| /* |
| * QEMU PC System Emulator |
| * |
| * Copyright (c) 2003-2004 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "hw/hw.h" |
| #include "hw/i386/pc.h" |
| #include "hw/char/serial.h" |
| #include "hw/i386/apic.h" |
| #include "hw/block/fdc.h" |
| #include "hw/ide.h" |
| #include "hw/pci/pci.h" |
| #include "monitor/monitor.h" |
| #include "hw/nvram/fw_cfg.h" |
| #include "hw/timer/hpet.h" |
| #include "hw/i386/smbios.h" |
| #include "hw/loader.h" |
| #include "elf.h" |
| #include "multiboot.h" |
| #include "hw/timer/mc146818rtc.h" |
| #include "hw/timer/i8254.h" |
| #include "hw/audio/pcspk.h" |
| #include "hw/pci/msi.h" |
| #include "hw/sysbus.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_i386.h" |
| #include "hw/xen/xen.h" |
| #include "sysemu/blockdev.h" |
| #include "hw/block/block.h" |
| #include "ui/qemu-spice.h" |
| #include "exec/memory.h" |
| #include "exec/address-spaces.h" |
| #include "sysemu/arch_init.h" |
| #include "qemu/bitmap.h" |
| #include "qemu/config-file.h" |
| #include "hw/acpi/acpi.h" |
| #include "hw/acpi/cpu_hotplug.h" |
| #include "hw/cpu/icc_bus.h" |
| #include "hw/boards.h" |
| #include "hw/pci/pci_host.h" |
| #include "acpi-build.h" |
| #include "hw/mem/pc-dimm.h" |
| #include "trace.h" |
| #include "qapi/visitor.h" |
| |
| /* debug PC/ISA interrupts */ |
| //#define DEBUG_IRQ |
| |
| #ifdef DEBUG_IRQ |
| #define DPRINTF(fmt, ...) \ |
| do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) |
| #endif |
| |
| /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ |
| #define ACPI_DATA_SIZE 0x10000 |
| #define BIOS_CFG_IOPORT 0x510 |
| #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) |
| #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) |
| #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) |
| #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) |
| #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) |
| |
| #define E820_NR_ENTRIES 16 |
| |
| struct e820_entry { |
| uint64_t address; |
| uint64_t length; |
| uint32_t type; |
| } QEMU_PACKED __attribute((__aligned__(4))); |
| |
| struct e820_table { |
| uint32_t count; |
| struct e820_entry entry[E820_NR_ENTRIES]; |
| } QEMU_PACKED __attribute((__aligned__(4))); |
| |
| static struct e820_table e820_reserve; |
| static struct e820_entry *e820_table; |
| static unsigned e820_entries; |
| struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; |
| |
| void gsi_handler(void *opaque, int n, int level) |
| { |
| GSIState *s = opaque; |
| |
| DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); |
| if (n < ISA_NUM_IRQS) { |
| qemu_set_irq(s->i8259_irq[n], level); |
| } |
| qemu_set_irq(s->ioapic_irq[n], level); |
| } |
| |
| static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, |
| unsigned size) |
| { |
| } |
| |
| static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| return 0xffffffffffffffffULL; |
| } |
| |
| /* MSDOS compatibility mode FPU exception support */ |
| static qemu_irq ferr_irq; |
| |
| void pc_register_ferr_irq(qemu_irq irq) |
| { |
| ferr_irq = irq; |
| } |
| |
| /* XXX: add IGNNE support */ |
| void cpu_set_ferr(CPUX86State *s) |
| { |
| qemu_irq_raise(ferr_irq); |
| } |
| |
| static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, |
| unsigned size) |
| { |
| qemu_irq_lower(ferr_irq); |
| } |
| |
| static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| return 0xffffffffffffffffULL; |
| } |
| |
| /* TSC handling */ |
| uint64_t cpu_get_tsc(CPUX86State *env) |
| { |
| return cpu_get_ticks(); |
| } |
| |
| /* SMM support */ |
| |
| static cpu_set_smm_t smm_set; |
| static void *smm_arg; |
| |
| void cpu_smm_register(cpu_set_smm_t callback, void *arg) |
| { |
| assert(smm_set == NULL); |
| assert(smm_arg == NULL); |
| smm_set = callback; |
| smm_arg = arg; |
| } |
| |
| void cpu_smm_update(CPUX86State *env) |
| { |
| if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) { |
| smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg); |
| } |
| } |
| |
| |
| /* IRQ handling */ |
| int cpu_get_pic_interrupt(CPUX86State *env) |
| { |
| X86CPU *cpu = x86_env_get_cpu(env); |
| int intno; |
| |
| intno = apic_get_interrupt(cpu->apic_state); |
| if (intno >= 0) { |
| return intno; |
| } |
| /* read the irq from the PIC */ |
| if (!apic_accept_pic_intr(cpu->apic_state)) { |
| return -1; |
| } |
| |
| intno = pic_read_irq(isa_pic); |
| return intno; |
| } |
| |
