| ========= |
| Migration |
| ========= |
| |
| QEMU has code to load/save the state of the guest that it is running. |
| These are two complementary operations. Saving the state just does |
| that, saves the state for each device that the guest is running. |
| Restoring a guest is just the opposite operation: we need to load the |
| state of each device. |
| |
| For this to work, QEMU has to be launched with the same arguments the |
| two times. I.e. it can only restore the state in one guest that has |
| the same devices that the one it was saved (this last requirement can |
| be relaxed a bit, but for now we can consider that configuration has |
| to be exactly the same). |
| |
| Once that we are able to save/restore a guest, a new functionality is |
| requested: migration. This means that QEMU is able to start in one |
| machine and being "migrated" to another machine. I.e. being moved to |
| another machine. |
| |
| Next was the "live migration" functionality. This is important |
| because some guests run with a lot of state (specially RAM), and it |
| can take a while to move all state from one machine to another. Live |
| migration allows the guest to continue running while the state is |
| transferred. Only while the last part of the state is transferred has |
| the guest to be stopped. Typically the time that the guest is |
| unresponsive during live migration is the low hundred of milliseconds |
| (notice that this depends on a lot of things). |
| |
| Types of migration |
| ================== |
| |
| Now that we have talked about live migration, there are several ways |
| to do migration: |
| |
| - tcp migration: do the migration using tcp sockets |
| - unix migration: do the migration using unix sockets |
| - exec migration: do the migration using the stdin/stdout through a process. |
| - fd migration: do the migration using an file descriptor that is |
| passed to QEMU. QEMU doesn't care how this file descriptor is opened. |
| |
| All these four migration protocols use the same infrastructure to |
| save/restore state devices. This infrastructure is shared with the |
| savevm/loadvm functionality. |
| |
| State Live Migration |
| ==================== |
| |
| This is used for RAM and block devices. It is not yet ported to vmstate. |
| <Fill more information here> |
| |
| Common infrastructure |
| ===================== |
| |
| The files, sockets or fd's that carry the migration stream are abstracted by |
| the ``QEMUFile`` type (see `migration/qemu-file.h`). In most cases this |
| is connected to a subtype of ``QIOChannel`` (see `io/`). |
| |
| Saving the state of one device |
| ============================== |
| |
| The state of a device is saved using intermediate buffers. There are |
| some helper functions to assist this saving. |
| |
| There is a new concept that we have to explain here: device state |
| version. When we migrate a device, we save/load the state as a series |
| of fields. Some times, due to bugs or new functionality, we need to |
| change the state to store more/different information. We use the |
| version to identify each time that we do a change. Each version is |
| associated with a series of fields saved. The `save_state` always saves |
| the state as the newer version. But `load_state` sometimes is able to |
| load state from an older version. |
| |
| Legacy way |
| ---------- |
| |
| This way is going to disappear as soon as all current users are ported to VMSTATE. |
| |
| Each device has to register two functions, one to save the state and |
| another to load the state back. |
| |
| .. code:: c |
| |
| int register_savevm(DeviceState *dev, |
| const char *idstr, |
| int instance_id, |
| int version_id, |
| SaveStateHandler *save_state, |
| LoadStateHandler *load_state, |
| void *opaque); |
| |
| typedef void SaveStateHandler(QEMUFile *f, void *opaque); |
| typedef int LoadStateHandler(QEMUFile *f, void *opaque, int version_id); |
| |
| The important functions for the device state format are the `save_state` |
| and `load_state`. Notice that `load_state` receives a version_id |
| parameter to know what state format is receiving. `save_state` doesn't |
| have a version_id parameter because it always uses the latest version. |
| |
| VMState |
| ------- |
| |
| The legacy way of saving/loading state of the device had the problem |
| that we have to maintain two functions in sync. If we did one change |
| in one of them and not in the other, we would get a failed migration. |
| |
| VMState changed the way that state is saved/loaded. Instead of using |
| a function to save the state and another to load it, it was changed to |
| a declarative way of what the state consisted of. Now VMState is able |
| to interpret that definition to be able to load/save the state. As |
| the state is declared only once, it can't go out of sync in the |
| save/load functions. |
