blob: ea0323f9691318f29bd3b80b7baf00c79a28e95e [file] [log] [blame]
/*
* ARM Generic/Distributed Interrupt Controller
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
/* This file contains implementation code for the RealView EB interrupt
* controller, MPCore distributed interrupt controller and ARMv7-M
* Nested Vectored Interrupt Controller.
* It is compiled in two ways:
* (1) as a standalone file to produce a sysbus device which is a GIC
* that can be used on the realview board and as one of the builtin
* private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
* (2) by being directly #included into armv7m_nvic.c to produce the
* armv7m_nvic device.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "gic_internal.h"
#include "qapi/error.h"
#include "qom/cpu.h"
#include "qemu/log.h"
#include "trace.h"
#include "sysemu/kvm.h"
/* #define DEBUG_GIC */
#ifdef DEBUG_GIC
#define DEBUG_GIC_GATE 1
#else
#define DEBUG_GIC_GATE 0
#endif
#define DPRINTF(fmt, ...) do { \
if (DEBUG_GIC_GATE) { \
fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
} \
} while (0)
static const uint8_t gic_id_11mpcore[] = {
0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
};
static const uint8_t gic_id_gicv1[] = {
0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
};
static const uint8_t gic_id_gicv2[] = {
0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
};
static inline int gic_get_current_cpu(GICState *s)
{
if (s->num_cpu > 1) {
return current_cpu->cpu_index;
}
return 0;
}
/* Return true if this GIC config has interrupt groups, which is
* true if we're a GICv2, or a GICv1 with the security extensions.
*/
static inline bool gic_has_groups(GICState *s)
{
return s->revision == 2 || s->security_extn;
}
/* TODO: Many places that call this routine could be optimized. */
/* Update interrupt status after enabled or pending bits have been changed. */
void gic_update(GICState *s)
{
int best_irq;
int best_prio;
int irq;
int irq_level, fiq_level;
int cpu;
int cm;
for (cpu = 0; cpu < s->num_cpu; cpu++) {
cm = 1 << cpu;
s->current_pending[cpu] = 1023;
if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
|| !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
qemu_irq_lower(s->parent_irq[cpu]);
qemu_irq_lower(s->parent_fiq[cpu]);
continue;
}
best_prio = 0x100;
best_irq = 1023;
for (irq = 0; irq < s->num_irq; irq++) {
if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
(!GIC_TEST_ACTIVE(irq, cm)) &&
(irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
best_prio = GIC_GET_PRIORITY(irq, cpu);
best_irq = irq;
}
}
}
if (best_irq != 1023) {
trace_gic_update_bestirq(cpu, best_irq, best_prio,
s->priority_mask[cpu], s->running_priority[cpu]);
}
irq_level = fiq_level = 0;
if (best_prio < s->priority_mask[cpu]) {
s->current_pending[cpu] = best_irq;
if (best_prio < s->running_priority[cpu]) {
int group = GIC_TEST_GROUP(best_irq, cm);
if (extract32(s->ctlr, group, 1) &&
extract32(s->cpu_ctlr[cpu], group, 1)) {
if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
DPRINTF("Raised pending FIQ %d (cpu %d)\n",
best_irq, cpu);
fiq_level = 1;
trace_gic_update_set_irq(cpu, "fiq", fiq_level);
} else {
DPRINTF("Raised pending IRQ %d (cpu %d)\n",
best_irq, cpu);
irq_level = 1;
trace_gic_update_set_irq(cpu, "irq", irq_level);
}
}
}
}
qemu_set_irq(s->parent_irq[cpu], irq_level);
qemu_set_irq(s->parent_fiq[cpu], fiq_level);
}
}
void gic_set_pending_private(GICState *s, int cpu, int irq)
{
int cm = 1 << cpu;
if (gic_test_pending(s, irq, cm)) {
return;
}
DPRINTF("Set %d pending cpu %d\n", irq, cpu);
GIC_SET_PENDING(irq, cm);
gic_update(s);
}
static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
int cm, int target)
{
if (level) {
GIC_SET_LEVEL(irq, cm);
if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
DPRINTF("Set %d pending mask %x\n", irq, target);
GIC_SET_PENDING(irq, target);
}
} else {
GIC_CLEAR_LEVEL(irq, cm);
}
}
static void gic_set_irq_generic(GICState *s, int irq, int level,
int cm, int target)
{
if (level) {
GIC_SET_LEVEL(irq, cm);
DPRINTF("Set %d pending mask %x\n", irq, target);
if (GIC_TEST_EDGE_TRIGGER(irq)) {
GIC_SET_PENDING(irq, target);
}
} else {
GIC_CLEAR_LEVEL(irq, cm);
}
}
/* Process a change in an external IRQ input. */
static void gic_set_irq(void *opaque, int irq, int level)
{
/* Meaning of the 'irq' parameter:
* [0..N-1] : external interrupts
* [N..N+31] : PPI (internal) interrupts for CPU 0
* [N+32..N+63] : PPI (internal interrupts for CPU 1
* ...
