| uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS); |
| env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask); |
| } |
| |
| void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1) |
| { |
| qemu_mutex_lock_iothread(); |
| cpu_mips_store_cause(env, arg1); |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| cpu_mips_store_cause(other, arg1); |
| } |
| |
| target_ulong helper_mftc0_epc(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| return other->CP0_EPC; |
| } |
| |
| target_ulong helper_mftc0_ebase(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| return other->CP0_EBase; |
| } |
| |
| void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1) |
| { |
| target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask; |
| if (arg1 & env->CP0_EBaseWG_rw_bitmask) { |
| mask |= ~0x3FFFFFFF; |
| } |
| env->CP0_EBase = (env->CP0_EBase & ~mask) | (arg1 & mask); |
| } |
| |
| void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask; |
| if (arg1 & env->CP0_EBaseWG_rw_bitmask) { |
| mask |= ~0x3FFFFFFF; |
| } |
| other->CP0_EBase = (other->CP0_EBase & ~mask) | (arg1 & mask); |
| } |
| |
| target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| switch (idx) { |
| case 0: return other->CP0_Config0; |
| case 1: return other->CP0_Config1; |
| case 2: return other->CP0_Config2; |
| case 3: return other->CP0_Config3; |
| /* 4 and 5 are reserved. */ |
| case 6: return other->CP0_Config6; |
| case 7: return other->CP0_Config7; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007); |
| } |
| |
| void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1) |
| { |
| /* tertiary/secondary caches not implemented */ |
| env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF); |
| } |
| |
| void helper_mtc0_config3(CPUMIPSState *env, target_ulong arg1) |
| { |
| if (env->insn_flags & ASE_MICROMIPS) { |
| env->CP0_Config3 = (env->CP0_Config3 & ~(1 << CP0C3_ISA_ON_EXC)) | |
| (arg1 & (1 << CP0C3_ISA_ON_EXC)); |
| } |
| } |
| |
| void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) | |
| (arg1 & env->CP0_Config4_rw_bitmask); |
| } |
| |
| void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) | |
| (arg1 & env->CP0_Config5_rw_bitmask); |
| compute_hflags(env); |
| } |
| |
| void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1) |
| { |
| target_long mask = env->CP0_LLAddr_rw_bitmask; |
| arg1 = arg1 << env->CP0_LLAddr_shift; |
| env->lladdr = (env->lladdr & ~mask) | (arg1 & mask); |
| } |
| |
| #define MTC0_MAAR_MASK(env) \ |
| ((0x1ULL << 63) | ((env->PAMask >> 4) & ~0xFFFull) | 0x3) |
| |
| void helper_mtc0_maar(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_MAAR[env->CP0_MAARI] = arg1 & MTC0_MAAR_MASK(env); |
| } |
| |
| void helper_mthc0_maar(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_MAAR[env->CP0_MAARI] = |
| (((uint64_t) arg1 << 32) & MTC0_MAAR_MASK(env)) | |
| (env->CP0_MAAR[env->CP0_MAARI] & 0x00000000ffffffffULL); |
| } |
| |
| void helper_mtc0_maari(CPUMIPSState *env, target_ulong arg1) |
| { |
| int index = arg1 & 0x3f; |
| if (index == 0x3f) { |
| /* Software may write all ones to INDEX to determine the |
| maximum value supported. */ |
| env->CP0_MAARI = MIPS_MAAR_MAX - 1; |
| } else if (index < MIPS_MAAR_MAX) { |
| env->CP0_MAARI = index; |
| } |
| /* Other than the all ones, if the |
| value written is not supported, then INDEX is unchanged |
| from its previous value. */ |
| } |
| |
| void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel) |
| { |
| /* Watch exceptions for instructions, data loads, data stores |
| not implemented. */ |
| env->CP0_WatchLo[sel] = (arg1 & ~0x7); |
| } |
| |
| void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel) |
| { |
| int mask = 0x40000FF8 | (env->CP0_EntryHi_ASID_mask << CP0WH_ASID); |
| env->CP0_WatchHi[sel] = arg1 & mask; |
| env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7); |
| } |
| |
| void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1) |
| { |
| target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1; |
| env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask); |
| } |
| |
| void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_Framemask = arg1; /* XXX */ |
| } |
| |
| void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120); |
| if (arg1 & (1 << CP0DB_DM)) |
| env->hflags |= MIPS_HFLAG_DM; |
| else |
| env->hflags &= ~MIPS_HFLAG_DM; |
| } |
| |
| void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| /* XXX: Might be wrong, check with EJTAG spec. */ |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_Debug_tcstatus = val; |
| else |
| other->tcs[other_tc].CP0_Debug_tcstatus = val; |
| other->CP0_Debug = (other->CP0_Debug & |
| ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | |
| (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); |
| } |
| |
| void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_Performance0 = arg1 & 0x000007ff; |
| } |
| |
| void helper_mtc0_errctl(CPUMIPSState *env, target_ulong arg1) |
| { |
| int32_t wst = arg1 & (1 << CP0EC_WST); |
| int32_t spr = arg1 & (1 << CP0EC_SPR); |
| int32_t itc = env->itc_tag ? (arg1 & (1 << CP0EC_ITC)) : 0; |
| |
| env->CP0_ErrCtl = wst | spr | itc; |
| |
| if (itc && !wst && !spr) { |
| env->hflags |= MIPS_HFLAG_ITC_CACHE; |
| } else { |
| env->hflags &= ~MIPS_HFLAG_ITC_CACHE; |
| } |
| } |
| |
| void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1) |
| { |
| if (env->hflags & MIPS_HFLAG_ITC_CACHE) { |
| /* If CACHE instruction is configured for ITC tags then make all |
| CP0.TagLo bits writable. The actual write to ITC Configuration |
| Tag will take care of the read-only bits. */ |
| env->CP0_TagLo = arg1; |
| } else { |
| env->CP0_TagLo = arg1 & 0xFFFFFCF6; |
| } |
| } |
| |
| void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_DataLo = arg1; /* XXX */ |
| } |
| |
| void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_TagHi = arg1; /* XXX */ |
| } |
| |
| void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1) |
| { |
| env->CP0_DataHi = arg1; /* XXX */ |
| } |
| |
| /* MIPS MT functions */ |
| target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.gpr[sel]; |