| static void pic_irq_request(void *opaque, int irq, int level) |
| { |
| CPUState *cs = first_cpu; |
| X86CPU *cpu = X86_CPU(cs); |
| |
| DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); |
| if (cpu->apic_state) { |
| CPU_FOREACH(cs) { |
| cpu = X86_CPU(cs); |
| if (apic_accept_pic_intr(cpu->apic_state)) { |
| apic_deliver_pic_intr(cpu->apic_state, level); |
| } |
| } |
| } else { |
| if (level) { |
| cpu_interrupt(cs, CPU_INTERRUPT_HARD); |
| } else { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); |
| } |
| } |
| } |
| |
| /* PC cmos mappings */ |
| |
| #define REG_EQUIPMENT_BYTE 0x14 |
| |
| static int cmos_get_fd_drive_type(FDriveType fd0) |
| { |
| int val; |
| |
| switch (fd0) { |
| case FDRIVE_DRV_144: |
| /* 1.44 Mb 3"5 drive */ |
| val = 4; |
| break; |
| case FDRIVE_DRV_288: |
| /* 2.88 Mb 3"5 drive */ |
| val = 5; |
| break; |
| case FDRIVE_DRV_120: |
| /* 1.2 Mb 5"5 drive */ |
| val = 2; |
| break; |
| case FDRIVE_DRV_NONE: |
| default: |
| val = 0; |
| break; |
| } |
| return val; |
| } |
| |
| static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, |
| int16_t cylinders, int8_t heads, int8_t sectors) |
| { |
| rtc_set_memory(s, type_ofs, 47); |
| rtc_set_memory(s, info_ofs, cylinders); |
| rtc_set_memory(s, info_ofs + 1, cylinders >> 8); |
| rtc_set_memory(s, info_ofs + 2, heads); |
| rtc_set_memory(s, info_ofs + 3, 0xff); |
| rtc_set_memory(s, info_ofs + 4, 0xff); |
| rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); |
| rtc_set_memory(s, info_ofs + 6, cylinders); |
| rtc_set_memory(s, info_ofs + 7, cylinders >> 8); |
| rtc_set_memory(s, info_ofs + 8, sectors); |
| } |
| |
| /* convert boot_device letter to something recognizable by the bios */ |
| static int boot_device2nibble(char boot_device) |
| { |
| switch(boot_device) { |
| case 'a': |
| case 'b': |
| return 0x01; /* floppy boot */ |
| case 'c': |
| return 0x02; /* hard drive boot */ |
| case 'd': |
| return 0x03; /* CD-ROM boot */ |
| case 'n': |
| return 0x04; /* Network boot */ |
| } |
| return 0; |
| } |
| |
| static int set_boot_dev(ISADevice *s, const char *boot_device) |
| { |
| #define PC_MAX_BOOT_DEVICES 3 |
| int nbds, bds[3] = { 0, }; |
| int i; |
| |
| nbds = strlen(boot_device); |
| if (nbds > PC_MAX_BOOT_DEVICES) { |
| error_report("Too many boot devices for PC"); |
| return(1); |
| } |
| for (i = 0; i < nbds; i++) { |
| bds[i] = boot_device2nibble(boot_device[i]); |
| if (bds[i] == 0) { |
| error_report("Invalid boot device for PC: '%c'", |
| boot_device[i]); |
| return(1); |
| } |
| } |
| rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); |
| rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); |
| return(0); |
| } |
| |
| static int pc_boot_set(void *opaque, const char *boot_device) |
| { |
| return set_boot_dev(opaque, boot_device); |
| } |
| |
| typedef struct pc_cmos_init_late_arg { |
| ISADevice *rtc_state; |
| BusState *idebus[2]; |
| } pc_cmos_init_late_arg; |
| |
| static void pc_cmos_init_late(void *opaque) |
| { |
| pc_cmos_init_late_arg *arg = opaque; |
| ISADevice *s = arg->rtc_state; |
| int16_t cylinders; |
| int8_t heads, sectors; |
| int val; |
| int i, trans; |
| |
| val = 0; |
| if (ide_get_geometry(arg->idebus[0], 0, |
| &cylinders, &heads, §ors) >= 0) { |
| cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); |
| val |= 0xf0; |
| } |
| if (ide_get_geometry(arg->idebus[0], 1, |
| &cylinders, &heads, §ors) >= 0) { |
| cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); |
| val |= 0x0f; |
| } |
| rtc_set_memory(s, 0x12, val); |
| |
| val = 0; |
| for (i = 0; i < 4; i++) { |
| /* NOTE: ide_get_geometry() returns the physical |
| geometry. It is always such that: 1 <= sects <= 63, 1 |
| <= heads <= 16, 1 <= cylinders <= 16383. The BIOS |
| geometry can be different if a translation is done. */ |
| if (ide_get_geometry(arg->idebus[i / 2], i % 2, |
| &cylinders, &heads, §ors) >= 0) { |
| trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; |
| assert((trans & ~3) == 0); |
| val |= trans << (i * 2); |
| } |
| } |
| rtc_set_memory(s, 0x39, val); |
| |
| qemu_unregister_reset(pc_cmos_init_late, opaque); |
| } |
| |
| typedef struct RTCCPUHotplugArg { |
| Notifier cpu_added_notifier; |
| ISADevice *rtc_state; |
| } RTCCPUHotplugArg; |
| |
| static void rtc_notify_cpu_added(Notifier *notifier, void *data) |
| { |
| RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg, |
| cpu_added_notifier); |