*/
GICState *s = (GICState *)opaque;
int cm, target;
if (irq < (s->num_irq - GIC_INTERNAL)) {
/* The first external input line is internal interrupt 32. */
cm = ALL_CPU_MASK;
irq += GIC_INTERNAL;
target = GIC_TARGET(irq);
} else {
int cpu;
irq -= (s->num_irq - GIC_INTERNAL);
cpu = irq / GIC_INTERNAL;
irq %= GIC_INTERNAL;
cm = 1 << cpu;
target = cm;
}
assert(irq >= GIC_NR_SGIS);
if (level == GIC_TEST_LEVEL(irq, cm)) {
return;
}
if (s->revision == REV_11MPCORE) {
gic_set_irq_11mpcore(s, irq, level, cm, target);
} else {
gic_set_irq_generic(s, irq, level, cm, target);
}
trace_gic_set_irq(irq, level, cm, target);
gic_update(s);
}
static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
MemTxAttrs attrs)
{
uint16_t pending_irq = s->current_pending[cpu];
if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
/* On a GIC without the security extensions, reading this register
* behaves in the same way as a secure access to a GIC with them.
*/
bool secure = !s->security_extn || attrs.secure;
if (group == 0 && !secure) {
/* Group0 interrupts hidden from Non-secure access */
return 1023;
}
if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
/* Group1 interrupts only seen by Secure access if
* AckCtl bit set.
*/
return 1022;
}
}
return pending_irq;
}
static int gic_get_group_priority(GICState *s, int cpu, int irq)
{
/* Return the group priority of the specified interrupt
* (which is the top bits of its priority, with the number
* of bits masked determined by the applicable binary point register).
*/
int bpr;
uint32_t mask;
if (gic_has_groups(s) &&
!(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
GIC_TEST_GROUP(irq, (1 << cpu))) {
bpr = s->abpr[cpu] - 1;
assert(bpr >= 0);
} else {
bpr = s->bpr[cpu];
}
/* a BPR of 0 means the group priority bits are [7:1];
* a BPR of 1 means they are [7:2], and so on down to
* a BPR of 7 meaning no group priority bits at all.
*/
mask = ~0U << ((bpr & 7) + 1);
return GIC_GET_PRIORITY(irq, cpu) & mask;
}
static void gic_activate_irq(GICState *s, int cpu, int irq)
{
/* Set the appropriate Active Priority Register bit for this IRQ,
* and update the running priority.
*/
int prio = gic_get_group_priority(s, cpu, irq);
int preemption_level = prio >> (GIC_MIN_BPR + 1);
int regno = preemption_level / 32;
int bitno = preemption_level % 32;
if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
s->nsapr[regno][cpu] |= (1 << bitno);
} else {
s->apr[regno][cpu] |= (1 << bitno);
}
s->running_priority[cpu] = prio;
GIC_SET_ACTIVE(irq, 1 << cpu);
}
static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
{
/* Recalculate the current running priority for this CPU based
* on the set bits in the Active Priority Registers.
*/
int i;
for (i = 0; i < GIC_NR_APRS; i++) {
uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
if (!apr) {
continue;
}
return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
}
return 0x100;
}
static void gic_drop_prio(GICState *s, int cpu, int group)
{
/* Drop the priority of the currently active interrupt in the
* specified group.
*
* Note that we can guarantee (because of the requirement to nest
* GICC_IAR reads [which activate an interrupt and raise priority]
* with GICC_EOIR writes [which drop the priority for the interrupt])
* that the interrupt we're being called for is the highest priority
* active interrupt, meaning that it has the lowest set bit in the
* APR registers.
*
* If the guest does not honour the ordering constraints then the
* behaviour of the GIC is UNPREDICTABLE, which for us means that
* the values of the APR registers might become incorrect and the
* running priority will be wrong, so interrupts that should preempt
* might not do so, and interrupts that should not preempt might do so.