| |
| An example (from hw/input/pckbd.c) |
| |
| .. code:: c |
| |
| static const VMStateDescription vmstate_kbd = { |
| .name = "pckbd", |
| .version_id = 3, |
| .minimum_version_id = 3, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT8(write_cmd, KBDState), |
| VMSTATE_UINT8(status, KBDState), |
| VMSTATE_UINT8(mode, KBDState), |
| VMSTATE_UINT8(pending, KBDState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| We are declaring the state with name "pckbd". |
| The `version_id` is 3, and the fields are 4 uint8_t in a KBDState structure. |
| We registered this with: |
| |
| .. code:: c |
| |
| vmstate_register(NULL, 0, &vmstate_kbd, s); |
| |
| Note: talk about how vmstate <-> qdev interact, and what the instance ids mean. |
| |
| You can search for ``VMSTATE_*`` macros for lots of types used in QEMU in |
| include/hw/hw.h. |
| |
| More about versions |
| ------------------- |
| |
| Version numbers are intended for major incompatible changes to the |
| migration of a device, and using them breaks backwards-migration |
| compatibility; in general most changes can be made by adding Subsections |
| (see below) or _TEST macros (see below) which won't break compatibility. |
| |
| You can see that there are several version fields: |
| |
| - `version_id`: the maximum version_id supported by VMState for that device. |
| - `minimum_version_id`: the minimum version_id that VMState is able to understand |
| for that device. |
| - `minimum_version_id_old`: For devices that were not able to port to vmstate, we can |
| assign a function that knows how to read this old state. This field is |
| ignored if there is no `load_state_old` handler. |
| |
| So, VMState is able to read versions from minimum_version_id to |
| version_id. And the function ``load_state_old()`` (if present) is able to |
| load state from minimum_version_id_old to minimum_version_id. This |
| function is deprecated and will be removed when no more users are left. |
| |
| Saving state will always create a section with the 'version_id' value |
| and thus can't be loaded by any older QEMU. |
| |
| Massaging functions |
| ------------------- |
| |
| Sometimes, it is not enough to be able to save the state directly |
| from one structure, we need to fill the correct values there. One |
| example is when we are using kvm. Before saving the cpu state, we |
| need to ask kvm to copy to QEMU the state that it is using. And the |
| opposite when we are loading the state, we need a way to tell kvm to |
| load the state for the cpu that we have just loaded from the QEMUFile. |
| |
| The functions to do that are inside a vmstate definition, and are called: |
| |
| - ``int (*pre_load)(void *opaque);`` |
| |
| This function is called before we load the state of one device. |
| |
| - ``int (*post_load)(void *opaque, int version_id);`` |
| |
| This function is called after we load the state of one device. |
| |
| - ``int (*pre_save)(void *opaque);`` |
| |
| This function is called before we save the state of one device. |
| |
| Example: You can look at hpet.c, that uses the three function to |
| massage the state that is transferred. |
| |
| If you use memory API functions that update memory layout outside |
| initialization (i.e., in response to a guest action), this is a strong |
| indication that you need to call these functions in a `post_load` callback. |
| Examples of such memory API functions are: |
| |
| - memory_region_add_subregion() |
| - memory_region_del_subregion() |
| - memory_region_set_readonly() |
| - memory_region_set_enabled() |
| - memory_region_set_address() |
| - memory_region_set_alias_offset() |
| |
| Subsections |
| ----------- |
| |
| The use of version_id allows to be able to migrate from older versions |
| to newer versions of a device. But not the other way around. This |
| makes very complicated to fix bugs in stable branches. If we need to |
| add anything to the state to fix a bug, we have to disable migration |
| to older versions that don't have that bug-fix (i.e. a new field). |
| |
| But sometimes, that bug-fix is only needed sometimes, not always. For |
| instance, if the device is in the middle of a DMA operation, it is |
| using a specific functionality, .... |
| |
| It is impossible to create a way to make migration from any version to |
| any other version to work. But we can do better than only allowing |
| migration from older versions to newer ones. For that fields that are |
| only needed sometimes, we add the idea of subsections. A subsection |
| is "like" a device vmstate, but with a particularity, it has a Boolean |
| function that tells if that values are needed to be sent or not. If |
| this functions returns false, the subsection is not sent. |
| |
| On the receiving side, if we found a subsection for a device that we |
| don't understand, we just fail the migration. If we understand all |