| ISADevice *s = arg->rtc_state; |
| |
| /* increment the number of CPUs */ |
| rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1); |
| } |
| |
| void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, |
| const char *boot_device, |
| ISADevice *floppy, BusState *idebus0, BusState *idebus1, |
| ISADevice *s) |
| { |
| int val, nb, i; |
| FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE }; |
| static pc_cmos_init_late_arg arg; |
| static RTCCPUHotplugArg cpu_hotplug_cb; |
| |
| /* various important CMOS locations needed by PC/Bochs bios */ |
| |
| /* memory size */ |
| /* base memory (first MiB) */ |
| val = MIN(ram_size / 1024, 640); |
| rtc_set_memory(s, 0x15, val); |
| rtc_set_memory(s, 0x16, val >> 8); |
| /* extended memory (next 64MiB) */ |
| if (ram_size > 1024 * 1024) { |
| val = (ram_size - 1024 * 1024) / 1024; |
| } else { |
| val = 0; |
| } |
| if (val > 65535) |
| val = 65535; |
| rtc_set_memory(s, 0x17, val); |
| rtc_set_memory(s, 0x18, val >> 8); |
| rtc_set_memory(s, 0x30, val); |
| rtc_set_memory(s, 0x31, val >> 8); |
| /* memory between 16MiB and 4GiB */ |
| if (ram_size > 16 * 1024 * 1024) { |
| val = (ram_size - 16 * 1024 * 1024) / 65536; |
| } else { |
| val = 0; |
| } |
| if (val > 65535) |
| val = 65535; |
| rtc_set_memory(s, 0x34, val); |
| rtc_set_memory(s, 0x35, val >> 8); |
| /* memory above 4GiB */ |
| val = above_4g_mem_size / 65536; |
| rtc_set_memory(s, 0x5b, val); |
| rtc_set_memory(s, 0x5c, val >> 8); |
| rtc_set_memory(s, 0x5d, val >> 16); |
| |
| /* set the number of CPU */ |
| rtc_set_memory(s, 0x5f, smp_cpus - 1); |
| /* init CPU hotplug notifier */ |
| cpu_hotplug_cb.rtc_state = s; |
| cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added; |
| qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier); |
| |
| if (set_boot_dev(s, boot_device)) { |
| exit(1); |
| } |
| |
| /* floppy type */ |
| if (floppy) { |
| for (i = 0; i < 2; i++) { |
| fd_type[i] = isa_fdc_get_drive_type(floppy, i); |
| } |
| } |
| val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | |
| cmos_get_fd_drive_type(fd_type[1]); |
| rtc_set_memory(s, 0x10, val); |
| |
| val = 0; |
| nb = 0; |
| if (fd_type[0] < FDRIVE_DRV_NONE) { |
| nb++; |
| } |
| if (fd_type[1] < FDRIVE_DRV_NONE) { |
| nb++; |
| } |
| switch (nb) { |
| case 0: |
| break; |
| case 1: |
| val |= 0x01; /* 1 drive, ready for boot */ |
| break; |
| case 2: |
| val |= 0x41; /* 2 drives, ready for boot */ |
| break; |
| } |
| val |= 0x02; /* FPU is there */ |
| val |= 0x04; /* PS/2 mouse installed */ |
| rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); |
| |
| /* hard drives */ |
| arg.rtc_state = s; |
| arg.idebus[0] = idebus0; |
| arg.idebus[1] = idebus1; |
| qemu_register_reset(pc_cmos_init_late, &arg); |
| } |
| |
| #define TYPE_PORT92 "port92" |
| #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) |
| |
| /* port 92 stuff: could be split off */ |
| typedef struct Port92State { |
| ISADevice parent_obj; |
| |
| MemoryRegion io; |
| uint8_t outport; |
| qemu_irq *a20_out; |
| } Port92State; |
| |
| static void port92_write(void *opaque, hwaddr addr, uint64_t val, |
| unsigned size) |
| { |
| Port92State *s = opaque; |
| int oldval = s->outport; |
| |
| DPRINTF("port92: write 0x%02x\n", val); |
| s->outport = val; |
| qemu_set_irq(*s->a20_out, (val >> 1) & 1); |
| if ((val & 1) && !(oldval & 1)) { |
| qemu_system_reset_request(); |
| } |
| } |
| |
| static uint64_t port92_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| Port92State *s = opaque; |
| uint32_t ret; |
| |
| ret = s->outport; |
| DPRINTF("port92: read 0x%02x\n", ret); |
| return ret; |
| } |
| |
| static void port92_init(ISADevice *dev, qemu_irq *a20_out) |
| { |
| Port92State *s = PORT92(dev); |
| |
| s->a20_out = a20_out; |
| } |
| |
| static const VMStateDescription vmstate_port92_isa = { |
| .name = "port92", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT8(outport, Port92State), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void port92_reset(DeviceState *d) |
| { |
| Port92State *s = PORT92(d); |
| |
| s->outport &= ~1; |
| } |
| |
| static const MemoryRegionOps port92_ops = { |
| .read = port92_read, |
| .write = port92_write, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 1, |
| }, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void port92_initfn(Object *obj) |
| { |
| Port92State *s = PORT92(obj); |
| |
| memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); |