*/
int i;
for (i = 0; i < GIC_NR_APRS; i++) {
uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
if (!*papr) {
continue;
}
/* Clear lowest set bit */
*papr &= *papr - 1;
break;
}
s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
}
uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
{
int ret, irq, src;
int cm = 1 << cpu;
/* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
* for the case where this GIC supports grouping and the pending interrupt
* is in the wrong group.
*/
irq = gic_get_current_pending_irq(s, cpu, attrs);
trace_gic_acknowledge_irq(cpu, irq);
if (irq >= GIC_MAXIRQ) {
DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
return irq;
}
if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
return 1023;
}
if (s->revision == REV_11MPCORE) {
/* Clear pending flags for both level and edge triggered interrupts.
* Level triggered IRQs will be reasserted once they become inactive.
*/
GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
ret = irq;
} else {
if (irq < GIC_NR_SGIS) {
/* Lookup the source CPU for the SGI and clear this in the
* sgi_pending map. Return the src and clear the overall pending
* state on this CPU if the SGI is not pending from any CPUs.
*/
assert(s->sgi_pending[irq][cpu] != 0);
src = ctz32(s->sgi_pending[irq][cpu]);
s->sgi_pending[irq][cpu] &= ~(1 << src);
if (s->sgi_pending[irq][cpu] == 0) {
GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
}
ret = irq | ((src & 0x7) << 10);
} else {
/* Clear pending state for both level and edge triggered
* interrupts. (level triggered interrupts with an active line
* remain pending, see gic_test_pending)
*/
GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
ret = irq;
}
}
gic_activate_irq(s, cpu, irq);
gic_update(s);
DPRINTF("ACK %d\n", irq);
return ret;
}
void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
MemTxAttrs attrs)
{
if (s->security_extn && !attrs.secure) {
if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
return; /* Ignore Non-secure access of Group0 IRQ */
}
val = 0x80 | (val >> 1); /* Non-secure view */
}
if (irq < GIC_INTERNAL) {
s->priority1[irq][cpu] = val;
} else {
s->priority2[(irq) - GIC_INTERNAL] = val;
}
}
static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
MemTxAttrs attrs)
{
uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
if (s->security_extn && !attrs.secure) {
if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
return 0; /* Non-secure access cannot read priority of Group0 IRQ */
}
prio = (prio << 1) & 0xff; /* Non-secure view */
}
return prio;
}
static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
MemTxAttrs attrs)
{
if (s->security_extn && !attrs.secure) {
if (s->priority_mask[cpu] & 0x80) {
/* Priority Mask in upper half */
pmask = 0x80 | (pmask >> 1);
} else {
/* Non-secure write ignored if priority mask is in lower half */
return;
}
}
s->priority_mask[cpu] = pmask;
}
static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
{
uint32_t pmask = s->priority_mask[cpu];
if (s->security_extn && !attrs.secure) {
if (pmask & 0x80) {
/* Priority Mask in upper half, return Non-secure view */
pmask = (pmask << 1) & 0xff;
} else {
/* Priority Mask in lower half, RAZ */
pmask = 0;
}
}
return pmask;
}
static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
{
uint32_t ret = s->cpu_ctlr[cpu];
if (s->security_extn && !attrs.secure) {
/* Construct the NS banked view of GICC_CTLR from the correct
* bits of the S banked view. We don't need to move the bypass
* control bits because we don't implement that (IMPDEF) part
* of the GIC architecture.
*/
ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
}
return ret;
}
static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
MemTxAttrs attrs)
{
uint32_t mask;
if (s->security_extn && !attrs.secure) {
/* The NS view can only write certain bits in the register;
* the rest are unchanged
*/
mask = GICC_CTLR_EN_GRP1;
if (s->revision == 2) {
mask |= GICC_CTLR_EOIMODE_NS;
}
s->cpu_ctlr[cpu] &= ~mask;
s->cpu_ctlr[cpu] |= (value << 1) & mask;
} else {
if (s->revision == 2) {
mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
} else {
mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
}
s->cpu_ctlr[cpu] = value & mask;
}
DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
"Group1 Interrupts %sabled\n", cpu,
(s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
(s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
}
static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
{
if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
/* Idle priority */
return 0xff;
}
if (s->security_extn && !attrs.secure) {
if (s->running_priority[cpu] & 0x80) {
/* Running priority in upper half of range: return the Non-secure
* view of the priority.