| else |
| return other->tcs[other_tc].gpr[sel]; |
| } |
| |
| target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.LO[sel]; |
| else |
| return other->tcs[other_tc].LO[sel]; |
| } |
| |
| target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.HI[sel]; |
| else |
| return other->tcs[other_tc].HI[sel]; |
| } |
| |
| target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.ACX[sel]; |
| else |
| return other->tcs[other_tc].ACX[sel]; |
| } |
| |
| target_ulong helper_mftdsp(CPUMIPSState *env) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.DSPControl; |
| else |
| return other->tcs[other_tc].DSPControl; |
| } |
| |
| void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.gpr[sel] = arg1; |
| else |
| other->tcs[other_tc].gpr[sel] = arg1; |
| } |
| |
| void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.LO[sel] = arg1; |
| else |
| other->tcs[other_tc].LO[sel] = arg1; |
| } |
| |
| void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.HI[sel] = arg1; |
| else |
| other->tcs[other_tc].HI[sel] = arg1; |
| } |
| |
| void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.ACX[sel] = arg1; |
| else |
| other->tcs[other_tc].ACX[sel] = arg1; |
| } |
| |
| void helper_mttdsp(CPUMIPSState *env, target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.DSPControl = arg1; |
| else |
| other->tcs[other_tc].DSPControl = arg1; |
| } |
| |
| /* MIPS MT functions */ |
| target_ulong helper_dmt(void) |
| { |
| // TODO |
| return 0; |
| } |
| |
| target_ulong helper_emt(void) |
| { |
| // TODO |
| return 0; |
| } |
| |
| target_ulong helper_dvpe(CPUMIPSState *env) |
| { |
| CPUState *other_cs = first_cpu; |
| target_ulong prev = env->mvp->CP0_MVPControl; |
| |
| CPU_FOREACH(other_cs) { |
| MIPSCPU *other_cpu = MIPS_CPU(other_cs); |
| /* Turn off all VPEs except the one executing the dvpe. */ |
| if (&other_cpu->env != env) { |
| other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP); |
| mips_vpe_sleep(other_cpu); |
| } |
| } |
| return prev; |
| } |
| |
| target_ulong helper_evpe(CPUMIPSState *env) |
| { |
| CPUState *other_cs = first_cpu; |
| target_ulong prev = env->mvp->CP0_MVPControl; |
| |
| CPU_FOREACH(other_cs) { |
| MIPSCPU *other_cpu = MIPS_CPU(other_cs); |
| |
| if (&other_cpu->env != env |
| /* If the VPE is WFI, don't disturb its sleep. */ |
| && !mips_vpe_is_wfi(other_cpu)) { |
| /* Enable the VPE. */ |
| other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP); |
| mips_vpe_wake(other_cpu); /* And wake it up. */ |
| } |
| } |
| return prev; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| void helper_fork(target_ulong arg1, target_ulong arg2) |
| { |
| // arg1 = rt, arg2 = rs |
| // TODO: store to TC register |
| } |
| |
| target_ulong helper_yield(CPUMIPSState *env, target_ulong arg) |
| { |
| target_long arg1 = arg; |
| |
| if (arg1 < 0) { |
| /* No scheduling policy implemented. */ |
| if (arg1 != -2) { |
| if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) && |
| env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) { |
| env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); |
| env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT; |
| do_raise_exception(env, EXCP_THREAD, GETPC()); |
| } |
| } |
| } else if (arg1 == 0) { |
| if (0 /* TODO: TC underflow */) { |
| env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); |
| do_raise_exception(env, EXCP_THREAD, GETPC()); |
| } else { |
| // TODO: Deallocate TC |
| } |
| } else if (arg1 > 0) { |
| /* Yield qualifier inputs not implemented. */ |
| env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); |
| env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT; |
| do_raise_exception(env, EXCP_THREAD, GETPC()); |
| } |
| return env->CP0_YQMask; |
| } |
| |
| /* R6 Multi-threading */ |
| #ifndef CONFIG_USER_ONLY |
| target_ulong helper_dvp(CPUMIPSState *env) |
| { |
| CPUState *other_cs = first_cpu; |
| target_ulong prev = env->CP0_VPControl; |
| |
| if (!((env->CP0_VPControl >> CP0VPCtl_DIS) & 1)) { |
| CPU_FOREACH(other_cs) { |
| MIPSCPU *other_cpu = MIPS_CPU(other_cs); |
| /* Turn off all VPs except the one executing the dvp. */ |
| if (&other_cpu->env != env) { |
| mips_vpe_sleep(other_cpu); |
| } |
| } |
| env->CP0_VPControl |= (1 << CP0VPCtl_DIS); |
| } |
| return prev; |
| } |
| |
| target_ulong helper_evp(CPUMIPSState *env) |
| { |
| CPUState *other_cs = first_cpu; |
| target_ulong prev = env->CP0_VPControl; |
| |
| if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) { |
| CPU_FOREACH(other_cs) { |
| MIPSCPU *other_cpu = MIPS_CPU(other_cs); |
| if ((&other_cpu->env != env) && !mips_vp_is_wfi(other_cpu)) { |
| /* If the VP is WFI, don't disturb its sleep. |
| * Otherwise, wake it up. */ |
| mips_vpe_wake(other_cpu); |
| } |
| } |
| env->CP0_VPControl &= ~(1 << CP0VPCtl_DIS); |
| } |
| return prev; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| #ifndef CONFIG_USER_ONLY |
| /* TLB management */ |
| static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first) |
| { |
| /* Discard entries from env->tlb[first] onwards. */ |
| while (env->tlb->tlb_in_use > first) { |
| r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0); |
| } |
| } |
| |
| static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo) |
| { |
| #if defined(TARGET_MIPS64) |
| return extract64(entrylo, 6, 54); |
| #else |
| return extract64(entrylo, 6, 24) | /* PFN */ |
| (extract64(entrylo, 32, 32) << 24); /* PFNX */ |
| #endif |
| } |
| |
| static void r4k_fill_tlb(CPUMIPSState *env, int idx) |
| { |
| r4k_tlb_t *tlb; |
| uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1); |
| |
| /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */ |
| tlb = &env->tlb->mmu.r4k.tlb[idx]; |
| if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) { |
| tlb->EHINV = 1; |
| return; |
| } |
| tlb->EHINV = 0; |
| tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); |
| #if defined(TARGET_MIPS64) |
| tlb->VPN &= env->SEGMask; |
| #endif |
| tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; |
| tlb->PageMask = env->CP0_PageMask; |
| tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; |
| tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; |
| tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; |
| tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; |
| tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1; |
| tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1; |
| tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12; |
| tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; |
| tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; |
| tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; |
| tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1; |
| tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1; |
| tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12; |
| } |
| |
| void r4k_helper_tlbinv(CPUMIPSState *env) |
| { |
| int idx; |
| r4k_tlb_t *tlb; |
| uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; |
| |
| for (idx = 0; idx < env->tlb->nb_tlb; idx++) { |
| tlb = &env->tlb->mmu.r4k.tlb[idx]; |
| if (!tlb->G && tlb->ASID == ASID) { |
| tlb->EHINV = 1; |
| } |
| } |
| cpu_mips_tlb_flush(env); |
| } |
| |
| void r4k_helper_tlbinvf(CPUMIPSState *env) |
| { |
| int idx; |
| |
| for (idx = 0; idx < env->tlb->nb_tlb; idx++) { |
| env->tlb->mmu.r4k.tlb[idx].EHINV = 1; |
| } |
| cpu_mips_tlb_flush(env); |
| } |
| |
| void r4k_helper_tlbwi(CPUMIPSState *env) |
| { |
| r4k_tlb_t *tlb; |
| int idx; |
| target_ulong VPN; |
| uint16_t ASID; |
| bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1; |
| |
| idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; |
| tlb = &env->tlb->mmu.r4k.tlb[idx]; |
| VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); |
| #if defined(TARGET_MIPS64) |
| VPN &= env->SEGMask; |
| #endif |
| ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; |
| EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0; |
| G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; |
| V0 = (env->CP0_EntryLo0 & 2) != 0; |
| D0 = (env->CP0_EntryLo0 & 4) != 0; |
| XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1; |
| RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1; |
| V1 = (env->CP0_EntryLo1 & 2) != 0; |
| D1 = (env->CP0_EntryLo1 & 4) != 0; |
| XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1; |
| RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1; |
| |
| /* Discard cached TLB entries, unless tlbwi is just upgrading access |
| permissions on the current entry. */ |
| if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G || |
| (!tlb->EHINV && EHINV) || |
| (tlb->V0 && !V0) || (tlb->D0 && !D0) || |
| (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) || |
| (tlb->V1 && !V1) || (tlb->D1 && !D1) || |
| (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) { |
| r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); |
| } |
| |
| r4k_invalidate_tlb(env, idx, 0); |
| r4k_fill_tlb(env, idx); |
| } |
| |
| void r4k_helper_tlbwr(CPUMIPSState *env) |
| { |
| int r = cpu_mips_get_random(env); |
| |
| r4k_invalidate_tlb(env, r, 1); |
| r4k_fill_tlb(env, r); |
| } |
| |
| void r4k_helper_tlbp(CPUMIPSState *env) |
| { |
| r4k_tlb_t *tlb; |
| target_ulong mask; |
| target_ulong tag; |
| target_ulong VPN; |
| uint16_t ASID; |
| int i; |
| |
| ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; |
| for (i = 0; i < env->tlb->nb_tlb; i++) { |
| tlb = &env->tlb->mmu.r4k.tlb[i]; |
| /* 1k pages are not supported. */ |
| mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); |
| tag = env->CP0_EntryHi & ~mask; |
| VPN = tlb->VPN & ~mask; |
| #if defined(TARGET_MIPS64) |
| tag &= env->SEGMask; |
| #endif |
| /* Check ASID, virtual page number & size */ |
| if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) { |
| /* TLB match */ |
| env->CP0_Index = i; |
| break; |
| } |
| } |
| if (i == env->tlb->nb_tlb) { |
| /* No match. Discard any shadow entries, if any of them match. */ |
| for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) { |
| tlb = &env->tlb->mmu.r4k.tlb[i]; |
| /* 1k pages are not supported. */ |
| mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); |
| tag = env->CP0_EntryHi & ~mask; |
| VPN = tlb->VPN & ~mask; |
| #if defined(TARGET_MIPS64) |
| tag &= env->SEGMask; |
| #endif |
| /* Check ASID, virtual page number & size */ |
| if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { |
| r4k_mips_tlb_flush_extra (env, i); |
| break; |
| } |
| } |
| |
| env->CP0_Index |= 0x80000000; |
| } |
| } |
| |
| static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn) |
| { |
| #if defined(TARGET_MIPS64) |
| return tlb_pfn << 6; |
| #else |
| return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */ |
| (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */ |
| #endif |
| } |
| |
| void r4k_helper_tlbr(CPUMIPSState *env) |
| { |
| r4k_tlb_t *tlb; |
| uint16_t ASID; |
| int idx; |
| |
| ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; |
| idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; |
| tlb = &env->tlb->mmu.r4k.tlb[idx]; |
| |
| /* If this will change the current ASID, flush qemu's TLB. */ |
| if (ASID != tlb->ASID) |
| cpu_mips_tlb_flush(env); |
| |
| r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); |
| |
| if (tlb->EHINV) { |
| env->CP0_EntryHi = 1 << CP0EnHi_EHINV; |
| env->CP0_PageMask = 0; |
| env->CP0_EntryLo0 = 0; |
| env->CP0_EntryLo1 = 0; |
| } else { |
| env->CP0_EntryHi = tlb->VPN | tlb->ASID; |
| env->CP0_PageMask = tlb->PageMask; |
| env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | |
| ((uint64_t)tlb->RI0 << CP0EnLo_RI) | |
| ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) | |
| get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12); |
| env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | |
| ((uint64_t)tlb->RI1 << CP0EnLo_RI) | |
| ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) | |
| get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12); |
| } |
| } |
| |
| void helper_tlbwi(CPUMIPSState *env) |
| { |
| env->tlb->helper_tlbwi(env); |
| } |
| |
| void helper_tlbwr(CPUMIPSState *env) |
| { |
| env->tlb->helper_tlbwr(env); |
| } |
| |
| void helper_tlbp(CPUMIPSState *env) |
| { |
| env->tlb->helper_tlbp(env); |
| } |