| |
| s->outport = 0; |
| } |
| |
| static void port92_realizefn(DeviceState *dev, Error **errp) |
| { |
| ISADevice *isadev = ISA_DEVICE(dev); |
| Port92State *s = PORT92(dev); |
| |
| isa_register_ioport(isadev, &s->io, 0x92); |
| } |
| |
| static void port92_class_initfn(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = port92_realizefn; |
| dc->reset = port92_reset; |
| dc->vmsd = &vmstate_port92_isa; |
| /* |
| * Reason: unlike ordinary ISA devices, this one needs additional |
| * wiring: its A20 output line needs to be wired up by |
| * port92_init(). |
| */ |
| dc->cannot_instantiate_with_device_add_yet = true; |
| } |
| |
| static const TypeInfo port92_info = { |
| .name = TYPE_PORT92, |
| .parent = TYPE_ISA_DEVICE, |
| .instance_size = sizeof(Port92State), |
| .instance_init = port92_initfn, |
| .class_init = port92_class_initfn, |
| }; |
| |
| static void port92_register_types(void) |
| { |
| type_register_static(&port92_info); |
| } |
| |
| type_init(port92_register_types) |
| |
| static void handle_a20_line_change(void *opaque, int irq, int level) |
| { |
| X86CPU *cpu = opaque; |
| |
| /* XXX: send to all CPUs ? */ |
| /* XXX: add logic to handle multiple A20 line sources */ |
| x86_cpu_set_a20(cpu, level); |
| } |
| |
| int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) |
| { |
| int index = le32_to_cpu(e820_reserve.count); |
| struct e820_entry *entry; |
| |
| if (type != E820_RAM) { |
| /* old FW_CFG_E820_TABLE entry -- reservations only */ |
| if (index >= E820_NR_ENTRIES) { |
| return -EBUSY; |
| } |
| entry = &e820_reserve.entry[index++]; |
| |
| entry->address = cpu_to_le64(address); |
| entry->length = cpu_to_le64(length); |
| entry->type = cpu_to_le32(type); |
| |
| e820_reserve.count = cpu_to_le32(index); |
| } |
| |
| /* new "etc/e820" file -- include ram too */ |
| e820_table = g_realloc(e820_table, |
| sizeof(struct e820_entry) * (e820_entries+1)); |
| e820_table[e820_entries].address = cpu_to_le64(address); |
| e820_table[e820_entries].length = cpu_to_le64(length); |
| e820_table[e820_entries].type = cpu_to_le32(type); |
| e820_entries++; |
| |
| return e820_entries; |
| } |
| |
| int e820_get_num_entries(void) |
| { |
| return e820_entries; |
| } |
| |
| bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) |
| { |
| if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { |
| *address = le64_to_cpu(e820_table[idx].address); |
| *length = le64_to_cpu(e820_table[idx].length); |
| return true; |
| } |
| return false; |
| } |
| |
| /* Calculates the limit to CPU APIC ID values |
| * |
| * This function returns the limit for the APIC ID value, so that all |
| * CPU APIC IDs are < pc_apic_id_limit(). |
| * |
| * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). |
| */ |
| static unsigned int pc_apic_id_limit(unsigned int max_cpus) |
| { |
| return x86_cpu_apic_id_from_index(max_cpus - 1) + 1; |
| } |
| |
| static FWCfgState *bochs_bios_init(void) |
| { |
| FWCfgState *fw_cfg; |
| uint8_t *smbios_tables, *smbios_anchor; |
| size_t smbios_tables_len, smbios_anchor_len; |
| uint64_t *numa_fw_cfg; |
| int i, j; |
| unsigned int apic_id_limit = pc_apic_id_limit(max_cpus); |
| |
| fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); |
| /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: |
| * |
| * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug |
| * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC |
| * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the |
| * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS |
| * may see". |
| * |
| * So, this means we must not use max_cpus, here, but the maximum possible |
| * APIC ID value, plus one. |
| * |
| * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is |
| * the APIC ID, not the "CPU index" |
| */ |
| fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); |
| fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, |
| acpi_tables, acpi_tables_len); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); |
| |
| smbios_tables = smbios_get_table_legacy(&smbios_tables_len); |
| if (smbios_tables) { |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, |
| smbios_tables, smbios_tables_len); |
| } |
| |
| smbios_get_tables(&smbios_tables, &smbios_tables_len, |
| &smbios_anchor, &smbios_anchor_len); |
| if (smbios_anchor) { |
| fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", |
| smbios_tables, smbios_tables_len); |
| fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", |
| smbios_anchor, smbios_anchor_len); |
| } |
| |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, |
| &e820_reserve, sizeof(e820_reserve)); |
| fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, |
| sizeof(struct e820_entry) * e820_entries); |
| |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); |
| /* allocate memory for the NUMA channel: one (64bit) word for the number |
| * of nodes, one word for each VCPU->node and one word for each node to |
| * hold the amount of memory. |
| */ |
| numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); |
| numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); |
| for (i = 0; i < max_cpus; i++) { |
| unsigned int apic_id = x86_cpu_apic_id_from_index(i); |
| assert(apic_id < apic_id_limit); |
| for (j = 0; j < nb_numa_nodes; j++) { |
| if (test_bit(i, node_cpumask[j])) { |
| numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); |
| break; |
| } |
| } |
| } |
| for (i = 0; i < nb_numa_nodes; i++) { |
| numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]); |
| } |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, |
| (1 + apic_id_limit + nb_numa_nodes) * |
| sizeof(*numa_fw_cfg)); |
| |
| return fw_cfg; |
| } |
| |
| static long get_file_size(FILE *f) |
| { |
| long where, size; |
| |
| /* XXX: on Unix systems, using fstat() probably makes more sense */ |
| |
| where = ftell(f); |
| fseek(f, 0, SEEK_END); |
| size = ftell(f); |
| fseek(f, where, SEEK_SET); |
| |
| return size; |
| } |
| |
| static void load_linux(FWCfgState *fw_cfg, |
| const char *kernel_filename, |
| const char *initrd_filename, |
| const char *kernel_cmdline, |
| hwaddr max_ram_size) |
| { |
| uint16_t protocol; |
| int setup_size, kernel_size, initrd_size = 0, cmdline_size; |
| uint32_t initrd_max; |
| uint8_t header[8192], *setup, *kernel, *initrd_data; |
| hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; |
| FILE *f; |
| char *vmode; |
| |
| /* Align to 16 bytes as a paranoia measure */ |
| cmdline_size = (strlen(kernel_cmdline)+16) & ~15; |
| |
| /* load the kernel header */ |
| f = fopen(kernel_filename, "rb"); |
| if (!f || !(kernel_size = get_file_size(f)) || |
| fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != |
| MIN(ARRAY_SIZE(header), kernel_size)) { |
| fprintf(stderr, "qemu: could not load kernel '%s': %s\n", |
| kernel_filename, strerror(errno)); |
| exit(1); |
| } |
| |
| /* kernel protocol version */ |
| #if 0 |
| fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); |
| #endif |
| if (ldl_p(header+0x202) == 0x53726448) { |
| protocol = lduw_p(header+0x206); |
| } else { |
| /* This looks like a multiboot kernel. If it is, let's stop |
| treating it like a Linux kernel. */ |
| if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, |
| kernel_cmdline, kernel_size, header)) { |
| return; |
| } |
| protocol = 0; |
| } |
| |
| if (protocol < 0x200 || !(header[0x211] & 0x01)) { |
| /* Low kernel */ |
| real_addr = 0x90000; |
| cmdline_addr = 0x9a000 - cmdline_size; |
| prot_addr = 0x10000; |
| } else if (protocol < 0x202) { |
| /* High but ancient kernel */ |
| real_addr = 0x90000; |
| cmdline_addr = 0x9a000 - cmdline_size; |
| prot_addr = 0x100000; |
| } else { |
| /* High and recent kernel */ |
| real_addr = 0x10000; |
| cmdline_addr = 0x20000; |
| prot_addr = 0x100000; |
| } |
| |
| #if 0 |
| fprintf(stderr, |
| "qemu: real_addr = 0x" TARGET_FMT_plx "\n" |
| "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" |
| "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", |
| real_addr, |
| cmdline_addr, |
| prot_addr); |
| #endif |
| |
| /* highest address for loading the initrd */ |
| if (protocol >= 0x203) { |
| initrd_max = ldl_p(header+0x22c); |
| } else { |
| initrd_max = 0x37ffffff; |
| } |
| |
| if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) |
| initrd_max = max_ram_size-ACPI_DATA_SIZE-1; |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); |
| fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); |
| |
| if (protocol >= 0x202) { |
| stl_p(header+0x228, cmdline_addr); |
| } else { |
| stw_p(header+0x20, 0xA33F); |
| stw_p(header+0x22, cmdline_addr-real_addr); |
| } |
| |
| /* handle vga= parameter */ |
| vmode = strstr(kernel_cmdline, "vga="); |
| if (vmode) { |
| unsigned int video_mode; |
| /* skip "vga=" */ |
| vmode += 4; |
| if (!strncmp(vmode, "normal", 6)) { |