*/
return s->running_priority[cpu] << 1;
} else {
/* Running priority in lower half of range: RAZ */
return 0;
}
} else {
return s->running_priority[cpu];
}
}
/* Return true if we should split priority drop and interrupt deactivation,
* ie whether the relevant EOIMode bit is set.
*/
static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
{
if (s->revision != 2) {
/* Before GICv2 prio-drop and deactivate are not separable */
return false;
}
if (s->security_extn && !attrs.secure) {
return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
}
return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
}
static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
{
int cm = 1 << cpu;
int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
if (!gic_eoi_split(s, cpu, attrs)) {
/* This is UNPREDICTABLE; we choose to ignore it */
qemu_log_mask(LOG_GUEST_ERROR,
"gic_deactivate_irq: GICC_DIR write when EOIMode clear");
return;
}
if (s->security_extn && !attrs.secure && !group) {
DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
return;
}
GIC_CLEAR_ACTIVE(irq, cm);
}
void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
{
int cm = 1 << cpu;
int group;
DPRINTF("EOI %d\n", irq);
if (irq >= s->num_irq) {
/* This handles two cases:
* 1. If software writes the ID of a spurious interrupt [ie 1023]
* to the GICC_EOIR, the GIC ignores that write.
* 2. If software writes the number of a non-existent interrupt
* this must be a subcase of "value written does not match the last
* valid interrupt value read from the Interrupt Acknowledge
* register" and so this is UNPREDICTABLE. We choose to ignore it.
*/
return;
}
if (s->running_priority[cpu] == 0x100) {
return; /* No active IRQ. */
}
if (s->revision == REV_11MPCORE) {
/* Mark level triggered interrupts as pending if they are still
raised. */
if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
&& GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
DPRINTF("Set %d pending mask %x\n", irq, cm);
GIC_SET_PENDING(irq, cm);
}
}
group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
if (s->security_extn && !attrs.secure && !group) {
DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
return;
}
/* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
* interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
* i.e. go ahead and complete the irq anyway.
*/
gic_drop_prio(s, cpu, group);
/* In GICv2 the guest can choose to split priority-drop and deactivate */
if (!gic_eoi_split(s, cpu, attrs)) {
GIC_CLEAR_ACTIVE(irq, cm);
}
gic_update(s);
}
static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
uint32_t res;
int irq;
int i;
int cpu;
int cm;
int mask;
cpu = gic_get_current_cpu(s);
cm = 1 << cpu;
if (offset < 0x100) {
if (offset == 0) { /* GICD_CTLR */
if (s->security_extn && !attrs.secure) {
/* The NS bank of this register is just an alias of the
* EnableGrp1 bit in the S bank version.
*/
return extract32(s->ctlr, 1, 1);
} else {
return s->ctlr;
}
}
if (offset == 4)
/* Interrupt Controller Type Register */
return ((s->num_irq / 32) - 1)
| ((s->num_cpu - 1) << 5)
| (s->security_extn << 10);
if (offset < 0x08)
return 0;
if (offset >= 0x80) {
/* Interrupt Group Registers: these RAZ/WI if this is an NS
* access to a GIC with the security extensions, or if the GIC
* doesn't have groups at all.