| |
| void helper_tlbr(CPUMIPSState *env) |
| { |
| env->tlb->helper_tlbr(env); |
| } |
| |
| void helper_tlbinv(CPUMIPSState *env) |
| { |
| env->tlb->helper_tlbinv(env); |
| } |
| |
| void helper_tlbinvf(CPUMIPSState *env) |
| { |
| env->tlb->helper_tlbinvf(env); |
| } |
| |
| /* Specials */ |
| target_ulong helper_di(CPUMIPSState *env) |
| { |
| target_ulong t0 = env->CP0_Status; |
| |
| env->CP0_Status = t0 & ~(1 << CP0St_IE); |
| return t0; |
| } |
| |
| target_ulong helper_ei(CPUMIPSState *env) |
| { |
| target_ulong t0 = env->CP0_Status; |
| |
| env->CP0_Status = t0 | (1 << CP0St_IE); |
| return t0; |
| } |
| |
| static void debug_pre_eret(CPUMIPSState *env) |
| { |
| if (qemu_loglevel_mask(CPU_LOG_EXEC)) { |
| qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, |
| env->active_tc.PC, env->CP0_EPC); |
| if (env->CP0_Status & (1 << CP0St_ERL)) |
| qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); |
| if (env->hflags & MIPS_HFLAG_DM) |
| qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC); |
| qemu_log("\n"); |
| } |
| } |
| |
| static void debug_post_eret(CPUMIPSState *env) |
| { |
| MIPSCPU *cpu = mips_env_get_cpu(env); |
| |
| if (qemu_loglevel_mask(CPU_LOG_EXEC)) { |
| qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, |
| env->active_tc.PC, env->CP0_EPC); |
| if (env->CP0_Status & (1 << CP0St_ERL)) |
| qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); |
| if (env->hflags & MIPS_HFLAG_DM) |
| qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC); |
| switch (cpu_mmu_index(env, false)) { |
| case 3: |
| qemu_log(", ERL\n"); |
| break; |
| case MIPS_HFLAG_UM: qemu_log(", UM\n"); break; |
| case MIPS_HFLAG_SM: qemu_log(", SM\n"); break; |
| case MIPS_HFLAG_KM: qemu_log("\n"); break; |
| default: |
| cpu_abort(CPU(cpu), "Invalid MMU mode!\n"); |
| break; |
| } |
| } |
| } |
| |
| static void set_pc(CPUMIPSState *env, target_ulong error_pc) |
| { |
| env->active_tc.PC = error_pc & ~(target_ulong)1; |
| if (error_pc & 1) { |
| env->hflags |= MIPS_HFLAG_M16; |
| } else { |
| env->hflags &= ~(MIPS_HFLAG_M16); |
| } |
| } |
| |
| static inline void exception_return(CPUMIPSState *env) |
| { |
| debug_pre_eret(env); |
| if (env->CP0_Status & (1 << CP0St_ERL)) { |
| set_pc(env, env->CP0_ErrorEPC); |
| env->CP0_Status &= ~(1 << CP0St_ERL); |
| } else { |
| set_pc(env, env->CP0_EPC); |
| env->CP0_Status &= ~(1 << CP0St_EXL); |
| } |
| compute_hflags(env); |
| debug_post_eret(env); |
| } |
| |
| void helper_eret(CPUMIPSState *env) |
| { |
| exception_return(env); |
| env->lladdr = 1; |
| } |
| |
| void helper_eretnc(CPUMIPSState *env) |
| { |
| exception_return(env); |
| } |
| |
| void helper_deret(CPUMIPSState *env) |
| { |
| debug_pre_eret(env); |
| |
| env->hflags &= ~MIPS_HFLAG_DM; |
| compute_hflags(env); |
| |
| set_pc(env, env->CP0_DEPC); |
| |
| debug_post_eret(env); |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc) |
| { |
| if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) { |
| return; |
| } |
| do_raise_exception(env, EXCP_RI, pc); |
| } |
| |
| target_ulong helper_rdhwr_cpunum(CPUMIPSState *env) |
| { |
| check_hwrena(env, 0, GETPC()); |
| return env->CP0_EBase & 0x3ff; |
| } |
| |
| target_ulong helper_rdhwr_synci_step(CPUMIPSState *env) |
| { |
| check_hwrena(env, 1, GETPC()); |
| return env->SYNCI_Step; |
| } |
| |
| target_ulong helper_rdhwr_cc(CPUMIPSState *env) |
| { |
| int32_t count; |
| check_hwrena(env, 2, GETPC()); |
| #ifdef CONFIG_USER_ONLY |
| count = env->CP0_Count; |
| #else |
| qemu_mutex_lock_iothread(); |
| count = (int32_t)cpu_mips_get_count(env); |
| qemu_mutex_unlock_iothread(); |
| #endif |
| return count; |
| } |
| |
| target_ulong helper_rdhwr_ccres(CPUMIPSState *env) |
| { |
| check_hwrena(env, 3, GETPC()); |
| return env->CCRes; |
| } |
| |
| target_ulong helper_rdhwr_performance(CPUMIPSState *env) |
| { |
| check_hwrena(env, 4, GETPC()); |
| return env->CP0_Performance0; |
| } |
| |
| target_ulong helper_rdhwr_xnp(CPUMIPSState *env) |
| { |
| check_hwrena(env, 5, GETPC()); |
| return (env->CP0_Config5 >> CP0C5_XNP) & 1; |
| } |
| |
| void helper_pmon(CPUMIPSState *env, int function) |
| { |
| function /= 2; |
| switch (function) { |
| case 2: /* TODO: char inbyte(int waitflag); */ |
| if (env->active_tc.gpr[4] == 0) |
| env->active_tc.gpr[2] = -1; |
| /* Fall through */ |
| case 11: /* TODO: char inbyte (void); */ |
| env->active_tc.gpr[2] = -1; |
| break; |
| case 3: |
| case 12: |
| printf("%c", (char)(env->active_tc.gpr[4] & 0xFF)); |
| break; |
| case 17: |
| break; |
| case 158: |
| { |
| unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4]; |
| printf("%s", fmt); |
| } |
| break; |
| } |
| } |
| |
| void helper_wait(CPUMIPSState *env) |
| { |
| CPUState *cs = CPU(mips_env_get_cpu(env)); |
| |
| cs->halted = 1; |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE); |
| /* Last instruction in the block, PC was updated before |
| - no need to recover PC and icount */ |
| raise_exception(env, EXCP_HLT); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr, |
| MMUAccessType access_type, |
| int mmu_idx, uintptr_t retaddr) |
| { |
| MIPSCPU *cpu = MIPS_CPU(cs); |
| CPUMIPSState *env = &cpu->env; |
| int error_code = 0; |
| int excp; |
| |
| if (!(env->hflags & MIPS_HFLAG_DM)) { |
| env->CP0_BadVAddr = addr; |
| } |
| |
| if (access_type == MMU_DATA_STORE) { |
| excp = EXCP_AdES; |
| } else { |
| excp = EXCP_AdEL; |
| if (access_type == MMU_INST_FETCH) { |
| error_code |= EXCP_INST_NOTAVAIL; |
| } |
| } |
| |
| do_raise_exception_err(env, excp, error_code, retaddr); |
| } |
| |
| void tlb_fill(CPUState *cs, target_ulong addr, int size, |
| MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) |
| { |
| int ret; |
| |
| ret = mips_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx); |
| if (ret) { |
| MIPSCPU *cpu = MIPS_CPU(cs); |
| CPUMIPSState *env = &cpu->env; |
| |
| do_raise_exception_err(env, cs->exception_index, |
| env->error_code, retaddr); |
| } |
| } |
| |
| void mips_cpu_unassigned_access(CPUState *cs, hwaddr addr, |
| bool is_write, bool is_exec, int unused, |
| unsigned size) |
| { |
| MIPSCPU *cpu = MIPS_CPU(cs); |