| video_mode = 0xffff; |
| } else if (!strncmp(vmode, "ext", 3)) { |
| video_mode = 0xfffe; |
| } else if (!strncmp(vmode, "ask", 3)) { |
| video_mode = 0xfffd; |
| } else { |
| video_mode = strtol(vmode, NULL, 0); |
| } |
| stw_p(header+0x1fa, video_mode); |
| } |
| |
| /* loader type */ |
| /* High nybble = B reserved for QEMU; low nybble is revision number. |
| If this code is substantially changed, you may want to consider |
| incrementing the revision. */ |
| if (protocol >= 0x200) { |
| header[0x210] = 0xB0; |
| } |
| /* heap */ |
| if (protocol >= 0x201) { |
| header[0x211] |= 0x80; /* CAN_USE_HEAP */ |
| stw_p(header+0x224, cmdline_addr-real_addr-0x200); |
| } |
| |
| /* load initrd */ |
| if (initrd_filename) { |
| if (protocol < 0x200) { |
| fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); |
| exit(1); |
| } |
| |
| initrd_size = get_image_size(initrd_filename); |
| if (initrd_size < 0) { |
| fprintf(stderr, "qemu: error reading initrd %s: %s\n", |
| initrd_filename, strerror(errno)); |
| exit(1); |
| } |
| |
| initrd_addr = (initrd_max-initrd_size) & ~4095; |
| |
| initrd_data = g_malloc(initrd_size); |
| load_image(initrd_filename, initrd_data); |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); |
| |
| stl_p(header+0x218, initrd_addr); |
| stl_p(header+0x21c, initrd_size); |
| } |
| |
| /* load kernel and setup */ |
| setup_size = header[0x1f1]; |
| if (setup_size == 0) { |
| setup_size = 4; |
| } |
| setup_size = (setup_size+1)*512; |
| kernel_size -= setup_size; |
| |
| setup = g_malloc(setup_size); |
| kernel = g_malloc(kernel_size); |
| fseek(f, 0, SEEK_SET); |
| if (fread(setup, 1, setup_size, f) != setup_size) { |
| fprintf(stderr, "fread() failed\n"); |
| exit(1); |
| } |
| if (fread(kernel, 1, kernel_size, f) != kernel_size) { |
| fprintf(stderr, "fread() failed\n"); |
| exit(1); |
| } |
| fclose(f); |
| memcpy(setup, header, MIN(sizeof(header), setup_size)); |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); |
| |
| option_rom[nb_option_roms].name = "linuxboot.bin"; |
| option_rom[nb_option_roms].bootindex = 0; |
| nb_option_roms++; |
| } |
| |
| #define NE2000_NB_MAX 6 |
| |
| static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, |
| 0x280, 0x380 }; |
| static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; |
| |
| void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) |
| { |
| static int nb_ne2k = 0; |
| |
| if (nb_ne2k == NE2000_NB_MAX) |
| return; |
| isa_ne2000_init(bus, ne2000_io[nb_ne2k], |
| ne2000_irq[nb_ne2k], nd); |
| nb_ne2k++; |
| } |
| |
| DeviceState *cpu_get_current_apic(void) |
| { |
| if (current_cpu) { |
| X86CPU *cpu = X86_CPU(current_cpu); |
| return cpu->apic_state; |
| } else { |
| return NULL; |
| } |
| } |
| |
| void pc_acpi_smi_interrupt(void *opaque, int irq, int level) |
| { |
| X86CPU *cpu = opaque; |
| |
| if (level) { |
| cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); |
| } |
| } |
| |
| static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id, |
| DeviceState *icc_bridge, Error **errp) |
| { |
| X86CPU *cpu; |
| Error *local_err = NULL; |
| |
| cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err); |
| if (local_err != NULL) { |
| error_propagate(errp, local_err); |
| return NULL; |
| } |
| |
| object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); |
| object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); |
| |
| if (local_err) { |
| error_propagate(errp, local_err); |
| object_unref(OBJECT(cpu)); |
| cpu = NULL; |
| } |
| return cpu; |
| } |
| |
| static const char *current_cpu_model; |
| |
| void pc_hot_add_cpu(const int64_t id, Error **errp) |
| { |
| DeviceState *icc_bridge; |
| int64_t apic_id = x86_cpu_apic_id_from_index(id); |
| |
| if (id < 0) { |
| error_setg(errp, "Invalid CPU id: %" PRIi64, id); |
| return; |
| } |
| |
| if (cpu_exists(apic_id)) { |
| error_setg(errp, "Unable to add CPU: %" PRIi64 |
| ", it already exists", id); |
| return; |
| } |
| |
| if (id >= max_cpus) { |
| error_setg(errp, "Unable to add CPU: %" PRIi64 |
| ", max allowed: %d", id, max_cpus - 1); |
| return; |
| } |
| |
| if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { |
| error_setg(errp, "Unable to add CPU: %" PRIi64 |
| ", resulting APIC ID (%" PRIi64 ") is too large", |
| id, apic_id); |
| return; |
| } |
| |
| icc_bridge = DEVICE(object_resolve_path_type("icc-bridge", |
| TYPE_ICC_BRIDGE, NULL)); |
| pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp); |
| } |
| |
| void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge) |
| { |
| int i; |
| X86CPU *cpu = NULL; |
| Error *error = NULL; |
| unsigned long apic_id_limit; |
| |
| /* init CPUs */ |
| if (cpu_model == NULL) { |
| #ifdef TARGET_X86_64 |
| cpu_model = "qemu64"; |
| #else |
| cpu_model = "qemu32"; |
| #endif |
| } |
| current_cpu_model = cpu_model; |
| |
| apic_id_limit = pc_apic_id_limit(max_cpus); |
| if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) { |
| error_report("max_cpus is too large. APIC ID of last CPU is %lu", |
| apic_id_limit - 1); |
| exit(1); |
| } |
| |
| for (i = 0; i < smp_cpus; i++) { |
| cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i), |
| icc_bridge, &error); |
| if (error) { |
| error_report("%s", error_get_pretty(error)); |
| error_free(error); |
| exit(1); |
| } |
| } |
| |
| /* map APIC MMIO area if CPU has APIC */ |
| if (cpu && cpu->apic_state) { |
| /* XXX: what if the base changes? */ |
| sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0, |
| APIC_DEFAULT_ADDRESS, 0x1000); |
| } |
| |
| /* tell smbios about cpuid version and features */ |
| smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); |
| } |
| |
| /* pci-info ROM file. Little endian format */ |
| typedef struct PcRomPciInfo { |
| uint64_t w32_min; |
| uint64_t w32_max; |
| uint64_t w64_min; |
| uint64_t w64_max; |
| } PcRomPciInfo; |
| |
| static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info) |
| { |
| PcRomPciInfo *info; |
| Object *pci_info; |
| bool ambiguous = false; |
| |
| if (!guest_info->has_pci_info || !guest_info->fw_cfg) { |
| return; |
| } |
| pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous); |
| g_assert(!ambiguous); |
| if (!pci_info) { |
| return; |
| } |
| |
| info = g_malloc(sizeof *info); |
| info->w32_min = cpu_to_le64(object_property_get_int(pci_info, |
| PCI_HOST_PROP_PCI_HOLE_START, NULL)); |
| info->w32_max = cpu_to_le64(object_property_get_int(pci_info, |
| PCI_HOST_PROP_PCI_HOLE_END, NULL)); |
| info->w64_min = cpu_to_le64(object_property_get_int(pci_info, |
| PCI_HOST_PROP_PCI_HOLE64_START, NULL)); |
| info->w64_max = cpu_to_le64(object_property_get_int(pci_info, |
| PCI_HOST_PROP_PCI_HOLE64_END, NULL)); |
| /* Pass PCI hole info to guest via a side channel. |
| * Required so guest PCI enumeration does the right thing. */ |
| fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info); |
| } |
| |
| typedef struct PcGuestInfoState { |
| PcGuestInfo info; |
| Notifier machine_done; |
| } PcGuestInfoState; |
| |
| static |
| void pc_guest_info_machine_done(Notifier *notifier, void *data) |
| { |
| PcGuestInfoState *guest_info_state = container_of(notifier, |
| PcGuestInfoState, |
| machine_done); |
| pc_fw_cfg_guest_info(&guest_info_state->info); |
| acpi_setup(&guest_info_state->info); |
| } |
| |
| PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size, |
| ram_addr_t above_4g_mem_size) |
| { |
| PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); |
| PcGuestInfo *guest_info = &guest_info_state->info; |
| int i, j; |
| |
| guest_info->ram_size_below_4g = below_4g_mem_size; |
| guest_info->ram_size = below_4g_mem_size + above_4g_mem_size; |
| guest_info->apic_id_limit = pc_apic_id_limit(max_cpus); |
| guest_info->apic_xrupt_override = kvm_allows_irq0_override(); |
| guest_info->numa_nodes = nb_numa_nodes; |
| guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes * |
| sizeof *guest_info->node_mem); |
| guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit * |
| sizeof *guest_info->node_cpu); |
| |
| for (i = 0; i < max_cpus; i++) { |
| unsigned int apic_id = x86_cpu_apic_id_from_index(i); |
| assert(apic_id < guest_info->apic_id_limit); |
| for (j = 0; j < nb_numa_nodes; j++) { |
| if (test_bit(i, node_cpumask[j])) { |
| guest_info->node_cpu[apic_id] = j; |
| break; |
| } |
| } |
| } |
| |
| guest_info_state->machine_done.notify = pc_guest_info_machine_done; |
| qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); |
| return guest_info; |
| } |
| |
| /* setup pci memory address space mapping into system address space */ |
| void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, |
| MemoryRegion *pci_address_space) |
| { |
| /* Set to lower priority than RAM */ |
| memory_region_add_subregion_overlap(system_memory, 0x0, |
| pci_address_space, -1); |
| } |
| |
| void pc_acpi_init(const char *default_dsdt) |