*/
res = 0;
if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
/* Every byte offset holds 8 group status bits */
irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
if (irq >= s->num_irq) {
goto bad_reg;
}
for (i = 0; i < 8; i++) {
if (GIC_TEST_GROUP(irq + i, cm)) {
res |= (1 << i);
}
}
}
return res;
}
goto bad_reg;
} else if (offset < 0x200) {
/* Interrupt Set/Clear Enable. */
if (offset < 0x180)
irq = (offset - 0x100) * 8;
else
irq = (offset - 0x180) * 8;
irq += GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
res = 0;
for (i = 0; i < 8; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (GIC_TEST_ENABLED(irq + i, cm)) {
res |= (1 << i);
}
}
} else if (offset < 0x300) {
/* Interrupt Set/Clear Pending. */
if (offset < 0x280)
irq = (offset - 0x200) * 8;
else
irq = (offset - 0x280) * 8;
irq += GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
res = 0;
mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
for (i = 0; i < 8; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (gic_test_pending(s, irq + i, mask)) {
res |= (1 << i);
}
}
} else if (offset < 0x400) {
/* Interrupt Active. */
irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
res = 0;
mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
for (i = 0; i < 8; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (GIC_TEST_ACTIVE(irq + i, mask)) {
res |= (1 << i);
}
}
} else if (offset < 0x800) {
/* Interrupt Priority. */
irq = (offset - 0x400) + GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
res = gic_get_priority(s, cpu, irq, attrs);
} else if (offset < 0xc00) {
/* Interrupt CPU Target. */
if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
/* For uniprocessor GICs these RAZ/WI */
res = 0;
} else {
irq = (offset - 0x800) + GIC_BASE_IRQ;
if (irq >= s->num_irq) {
goto bad_reg;
}
if (irq >= 29 && irq <= 31) {
res = cm;
} else {
res = GIC_TARGET(irq);
}
}
} else if (offset < 0xf00) {
/* Interrupt Configuration. */
irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
res = 0;
for (i = 0; i < 4; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (GIC_TEST_MODEL(irq + i))
res |= (1 << (i * 2));
if (GIC_TEST_EDGE_TRIGGER(irq + i))
res |= (2 << (i * 2));
}
} else if (offset < 0xf10) {
goto bad_reg;
} else if (offset < 0xf30) {
if (s->revision == REV_11MPCORE) {
goto bad_reg;
}
if (offset < 0xf20) {
/* GICD_CPENDSGIRn */
irq = (offset - 0xf10);
} else {
irq = (offset - 0xf20);
/* GICD_SPENDSGIRn */
}
if (s->security_extn && !attrs.secure &&
!GIC_TEST_GROUP(irq, 1 << cpu)) {
res = 0; /* Ignore Non-secure access of Group0 IRQ */
} else {
res = s->sgi_pending[irq][cpu];
}
} else if (offset < 0xfd0) {
goto bad_reg;
} else if (offset < 0x1000) {
if (offset & 3) {
res = 0;
} else {
switch (s->revision) {
case REV_11MPCORE:
res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
break;
case 1:
res = gic_id_gicv1[(offset - 0xfd0) >> 2];
break;
case 2:
res = gic_id_gicv2[(offset - 0xfd0) >> 2];
break;
default:
res = 0;
}
}
} else {
g_assert_not_reached();
}
return res;
bad_reg:
qemu_log_mask(LOG_GUEST_ERROR,
"gic_dist_readb: Bad offset %x\n", (int)offset);
return 0;
}
static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
switch (size) {
case 1:
*data = gic_dist_readb(opaque, offset, attrs);
return MEMTX_OK;
case 2:
*data = gic_dist_readb(opaque, offset, attrs);
*data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
return MEMTX_OK;
case 4:
*data = gic_dist_readb(opaque, offset, attrs);
*data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
*data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
*data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static void gic_dist_writeb(void *opaque, hwaddr offset,
uint32_t value, MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
int irq;
int i;
int cpu;
cpu = gic_get_current_cpu(s);
if (offset < 0x100) {
if (offset == 0) {
if (s->security_extn && !attrs.secure) {
/* NS version is just an alias of the S version's bit 1 */
s->ctlr = deposit32(s->ctlr, 1, 1, value);
} else if (gic_has_groups(s)) {
s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
} else {
s->ctlr = value & GICD_CTLR_EN_GRP0;
}
DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
} else if (offset < 4) {
/* ignored. */
} else if (offset >= 0x80) {
/* Interrupt Group Registers: RAZ/WI for NS access to secure
* GIC, or for GICs without groups.