| the subsections, then we load the state with success. |
| |
| One important note is that the post_load() function is called "after" |
| loading all subsections, because a newer subsection could change same |
| value that it uses. |
| |
| Example: |
| |
| .. code:: c |
| |
| static bool ide_drive_pio_state_needed(void *opaque) |
| { |
| IDEState *s = opaque; |
| |
| return ((s->status & DRQ_STAT) != 0) |
| || (s->bus->error_status & BM_STATUS_PIO_RETRY); |
| } |
| |
| const VMStateDescription vmstate_ide_drive_pio_state = { |
| .name = "ide_drive/pio_state", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .pre_save = ide_drive_pio_pre_save, |
| .post_load = ide_drive_pio_post_load, |
| .needed = ide_drive_pio_state_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_INT32(req_nb_sectors, IDEState), |
| VMSTATE_VARRAY_INT32(io_buffer, IDEState, io_buffer_total_len, 1, |
| vmstate_info_uint8, uint8_t), |
| VMSTATE_INT32(cur_io_buffer_offset, IDEState), |
| VMSTATE_INT32(cur_io_buffer_len, IDEState), |
| VMSTATE_UINT8(end_transfer_fn_idx, IDEState), |
| VMSTATE_INT32(elementary_transfer_size, IDEState), |
| VMSTATE_INT32(packet_transfer_size, IDEState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| const VMStateDescription vmstate_ide_drive = { |
| .name = "ide_drive", |
| .version_id = 3, |
| .minimum_version_id = 0, |
| .post_load = ide_drive_post_load, |
| .fields = (VMStateField[]) { |
| .... several fields .... |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &vmstate_ide_drive_pio_state, |
| NULL |
| } |
| }; |
| |
| Here we have a subsection for the pio state. We only need to |
| save/send this state when we are in the middle of a pio operation |
| (that is what ``ide_drive_pio_state_needed()`` checks). If DRQ_STAT is |
| not enabled, the values on that fields are garbage and don't need to |
| be sent. |
| |
| Using a condition function that checks a 'property' to determine whether |
| to send a subsection allows backwards migration compatibility when |
| new subsections are added. |
| |
| For example: |
| |
| a) Add a new property using ``DEFINE_PROP_BOOL`` - e.g. support-foo and |
| default it to true. |
| b) Add an entry to the ``HW_COMPAT_`` for the previous version that sets |
| the property to false. |
| c) Add a static bool support_foo function that tests the property. |
| d) Add a subsection with a .needed set to the support_foo function |
| e) (potentially) Add a pre_load that sets up a default value for 'foo' |
| to be used if the subsection isn't loaded. |
| |
| Now that subsection will not be generated when using an older |
| machine type and the migration stream will be accepted by older |
| QEMU versions. pre-load functions can be used to initialise state |
| on the newer version so that they default to suitable values |
| when loading streams created by older QEMU versions that do not |
| generate the subsection. |
| |
| In some cases subsections are added for data that had been accidentally |
| omitted by earlier versions; if the missing data causes the migration |
| process to succeed but the guest to behave badly then it may be better |
| to send the subsection and cause the migration to explicitly fail |
| with the unknown subsection error. If the bad behaviour only happens |
| with certain data values, making the subsection conditional on |
| the data value (rather than the machine type) allows migrations to succeed |
| in most cases. In general the preference is to tie the subsection to |
| the machine type, and allow reliable migrations, unless the behaviour |
| from omission of the subsection is really bad. |
| |
| Not sending existing elements |
| ----------------------------- |
| |
| Sometimes members of the VMState are no longer needed: |
| |
| - removing them will break migration compatibility |
| |
| - making them version dependent and bumping the version will break backwards migration compatibility. |
| |
| The best way is to: |
| |
| a) Add a new property/compatibility/function in the same way for subsections above. |
| b) replace the VMSTATE macro with the _TEST version of the macro, e.g.: |
| |
| ``VMSTATE_UINT32(foo, barstruct)`` |
| |
| becomes |
| |
| ``VMSTATE_UINT32_TEST(foo, barstruct, pre_version_baz)`` |
| |
| Sometime in the future when we no longer care about the ancient versions these can be killed off. |
| |
| Return path |
| ----------- |
| |
| In most migration scenarios there is only a single data path that runs |
| from the source VM to the destination, typically along a single fd (although |
| possibly with another fd or similar for some fast way of throwing pages across). |
| |
| However, some uses need two way communication; in particular the Postcopy |
| destination needs to be able to request pages on demand from the source. |
| |
| For these scenarios there is a 'return path' from the destination to the source; |