| CPUMIPSState *env = &cpu->env; |
| |
| /* |
| * Raising an exception with KVM enabled will crash because it won't be from |
| * the main execution loop so the longjmp won't have a matching setjmp. |
| * Until we can trigger a bus error exception through KVM lets just ignore |
| * the access. |
| */ |
| if (kvm_enabled()) { |
| return; |
| } |
| |
| if (is_exec) { |
| raise_exception(env, EXCP_IBE); |
| } else { |
| raise_exception(env, EXCP_DBE); |
| } |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| /* Complex FPU operations which may need stack space. */ |
| |
| #define FLOAT_TWO32 make_float32(1 << 30) |
| #define FLOAT_TWO64 make_float64(1ULL << 62) |
| |
| #define FP_TO_INT32_OVERFLOW 0x7fffffff |
| #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL |
| |
| /* convert MIPS rounding mode in FCR31 to IEEE library */ |
| unsigned int ieee_rm[] = { |
| float_round_nearest_even, |
| float_round_to_zero, |
| float_round_up, |
| float_round_down |
| }; |
| |
| target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg) |
| { |
| target_ulong arg1 = 0; |
| |
| switch (reg) { |
| case 0: |
| arg1 = (int32_t)env->active_fpu.fcr0; |
| break; |
| case 1: |
| /* UFR Support - Read Status FR */ |
| if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) { |
| if (env->CP0_Config5 & (1 << CP0C5_UFR)) { |
| arg1 = (int32_t) |
| ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR); |
| } else { |
| do_raise_exception(env, EXCP_RI, GETPC()); |
| } |
| } |
| break; |
| case 5: |
| /* FRE Support - read Config5.FRE bit */ |
| if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) { |
| if (env->CP0_Config5 & (1 << CP0C5_UFE)) { |
| arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1; |
| } else { |
| helper_raise_exception(env, EXCP_RI); |
| } |
| } |
| break; |
| case 25: |
| arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1); |
| break; |
| case 26: |
| arg1 = env->active_fpu.fcr31 & 0x0003f07c; |
| break; |
| case 28: |
| arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4); |
| break; |
| default: |
| arg1 = (int32_t)env->active_fpu.fcr31; |
| break; |
| } |
| |
| return arg1; |
| } |
| |
| void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt) |
| { |
| switch (fs) { |
| case 1: |
| /* UFR Alias - Reset Status FR */ |
| if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) { |
| return; |
| } |
| if (env->CP0_Config5 & (1 << CP0C5_UFR)) { |
| env->CP0_Status &= ~(1 << CP0St_FR); |
| compute_hflags(env); |
| } else { |
| do_raise_exception(env, EXCP_RI, GETPC()); |
| } |
| break; |
| case 4: |
| /* UNFR Alias - Set Status FR */ |
| if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) { |
| return; |
| } |
| if (env->CP0_Config5 & (1 << CP0C5_UFR)) { |
| env->CP0_Status |= (1 << CP0St_FR); |
| compute_hflags(env); |
| } else { |
| do_raise_exception(env, EXCP_RI, GETPC()); |
| } |
| break; |
| case 5: |
| /* FRE Support - clear Config5.FRE bit */ |
| if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) { |
| return; |
| } |
| if (env->CP0_Config5 & (1 << CP0C5_UFE)) { |
| env->CP0_Config5 &= ~(1 << CP0C5_FRE); |
| compute_hflags(env); |
| } else { |
| helper_raise_exception(env, EXCP_RI); |
| } |
| break; |
| case 6: |
| /* FRE Support - set Config5.FRE bit */ |
| if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) { |
| return; |
| } |
| if (env->CP0_Config5 & (1 << CP0C5_UFE)) { |
| env->CP0_Config5 |= (1 << CP0C5_FRE); |
| compute_hflags(env); |
| } else { |
| helper_raise_exception(env, EXCP_RI); |
| } |
| break; |
| case 25: |
| if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) { |
| return; |
| } |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) | |
| ((arg1 & 0x1) << 23); |
| break; |
| case 26: |
| if (arg1 & 0x007c0000) |
| return; |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c); |
| break; |
| case 28: |
| if (arg1 & 0x007c0000) |
| return; |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) | |
| ((arg1 & 0x4) << 22); |
| break; |
| case 31: |
| env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) | |
| (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask)); |
| break; |
| default: |
| if (env->insn_flags & ISA_MIPS32R6) { |
| do_raise_exception(env, EXCP_RI, GETPC()); |
| } |
| return; |
| } |
| restore_fp_status(env); |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31)) |
| do_raise_exception(env, EXCP_FPE, GETPC()); |
| } |
| |
| int ieee_ex_to_mips(int xcpt) |
| { |
| int ret = 0; |
| if (xcpt) { |
| if (xcpt & float_flag_invalid) { |
| ret |= FP_INVALID; |
| } |
| if (xcpt & float_flag_overflow) { |
| ret |= FP_OVERFLOW; |
| } |
| if (xcpt & float_flag_underflow) { |
| ret |= FP_UNDERFLOW; |
| } |
| if (xcpt & float_flag_divbyzero) { |
| ret |= FP_DIV0; |
| } |
| if (xcpt & float_flag_inexact) { |
| ret |= FP_INEXACT; |
| } |
| } |
| return ret; |
| } |
| |
| static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc) |
| { |
| int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status)); |
| |
| SET_FP_CAUSE(env->active_fpu.fcr31, tmp); |
| |
| if (tmp) { |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| |
| if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) { |
| do_raise_exception(env, EXCP_FPE, pc); |
| } else { |
| UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp); |
| } |
| } |
| } |
| |
| /* Float support. |
| Single precition routines have a "s" suffix, double precision a |
| "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps", |
| paired single lower "pl", paired single upper "pu". */ |
| |
| /* unary operations, modifying fp status */ |
| uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt0; |
| } |
| |
| uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst0; |
| } |
| |
| uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0) |
| { |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| uint32_t wth2; |
| int excp, excph; |
| |
| wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| excp = get_float_exception_flags(&env->active_fpu.fp_status); |
| if (excp & (float_flag_overflow | float_flag_invalid)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status); |