*/
if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
/* Every byte offset holds 8 group status bits */
irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
if (irq >= s->num_irq) {
goto bad_reg;
}
for (i = 0; i < 8; i++) {
/* Group bits are banked for private interrupts */
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (value & (1 << i)) {
/* Group1 (Non-secure) */
GIC_SET_GROUP(irq + i, cm);
} else {
/* Group0 (Secure) */
GIC_CLEAR_GROUP(irq + i, cm);
}
}
}
} else {
goto bad_reg;
}
} else if (offset < 0x180) {
/* Interrupt Set Enable. */
irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
if (irq < GIC_NR_SGIS) {
value = 0xff;
}
for (i = 0; i < 8; i++) {
if (value & (1 << i)) {
int mask =
(irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (s->security_extn && !attrs.secure &&
!GIC_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (!GIC_TEST_ENABLED(irq + i, cm)) {
DPRINTF("Enabled IRQ %d\n", irq + i);
trace_gic_enable_irq(irq + i);
}
GIC_SET_ENABLED(irq + i, cm);
/* If a raised level triggered IRQ enabled then mark
is as pending. */
if (GIC_TEST_LEVEL(irq + i, mask)
&& !GIC_TEST_EDGE_TRIGGER(irq + i)) {
DPRINTF("Set %d pending mask %x\n", irq + i, mask);
GIC_SET_PENDING(irq + i, mask);
}
}
}
} else if (offset < 0x200) {
/* Interrupt Clear Enable. */
irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
if (irq < GIC_NR_SGIS) {
value = 0;
}
for (i = 0; i < 8; i++) {
if (value & (1 << i)) {
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (s->security_extn && !attrs.secure &&
!GIC_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (GIC_TEST_ENABLED(irq + i, cm)) {
DPRINTF("Disabled IRQ %d\n", irq + i);
trace_gic_disable_irq(irq + i);
}
GIC_CLEAR_ENABLED(irq + i, cm);
}
}
} else if (offset < 0x280) {
/* Interrupt Set Pending. */
irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
if (irq < GIC_NR_SGIS) {
value = 0;
}
for (i = 0; i < 8; i++) {
if (value & (1 << i)) {
if (s->security_extn && !attrs.secure &&
!GIC_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
}
}
} else if (offset < 0x300) {
/* Interrupt Clear Pending. */
irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
if (irq < GIC_NR_SGIS) {
value = 0;
}
for (i = 0; i < 8; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
/* ??? This currently clears the pending bit for all CPUs, even
for per-CPU interrupts. It's unclear whether this is the
corect behavior. */
if (value & (1 << i)) {
GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
}
}
} else if (offset < 0x400) {
/* Interrupt Active. */
goto bad_reg;
} else if (offset < 0x800) {
/* Interrupt Priority. */
irq = (offset - 0x400) + GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
gic_set_priority(s, cpu, irq, value, attrs);
} else if (offset < 0xc00) {
/* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
* annoying exception of the 11MPCore's GIC.
*/
if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
irq = (offset - 0x800) + GIC_BASE_IRQ;
if (irq >= s->num_irq) {
goto bad_reg;
}
if (irq < 29) {
value = 0;
} else if (irq < GIC_INTERNAL) {
value = ALL_CPU_MASK;
}
s->irq_target[irq] = value & ALL_CPU_MASK;
}
} else if (offset < 0xf00) {
/* Interrupt Configuration. */
irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
if (irq >= s->num_irq)
goto bad_reg;
if (irq < GIC_NR_SGIS)
value |= 0xaa;
for (i = 0; i < 4; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (s->revision == REV_11MPCORE) {
if (value & (1 << (i * 2))) {
GIC_SET_MODEL(irq + i);
} else {
GIC_CLEAR_MODEL(irq + i);
}
}
if (value & (2 << (i * 2))) {
GIC_SET_EDGE_TRIGGER(irq + i);
} else {
GIC_CLEAR_EDGE_TRIGGER(irq + i);
}
}
} else if (offset < 0xf10) {
/* 0xf00 is only handled for 32-bit writes. */
goto bad_reg;
} else if (offset < 0xf20) {
/* GICD_CPENDSGIRn */
if (s->revision == REV_11MPCORE) {
goto bad_reg;
}
irq = (offset - 0xf10);
if (!s->security_extn || attrs.secure ||
GIC_TEST_GROUP(irq, 1 << cpu)) {
s->sgi_pending[irq][cpu] &= ~value;
if (s->sgi_pending[irq][cpu] == 0) {
GIC_CLEAR_PENDING(irq, 1 << cpu);
}
}
} else if (offset < 0xf30) {
/* GICD_SPENDSGIRn */
if (s->revision == REV_11MPCORE) {
goto bad_reg;
}
irq = (offset - 0xf20);
if (!s->security_extn || attrs.secure ||
GIC_TEST_GROUP(irq, 1 << cpu)) {
GIC_SET_PENDING(irq, 1 << cpu);
s->sgi_pending[irq][cpu] |= value;
}
} else {
goto bad_reg;
}
gic_update(s);
return;
bad_reg:
qemu_log_mask(LOG_GUEST_ERROR,
"gic_dist_writeb: Bad offset %x\n", (int)offset);
}
static void gic_dist_writew(void *opaque, hwaddr offset,
uint32_t value, MemTxAttrs attrs)
{
gic_dist_writeb(opaque, offset, value & 0xff, attrs);
gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
}
static void gic_dist_writel(void *opaque, hwaddr offset,
uint32_t value, MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
if (offset == 0xf00) {
int cpu;
int irq;
int mask;
int target_cpu;
cpu = gic_get_current_cpu(s);
irq = value & 0x3ff;
switch ((value >> 24) & 3) {
case 0:
mask = (value >> 16) & ALL_CPU_MASK;
break;
case 1:
mask = ALL_CPU_MASK ^ (1 << cpu);
break;
case 2:
mask = 1 << cpu;
break;
default:
DPRINTF("Bad Soft Int target filter\n");
mask = ALL_CPU_MASK;
break;
}
GIC_SET_PENDING(irq, mask);
target_cpu = ctz32(mask);
while (target_cpu < GIC_NCPU) {
s->sgi_pending[irq][target_cpu] |= (1 << cpu);
mask &= ~(1 << target_cpu);
target_cpu = ctz32(mask);
}
gic_update(s);
return;
}
gic_dist_writew(opaque, offset, value & 0xffff, attrs);
gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
}
static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
switch (size) {
case 1:
gic_dist_writeb(opaque, offset, data, attrs);
return MEMTX_OK;
case 2:
gic_dist_writew(opaque, offset, data, attrs);
return MEMTX_OK;
case 4:
gic_dist_writel(opaque, offset, data, attrs);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
{
/* Return the Nonsecure view of GICC_APR<regno>. This is the
* second half of GICC_NSAPR.