| ``qemu_file_get_return_path(QEMUFile* fwdpath)`` gives the QEMUFile* for the return |
| path. |
| |
| Source side |
| |
| Forward path - written by migration thread |
| Return path - opened by main thread, read by return-path thread |
| |
| Destination side |
| |
| Forward path - read by main thread |
| Return path - opened by main thread, written by main thread AND postcopy |
| thread (protected by rp_mutex) |
| |
| Postcopy |
| ======== |
| |
| 'Postcopy' migration is a way to deal with migrations that refuse to converge |
| (or take too long to converge) its plus side is that there is an upper bound on |
| the amount of migration traffic and time it takes, the down side is that during |
| the postcopy phase, a failure of *either* side or the network connection causes |
| the guest to be lost. |
| |
| In postcopy the destination CPUs are started before all the memory has been |
| transferred, and accesses to pages that are yet to be transferred cause |
| a fault that's translated by QEMU into a request to the source QEMU. |
| |
| Postcopy can be combined with precopy (i.e. normal migration) so that if precopy |
| doesn't finish in a given time the switch is made to postcopy. |
| |
| Enabling postcopy |
| ----------------- |
| |
| To enable postcopy, issue this command on the monitor prior to the |
| start of migration: |
| |
| ``migrate_set_capability postcopy-ram on`` |
| |
| The normal commands are then used to start a migration, which is still |
| started in precopy mode. Issuing: |
| |
| ``migrate_start_postcopy`` |
| |
| will now cause the transition from precopy to postcopy. |
| It can be issued immediately after migration is started or any |
| time later on. Issuing it after the end of a migration is harmless. |
| |
| .. note:: |
| During the postcopy phase, the bandwidth limits set using |
| ``migrate_set_speed`` is ignored (to avoid delaying requested pages that |
| the destination is waiting for). |
| |
| Postcopy device transfer |
| ------------------------ |
| |
| Loading of device data may cause the device emulation to access guest RAM |
| that may trigger faults that have to be resolved by the source, as such |
| the migration stream has to be able to respond with page data *during* the |
| device load, and hence the device data has to be read from the stream completely |
| before the device load begins to free the stream up. This is achieved by |
| 'packaging' the device data into a blob that's read in one go. |
| |
| Source behaviour |
| ---------------- |
| |
| Until postcopy is entered the migration stream is identical to normal |
| precopy, except for the addition of a 'postcopy advise' command at |
| the beginning, to tell the destination that postcopy might happen. |
| When postcopy starts the source sends the page discard data and then |
| forms the 'package' containing: |
| |
| - Command: 'postcopy listen' |
| - The device state |
| |
| A series of sections, identical to the precopy streams device state stream |
| containing everything except postcopiable devices (i.e. RAM) |
| - Command: 'postcopy run' |
| |
| The 'package' is sent as the data part of a Command: ``CMD_PACKAGED``, and the |
| contents are formatted in the same way as the main migration stream. |
| |
| During postcopy the source scans the list of dirty pages and sends them |
| to the destination without being requested (in much the same way as precopy), |
| however when a page request is received from the destination, the dirty page |
| scanning restarts from the requested location. This causes requested pages |
| to be sent quickly, and also causes pages directly after the requested page |
| to be sent quickly in the hope that those pages are likely to be used |
| by the destination soon. |
| |
| Destination behaviour |
| --------------------- |
| |
| Initially the destination looks the same as precopy, with a single thread |
| reading the migration stream; the 'postcopy advise' and 'discard' commands |
| are processed to change the way RAM is managed, but don't affect the stream |
| processing. |
| |
| :: |
| |
| ------------------------------------------------------------------------------ |
| 1 2 3 4 5 6 7 |
| main -----DISCARD-CMD_PACKAGED ( LISTEN DEVICE DEVICE DEVICE RUN ) |
| thread | | |
| | (page request) |
| | \___ |
| v \ |
| listen thread: --- page -- page -- page -- page -- page -- |
| |
| a b c |
| ------------------------------------------------------------------------------ |
| |
| - On receipt of ``CMD_PACKAGED`` (1) |
| |
| All the data associated with the package - the ( ... ) section in the diagram - |
| is read into memory, and the main thread recurses into qemu_loadvm_state_main |
| to process the contents of the package (2) which contains commands (3,6) and |
| devices (4...) |
| |
| - On receipt of 'postcopy listen' - 3 -(i.e. the 1st command in the package) |