| excph = get_float_exception_flags(&env->active_fpu.fp_status); |
| if (excph & (float_flag_overflow | float_flag_invalid)) { |
| wth2 = FP_TO_INT32_OVERFLOW; |
| } |
| |
| set_float_exception_flags(excp | excph, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| |
| return ((uint64_t)wth2 << 32) | wt2; |
| } |
| |
| uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t fst2; |
| |
| fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0) |
| { |
| uint32_t fst2; |
| |
| fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0) |
| { |
| uint32_t fst2; |
| |
| fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = wt0; |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0) |
| { |
| uint32_t wt2; |
| |
| wt2 = wth0; |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| /* unary operations, not modifying fp status */ |
| #define FLOAT_UNOP(name) \ |
| uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \ |
| { \ |
| return float64_ ## name(fdt0); \ |
| } \ |
| uint32_t helper_float_ ## name ## _s(uint32_t fst0) \ |
| { \ |
| return float32_ ## name(fst0); \ |
| } \ |
| uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \ |
| { \ |
| uint32_t wt0; \ |
| uint32_t wth0; \ |
| \ |
| wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \ |
| wth0 = float32_ ## name(fdt0 >> 32); \ |
| return ((uint64_t)wth0 << 32) | wt0; \ |
| } |
| FLOAT_UNOP(abs) |
| FLOAT_UNOP(chs) |
| #undef FLOAT_UNOP |
| |
| /* MIPS specific unary operations */ |
| uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); |
| fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); |
| fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status); |
| fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status); |
| fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| #define FLOAT_RINT(name, bits) \ |
| uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \ |
| uint ## bits ## _t fs) \ |
| { \ |
| uint ## bits ## _t fdret; \ |
| \ |
| fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \ |
| update_fcr31(env, GETPC()); \ |
| return fdret; \ |
| } |
| |
| FLOAT_RINT(rint_s, 32) |
| FLOAT_RINT(rint_d, 64) |
| #undef FLOAT_RINT |
| |
| #define FLOAT_CLASS_SIGNALING_NAN 0x001 |
| #define FLOAT_CLASS_QUIET_NAN 0x002 |
| #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004 |
| #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008 |
| #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010 |
| #define FLOAT_CLASS_NEGATIVE_ZERO 0x020 |
| #define FLOAT_CLASS_POSITIVE_INFINITY 0x040 |
| #define FLOAT_CLASS_POSITIVE_NORMAL 0x080 |
| #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100 |
| #define FLOAT_CLASS_POSITIVE_ZERO 0x200 |
| |
| #define FLOAT_CLASS(name, bits) \ |
| uint ## bits ## _t float_ ## name (uint ## bits ## _t arg, \ |
| float_status *status) \ |
| { \ |
| if (float ## bits ## _is_signaling_nan(arg, status)) { \ |
| return FLOAT_CLASS_SIGNALING_NAN; \ |
| } else if (float ## bits ## _is_quiet_nan(arg, status)) { \ |
| return FLOAT_CLASS_QUIET_NAN; \ |
| } else if (float ## bits ## _is_neg(arg)) { \ |
| if (float ## bits ## _is_infinity(arg)) { \ |
| return FLOAT_CLASS_NEGATIVE_INFINITY; \ |
| } else if (float ## bits ## _is_zero(arg)) { \ |
| return FLOAT_CLASS_NEGATIVE_ZERO; \ |
| } else if (float ## bits ## _is_zero_or_denormal(arg)) { \ |
| return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \ |
| } else { \ |
| return FLOAT_CLASS_NEGATIVE_NORMAL; \ |
| } \ |
| } else { \ |
| if (float ## bits ## _is_infinity(arg)) { \ |
| return FLOAT_CLASS_POSITIVE_INFINITY; \ |
| } else if (float ## bits ## _is_zero(arg)) { \ |
| return FLOAT_CLASS_POSITIVE_ZERO; \ |
| } else if (float ## bits ## _is_zero_or_denormal(arg)) { \ |
| return FLOAT_CLASS_POSITIVE_SUBNORMAL; \ |
| } else { \ |
| return FLOAT_CLASS_POSITIVE_NORMAL; \ |
| } \ |
| } \ |
| } \ |
| \ |
| uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \ |
| uint ## bits ## _t arg) \ |
| { \ |
| return float_ ## name(arg, &env->active_fpu.fp_status); \ |
| } |
| |
| FLOAT_CLASS(class_s, 32) |
| FLOAT_CLASS(class_d, 64) |
| #undef FLOAT_CLASS |
| |
| /* binary operations */ |
| #define FLOAT_BINOP(name) \ |
| uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \ |
| uint64_t fdt0, uint64_t fdt1) \ |
| { \ |
| uint64_t dt2; \ |
| \ |
| dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \ |
| update_fcr31(env, GETPC()); \ |
| return dt2; \ |
| } \ |
| \ |
| uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \ |
| uint32_t fst0, uint32_t fst1) \ |
| { \ |
| uint32_t wt2; \ |
| \ |
| wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \ |
| update_fcr31(env, GETPC()); \ |
| return wt2; \ |
| } \ |
| \ |
| uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \ |
| uint64_t fdt0, \ |
| uint64_t fdt1) \ |
| { \ |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ |
| uint32_t fsth0 = fdt0 >> 32; \ |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ |
| uint32_t fsth1 = fdt1 >> 32; \ |
| uint32_t wt2; \ |
| uint32_t wth2; \ |
| \ |
| wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \ |
| wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \ |
| update_fcr31(env, GETPC()); \ |
| return ((uint64_t)wth2 << 32) | wt2; \ |
| } |
| |
| FLOAT_BINOP(add) |
| FLOAT_BINOP(sub) |
| FLOAT_BINOP(mul) |
| FLOAT_BINOP(div) |
| #undef FLOAT_BINOP |
| |
| /* MIPS specific binary operations */ |
| uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) |
| { |
| fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); |
| fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2) |
| { |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status)); |
| fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) |
| { |
| fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); |
| fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status); |
| fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2) |
| { |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); |
| fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status); |
| fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); |
| fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status); |
| fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status); |
| fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| #define FLOAT_MINMAX(name, bits, minmaxfunc) \ |
| uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \ |
| uint ## bits ## _t fs, \ |
| uint ## bits ## _t ft) \ |
| { \ |
| uint ## bits ## _t fdret; \ |
| \ |
| fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \ |
| &env->active_fpu.fp_status); \ |
| update_fcr31(env, GETPC()); \ |
| return fdret; \ |
| } |
| |
| FLOAT_MINMAX(max_s, 32, maxnum) |
| FLOAT_MINMAX(max_d, 64, maxnum) |
| FLOAT_MINMAX(maxa_s, 32, maxnummag) |
| FLOAT_MINMAX(maxa_d, 64, maxnummag) |
| |
| FLOAT_MINMAX(min_s, 32, minnum) |
| FLOAT_MINMAX(min_d, 64, minnum) |
| FLOAT_MINMAX(mina_s, 32, minnummag) |
| FLOAT_MINMAX(mina_d, 64, minnummag) |
| #undef FLOAT_MINMAX |
| |
| /* ternary operations */ |
| #define UNFUSED_FMA(prefix, a, b, c, flags) \ |
| { \ |
| a = prefix##_mul(a, b, &env->active_fpu.fp_status); \ |
| if ((flags) & float_muladd_negate_c) { \ |
| a = prefix##_sub(a, c, &env->active_fpu.fp_status); \ |
| } else { \ |
| a = prefix##_add(a, c, &env->active_fpu.fp_status); \ |
| } \ |
| if ((flags) & float_muladd_negate_result) { \ |
| a = prefix##_chs(a); \ |
| } \ |
| } |
| |
| /* FMA based operations */ |
| #define FLOAT_FMA(name, type) \ |
| uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \ |
| uint64_t fdt0, uint64_t fdt1, \ |
| uint64_t fdt2) \ |
| { \ |
| UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \ |
| update_fcr31(env, GETPC()); \ |
| return fdt0; \ |
| } \ |
| \ |
| uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \ |
| uint32_t fst0, uint32_t fst1, \ |
| uint32_t fst2) \ |
| { \ |
| UNFUSED_FMA(float32, fst0, fst1, fst2, type); \ |
| update_fcr31(env, GETPC()); \ |
| return fst0; \ |
| } \ |
| \ |
| uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \ |
| uint64_t fdt0, uint64_t fdt1, \ |
| uint64_t fdt2) \ |
| { \ |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ |
| uint32_t fsth0 = fdt0 >> 32; \ |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ |
| uint32_t fsth1 = fdt1 >> 32; \ |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; \ |
| uint32_t fsth2 = fdt2 >> 32; \ |
| \ |
| UNFUSED_FMA(float32, fst0, fst1, fst2, type); \ |
| UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \ |
| update_fcr31(env, GETPC()); \ |
| return ((uint64_t)fsth0 << 32) | fst0; \ |
| } |
| FLOAT_FMA(madd, 0) |
| FLOAT_FMA(msub, float_muladd_negate_c) |
| FLOAT_FMA(nmadd, float_muladd_negate_result) |
| FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c) |
| #undef FLOAT_FMA |
| |
| #define FLOAT_FMADDSUB(name, bits, muladd_arg) \ |
| uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \ |
| uint ## bits ## _t fs, \ |
| uint ## bits ## _t ft, \ |
| uint ## bits ## _t fd) \ |
| { \ |
| uint ## bits ## _t fdret; \ |
| \ |
| fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \ |
| &env->active_fpu.fp_status); \ |
| update_fcr31(env, GETPC()); \ |
| return fdret; \ |
| } |
| |
| FLOAT_FMADDSUB(maddf_s, 32, 0) |
| FLOAT_FMADDSUB(maddf_d, 64, 0) |
| FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product) |
| FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product) |
| #undef FLOAT_FMADDSUB |
| |
| /* compare operations */ |
| #define FOP_COND_D(op, cond) \ |
| void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ |
| uint64_t fdt1, int cc) \ |
| { \ |
| int c; \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } \ |
| void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ |
| uint64_t fdt1, int cc) \ |
| { \ |
| int c; \ |
| fdt0 = float64_abs(fdt0); \ |
| fdt1 = float64_abs(fdt1); \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float64_unordered_quiet() is still called. */ |
| FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)) |
| FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float64_unordered() is still called. */ |
| FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)) |
| FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) |
| |
| #define FOP_COND_S(op, cond) \ |
| void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ |
| uint32_t fst1, int cc) \ |
| { \ |
| int c; \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } \ |
| void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ |
| uint32_t fst1, int cc) \ |
| { \ |
| int c; \ |
| fst0 = float32_abs(fst0); \ |
| fst1 = float32_abs(fst1); \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered_quiet() is still called. */ |
| FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)) |
| FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered() is still called. */ |
| FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status)) |
| FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status)) |
| |
| #define FOP_COND_PS(op, condl, condh) \ |
| void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \ |
| uint64_t fdt1, int cc) \ |
| { \ |
| uint32_t fst0, fsth0, fst1, fsth1; \ |
| int ch, cl; \ |
| fst0 = fdt0 & 0XFFFFFFFF; \ |
| fsth0 = fdt0 >> 32; \ |
| fst1 = fdt1 & 0XFFFFFFFF; \ |
| fsth1 = fdt1 >> 32; \ |
| cl = condl; \ |
| ch = condh; \ |
| update_fcr31(env, GETPC()); \ |
| if (cl) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| if (ch) \ |
| SET_FP_COND(cc + 1, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc + 1, env->active_fpu); \ |
| } \ |
| void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \ |
| uint64_t fdt1, int cc) \ |
| { \ |
| uint32_t fst0, fsth0, fst1, fsth1; \ |
| int ch, cl; \ |
| fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \ |
| fsth0 = float32_abs(fdt0 >> 32); \ |
| fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \ |
| fsth1 = float32_abs(fdt1 >> 32); \ |
| cl = condl; \ |
| ch = condh; \ |
| update_fcr31(env, GETPC()); \ |
| if (cl) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| if (ch) \ |
| SET_FP_COND(cc + 1, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc + 1, env->active_fpu); \ |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered_quiet() is still called. */ |
| FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0), |