*/
switch (GIC_MIN_BPR) {
case 0:
if (regno < 2) {
return s->nsapr[regno + 2][cpu];
}
break;
case 1:
if (regno == 0) {
return s->nsapr[regno + 1][cpu];
}
break;
case 2:
if (regno == 0) {
return extract32(s->nsapr[0][cpu], 16, 16);
}
break;
case 3:
if (regno == 0) {
return extract32(s->nsapr[0][cpu], 8, 8);
}
break;
default:
g_assert_not_reached();
}
return 0;
}
static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
uint32_t value)
{
/* Write the Nonsecure view of GICC_APR<regno>. */
switch (GIC_MIN_BPR) {
case 0:
if (regno < 2) {
s->nsapr[regno + 2][cpu] = value;
}
break;
case 1:
if (regno == 0) {
s->nsapr[regno + 1][cpu] = value;
}
break;
case 2:
if (regno == 0) {
s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
}
break;
case 3:
if (regno == 0) {
s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
}
break;
default:
g_assert_not_reached();
}
}
static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case 0x00: /* Control */
*data = gic_get_cpu_control(s, cpu, attrs);
break;
case 0x04: /* Priority mask */
*data = gic_get_priority_mask(s, cpu, attrs);
break;
case 0x08: /* Binary Point */
if (s->security_extn && !attrs.secure) {
if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
/* NS view of BPR when CBPR is 1 */
*data = MIN(s->bpr[cpu] + 1, 7);
} else {
/* BPR is banked. Non-secure copy stored in ABPR. */
*data = s->abpr[cpu];
}
} else {
*data = s->bpr[cpu];
}
break;
case 0x0c: /* Acknowledge */
*data = gic_acknowledge_irq(s, cpu, attrs);
break;
case 0x14: /* Running Priority */
*data = gic_get_running_priority(s, cpu, attrs);
break;
case 0x18: /* Highest Pending Interrupt */
*data = gic_get_current_pending_irq(s, cpu, attrs);
break;
case 0x1c: /* Aliased Binary Point */
/* GIC v2, no security: ABPR
* GIC v1, no security: not implemented (RAZ/WI)
* With security extensions, secure access: ABPR (alias of NS BPR)
* With security extensions, nonsecure access: RAZ/WI
*/
if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
*data = 0;
} else {
*data = s->abpr[cpu];
}
break;
case 0xd0: case 0xd4: case 0xd8: case 0xdc:
{
int regno = (offset - 0xd0) / 4;
if (regno >= GIC_NR_APRS || s->revision != 2) {
*data = 0;
} else if (s->security_extn && !attrs.secure) {
/* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
*data = gic_apr_ns_view(s, regno, cpu);
} else {
*data = s->apr[regno][cpu];
}
break;
}
case 0xe0: case 0xe4: case 0xe8: case 0xec:
{
int regno = (offset - 0xe0) / 4;
if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
(s->security_extn && !attrs.secure)) {
*data = 0;
} else {
*data = s->nsapr[regno][cpu];
}
break;
}
default:
qemu_log_mask(LOG_GUEST_ERROR,
"gic_cpu_read: Bad offset %x\n", (int)offset);
*data = 0;
break;
}
return MEMTX_OK;
}
static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
uint32_t value, MemTxAttrs attrs)
{
switch (offset) {
case 0x00: /* Control */
gic_set_cpu_control(s, cpu, value, attrs);
break;
case 0x04: /* Priority mask */
gic_set_priority_mask(s, cpu, value, attrs);
break;
case 0x08: /* Binary Point */
if (s->security_extn && !attrs.secure) {
if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
/* WI when CBPR is 1 */
return MEMTX_OK;
} else {
s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
}
} else {
s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
}
break;
case 0x10: /* End Of Interrupt */
gic_complete_irq(s, cpu, value & 0x3ff, attrs);
return MEMTX_OK;
case 0x1c: /* Aliased Binary Point */
if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
/* unimplemented, or NS access: RAZ/WI */
return MEMTX_OK;
} else {
s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
}
break;
case 0xd0: case 0xd4: case 0xd8: case 0xdc:
{