| |
| a new thread (a) is started that takes over servicing the migration stream, |
| while the main thread carries on loading the package. It loads normal |
| background page data (b) but if during a device load a fault happens (5) |
| the returned page (c) is loaded by the listen thread allowing the main |
| threads device load to carry on. |
| |
| - The last thing in the ``CMD_PACKAGED`` is a 'RUN' command (6) |
| |
| letting the destination CPUs start running. At the end of the |
| ``CMD_PACKAGED`` (7) the main thread returns to normal running behaviour and |
| is no longer used by migration, while the listen thread carries on servicing |
| page data until the end of migration. |
| |
| Postcopy states |
| --------------- |
| |
| Postcopy moves through a series of states (see postcopy_state) from |
| ADVISE->DISCARD->LISTEN->RUNNING->END |
| |
| - Advise |
| |
| Set at the start of migration if postcopy is enabled, even |
| if it hasn't had the start command; here the destination |
| checks that its OS has the support needed for postcopy, and performs |
| setup to ensure the RAM mappings are suitable for later postcopy. |
| The destination will fail early in migration at this point if the |
| required OS support is not present. |
| (Triggered by reception of POSTCOPY_ADVISE command) |
| |
| - Discard |
| |
| Entered on receipt of the first 'discard' command; prior to |
| the first Discard being performed, hugepages are switched off |
| (using madvise) to ensure that no new huge pages are created |
| during the postcopy phase, and to cause any huge pages that |
| have discards on them to be broken. |
| |
| - Listen |
| |
| The first command in the package, POSTCOPY_LISTEN, switches |
| the destination state to Listen, and starts a new thread |
| (the 'listen thread') which takes over the job of receiving |
| pages off the migration stream, while the main thread carries |
| on processing the blob. With this thread able to process page |
| reception, the destination now 'sensitises' the RAM to detect |
| any access to missing pages (on Linux using the 'userfault' |
| system). |
| |
| - Running |
| |
| POSTCOPY_RUN causes the destination to synchronise all |
| state and start the CPUs and IO devices running. The main |
| thread now finishes processing the migration package and |
| now carries on as it would for normal precopy migration |
| (although it can't do the cleanup it would do as it |
| finishes a normal migration). |
| |
| - End |
| |
| The listen thread can now quit, and perform the cleanup of migration |
| state, the migration is now complete. |
| |
| Source side page maps |
| --------------------- |
| |
| The source side keeps two bitmaps during postcopy; 'the migration bitmap' |
| and 'unsent map'. The 'migration bitmap' is basically the same as in |
| the precopy case, and holds a bit to indicate that page is 'dirty' - |
| i.e. needs sending. During the precopy phase this is updated as the CPU |
| dirties pages, however during postcopy the CPUs are stopped and nothing |
| should dirty anything any more. |
| |
| The 'unsent map' is used for the transition to postcopy. It is a bitmap that |
| has a bit cleared whenever a page is sent to the destination, however during |
| the transition to postcopy mode it is combined with the migration bitmap |
| to form a set of pages that: |
| |
| a) Have been sent but then redirtied (which must be discarded) |
| b) Have not yet been sent - which also must be discarded to cause any |
| transparent huge pages built during precopy to be broken. |
| |
| Note that the contents of the unsentmap are sacrificed during the calculation |
| of the discard set and thus aren't valid once in postcopy. The dirtymap |
| is still valid and is used to ensure that no page is sent more than once. Any |
| request for a page that has already been sent is ignored. Duplicate requests |
| such as this can happen as a page is sent at about the same time the |
| destination accesses it. |
| |
| Postcopy with hugepages |
| ----------------------- |
| |
| Postcopy now works with hugetlbfs backed memory: |
| |
| a) The linux kernel on the destination must support userfault on hugepages. |
| b) The huge-page configuration on the source and destination VMs must be |
| identical; i.e. RAMBlocks on both sides must use the same page size. |
| c) Note that ``-mem-path /dev/hugepages`` will fall back to allocating normal |
| RAM if it doesn't have enough hugepages, triggering (b) to fail. |
| Using ``-mem-prealloc`` enforces the allocation using hugepages. |
| d) Care should be taken with the size of hugepage used; postcopy with 2MB |
| hugepages works well, however 1GB hugepages are likely to be problematic |
| since it takes ~1 second to transfer a 1GB hugepage across a 10Gbps link, |
| and until the full page is transferred the destination thread is blocked. |