| (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status)) |
| FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered() is still called. */ |
| FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0), |
| (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status)) |
| FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status), |
| float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status), |
| float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status), |
| float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) |
| |
| /* R6 compare operations */ |
| #define FOP_CONDN_D(op, cond) \ |
| uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState * env, uint64_t fdt0, \ |
| uint64_t fdt1) \ |
| { \ |
| uint64_t c; \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) { \ |
| return -1; \ |
| } else { \ |
| return 0; \ |
| } \ |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float64_unordered_quiet() is still called. */ |
| FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0)) |
| FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float64_unordered() is still called. */ |
| FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0)) |
| FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_lt(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, &env->active_fpu.fp_status) |
| || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) |
| |
| #define FOP_CONDN_S(op, cond) \ |
| uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState * env, uint32_t fst0, \ |
| uint32_t fst1) \ |
| { \ |
| uint64_t c; \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) { \ |
| return -1; \ |
| } else { \ |
| return 0; \ |
| } \ |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered_quiet() is still called. */ |
| FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0)) |
| FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered() is still called. */ |
| FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0)) |
| FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(seq, (float32_eq(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_eq(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(slt, (float32_lt(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_lt(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sle, (float32_le(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_le(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sor, (float32_le(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_le(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_lt(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_lt(fst0, fst1, &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sne, (float32_lt(fst1, fst0, &env->active_fpu.fp_status) |
| || float32_lt(fst0, fst1, &env->active_fpu.fp_status))) |
| |
| /* MSA */ |
| /* Data format min and max values */ |
| #define DF_BITS(df) (1 << ((df) + 3)) |
| |
| /* Element-by-element access macros */ |
| #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df)) |
| |
| #if !defined(CONFIG_USER_ONLY) |
| #define MEMOP_IDX(DF) \ |
| TCGMemOpIdx oi = make_memop_idx(MO_TE | DF | MO_UNALN, \ |
| cpu_mmu_index(env, false)); |
| #else |
| #define MEMOP_IDX(DF) |
| #endif |
| |
| #define MSA_LD_DF(DF, TYPE, LD_INSN, ...) \ |
| void helper_msa_ld_ ## TYPE(CPUMIPSState *env, uint32_t wd, \ |
| target_ulong addr) \ |
| { \ |
| wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ |
| wr_t wx; \ |
| int i; \ |
| MEMOP_IDX(DF) \ |
| for (i = 0; i < DF_ELEMENTS(DF); i++) { \ |
| wx.TYPE[i] = LD_INSN(env, addr + (i << DF), ##__VA_ARGS__); \ |
| } \ |
| memcpy(pwd, &wx, sizeof(wr_t)); \ |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| MSA_LD_DF(DF_BYTE, b, helper_ret_ldub_mmu, oi, GETPC()) |
| MSA_LD_DF(DF_HALF, h, helper_ret_lduw_mmu, oi, GETPC()) |
| MSA_LD_DF(DF_WORD, w, helper_ret_ldul_mmu, oi, GETPC()) |
| MSA_LD_DF(DF_DOUBLE, d, helper_ret_ldq_mmu, oi, GETPC()) |
| #else |
| MSA_LD_DF(DF_BYTE, b, cpu_ldub_data) |
| MSA_LD_DF(DF_HALF, h, cpu_lduw_data) |
| MSA_LD_DF(DF_WORD, w, cpu_ldl_data) |
| MSA_LD_DF(DF_DOUBLE, d, cpu_ldq_data) |
| #endif |
| |
| #define MSA_PAGESPAN(x) \ |
| ((((x) & ~TARGET_PAGE_MASK) + MSA_WRLEN/8 - 1) >= TARGET_PAGE_SIZE) |
| |
| static inline void ensure_writable_pages(CPUMIPSState *env, |
| target_ulong addr, |
| int mmu_idx, |
| uintptr_t retaddr) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| target_ulong page_addr; |
| if (unlikely(MSA_PAGESPAN(addr))) { |
| /* first page */ |
| probe_write(env, addr, 0, mmu_idx, retaddr); |
| /* second page */ |
| page_addr = (addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; |
| probe_write(env, page_addr, 0, mmu_idx, retaddr); |
| } |
| #endif |
| } |
| |
| #define MSA_ST_DF(DF, TYPE, ST_INSN, ...) \ |
| void helper_msa_st_ ## TYPE(CPUMIPSState *env, uint32_t wd, \ |
| target_ulong addr) \ |
| { \ |
| wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ |
| int mmu_idx = cpu_mmu_index(env, false); \ |
| int i; \ |
| MEMOP_IDX(DF) \ |
| ensure_writable_pages(env, addr, mmu_idx, GETPC()); \ |
| for (i = 0; i < DF_ELEMENTS(DF); i++) { \ |
| ST_INSN(env, addr + (i << DF), pwd->TYPE[i], ##__VA_ARGS__); \ |
| } \ |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| MSA_ST_DF(DF_BYTE, b, helper_ret_stb_mmu, oi, GETPC()) |
| MSA_ST_DF(DF_HALF, h, helper_ret_stw_mmu, oi, GETPC()) |
| MSA_ST_DF(DF_WORD, w, helper_ret_stl_mmu, oi, GETPC()) |
| MSA_ST_DF(DF_DOUBLE, d, helper_ret_stq_mmu, oi, GETPC()) |
| #else |
| MSA_ST_DF(DF_BYTE, b, cpu_stb_data) |
| MSA_ST_DF(DF_HALF, h, cpu_stw_data) |
| MSA_ST_DF(DF_WORD, w, cpu_stl_data) |
| MSA_ST_DF(DF_DOUBLE, d, cpu_stq_data) |
| #endif |
| |
| void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op) |
| { |
| #ifndef CONFIG_USER_ONLY |
| target_ulong index = addr & 0x1fffffff; |
| if (op == 9) { |
| /* Index Store Tag */ |
| memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo, |
| 8, MEMTXATTRS_UNSPECIFIED); |
| } else if (op == 5) { |
| /* Index Load Tag */ |
| memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo, |
| 8, MEMTXATTRS_UNSPECIFIED); |
| } |
| #endif |
| } |