int regno = (offset - 0xd0) / 4;
if (regno >= GIC_NR_APRS || s->revision != 2) {
return MEMTX_OK;
}
if (s->security_extn && !attrs.secure) {
/* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
gic_apr_write_ns_view(s, regno, cpu, value);
} else {
s->apr[regno][cpu] = value;
}
break;
}
case 0xe0: case 0xe4: case 0xe8: case 0xec:
{
int regno = (offset - 0xe0) / 4;
if (regno >= GIC_NR_APRS || s->revision != 2) {
return MEMTX_OK;
}
if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
return MEMTX_OK;
}
s->nsapr[regno][cpu] = value;
break;
}
case 0x1000:
/* GICC_DIR */
gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"gic_cpu_write: Bad offset %x\n", (int)offset);
return MEMTX_OK;
}
gic_update(s);
return MEMTX_OK;
}
/* Wrappers to read/write the GIC CPU interface for the current CPU */
static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
}
static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
}
/* Wrappers to read/write the GIC CPU interface for a specific CPU.
* These just decode the opaque pointer into GICState* + cpu id.
*/
static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICState **backref = (GICState **)opaque;
GICState *s = *backref;
int id = (backref - s->backref);
return gic_cpu_read(s, id, addr, data, attrs);
}
static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
GICState **backref = (GICState **)opaque;
GICState *s = *backref;
int id = (backref - s->backref);
return gic_cpu_write(s, id, addr, value, attrs);
}
static const MemoryRegionOps gic_ops[2] = {
{
.read_with_attrs = gic_dist_read,
.write_with_attrs = gic_dist_write,
.endianness = DEVICE_NATIVE_ENDIAN,
},
{
.read_with_attrs = gic_thiscpu_read,
.write_with_attrs = gic_thiscpu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
}
};
static const MemoryRegionOps gic_cpu_ops = {
.read_with_attrs = gic_do_cpu_read,
.write_with_attrs = gic_do_cpu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
/* This function is used by nvic model */
void gic_init_irqs_and_distributor(GICState *s)
{
gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
}
static void arm_gic_realize(DeviceState *dev, Error **errp)
{
/* Device instance realize function for the GIC sysbus device */
int i;
GICState *s = ARM_GIC(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
Error *local_err = NULL;
agc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
error_setg(errp, "KVM with user space irqchip only works when the "
"host kernel supports KVM_CAP_ARM_USER_IRQ");
return;
}
/* This creates distributor and main CPU interface (s->cpuiomem[0]) */
gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
/* Extra core-specific regions for the CPU interfaces. This is
* necessary for "franken-GIC" implementations, for example on
* Exynos 4.
* NB that the memory region size of 0x100 applies for the 11MPCore
* and also cores following the GIC v1 spec (ie A9).
* GIC v2 defines a larger memory region (0x1000) so this will need
* to be extended when we implement A15.
*/
for (i = 0; i < s->num_cpu; i++) {
s->backref[i] = s;
memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
&s->backref[i], "gic_cpu", 0x100);
sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
}
}
static void arm_gic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ARMGICClass *agc = ARM_GIC_CLASS(klass);
device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
}
static const TypeInfo arm_gic_info = {
.name = TYPE_ARM_GIC,
.parent = TYPE_ARM_GIC_COMMON,
.instance_size = sizeof(GICState),
.class_init = arm_gic_class_init,
.class_size = sizeof(ARMGICClass),
};
static void arm_gic_register_types(void)
{
type_register_static(&arm_gic_info);
}
type_init(arm_gic_register_types)