| { |
| char *filename; |
| |
| if (acpi_tables != NULL) { |
| /* manually set via -acpitable, leave it alone */ |
| return; |
| } |
| |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); |
| if (filename == NULL) { |
| fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); |
| } else { |
| char *arg; |
| QemuOpts *opts; |
| Error *err = NULL; |
| |
| arg = g_strdup_printf("file=%s", filename); |
| |
| /* creates a deep copy of "arg" */ |
| opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0); |
| g_assert(opts != NULL); |
| |
| acpi_table_add_builtin(opts, &err); |
| if (err) { |
| error_report("WARNING: failed to load %s: %s", filename, |
| error_get_pretty(err)); |
| error_free(err); |
| } |
| g_free(arg); |
| g_free(filename); |
| } |
| } |
| |
| FWCfgState *pc_memory_init(MemoryRegion *system_memory, |
| const char *kernel_filename, |
| const char *kernel_cmdline, |
| const char *initrd_filename, |
| ram_addr_t below_4g_mem_size, |
| ram_addr_t above_4g_mem_size, |
| MemoryRegion *rom_memory, |
| MemoryRegion **ram_memory, |
| PcGuestInfo *guest_info) |
| { |
| int linux_boot, i; |
| MemoryRegion *ram, *option_rom_mr; |
| MemoryRegion *ram_below_4g, *ram_above_4g; |
| FWCfgState *fw_cfg; |
| ram_addr_t ram_size = below_4g_mem_size + above_4g_mem_size; |
| MachineState *machine = MACHINE(qdev_get_machine()); |
| PCMachineState *pcms = PC_MACHINE(machine); |
| |
| linux_boot = (kernel_filename != NULL); |
| |
| /* Allocate RAM. We allocate it as a single memory region and use |
| * aliases to address portions of it, mostly for backwards compatibility |
| * with older qemus that used qemu_ram_alloc(). |
| */ |
| ram = g_malloc(sizeof(*ram)); |
| memory_region_init_ram(ram, NULL, "pc.ram", ram_size); |
| vmstate_register_ram_global(ram); |
| *ram_memory = ram; |
| ram_below_4g = g_malloc(sizeof(*ram_below_4g)); |
| memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, |
| 0, below_4g_mem_size); |
| memory_region_add_subregion(system_memory, 0, ram_below_4g); |
| e820_add_entry(0, below_4g_mem_size, E820_RAM); |
| if (above_4g_mem_size > 0) { |
| ram_above_4g = g_malloc(sizeof(*ram_above_4g)); |
| memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, |
| below_4g_mem_size, above_4g_mem_size); |
| memory_region_add_subregion(system_memory, 0x100000000ULL, |
| ram_above_4g); |
| e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM); |
| } |
| |
| if (!guest_info->has_reserved_memory && |
| (machine->ram_slots || |
| (machine->maxram_size > ram_size))) { |
| MachineClass *mc = MACHINE_GET_CLASS(machine); |
| |
| error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", |
| mc->name); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* initialize hotplug memory address space */ |
| if (guest_info->has_reserved_memory && |
| (ram_size < machine->maxram_size)) { |
| ram_addr_t hotplug_mem_size = |
| machine->maxram_size - ram_size; |
| |
| if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { |
| error_report("unsupported amount of memory slots: %"PRIu64, |
| machine->ram_slots); |
| exit(EXIT_FAILURE); |
| } |
| |
| pcms->hotplug_memory_base = |
| ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30); |
| |
| if ((pcms->hotplug_memory_base + hotplug_mem_size) < |
| hotplug_mem_size) { |
| error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, |
| machine->maxram_size); |
| exit(EXIT_FAILURE); |
| } |
| |
| memory_region_init(&pcms->hotplug_memory, OBJECT(pcms), |
| "hotplug-memory", hotplug_mem_size); |
| memory_region_add_subregion(system_memory, pcms->hotplug_memory_base, |
| &pcms->hotplug_memory); |
| } |
| |
| /* Initialize PC system firmware */ |
| pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw); |
| |
| option_rom_mr = g_malloc(sizeof(*option_rom_mr)); |
| memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE); |
| vmstate_register_ram_global(option_rom_mr); |
| memory_region_add_subregion_overlap(rom_memory, |
| PC_ROM_MIN_VGA, |
| option_rom_mr, |
| 1); |
| |
| fw_cfg = bochs_bios_init(); |
| rom_set_fw(fw_cfg); |
| |
| if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) { |
| uint64_t *val = g_malloc(sizeof(*val)); |
| *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30)); |
| fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); |
| } |
| |
| if (linux_boot) { |
| load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size); |
| } |
| |
| for (i = 0; i < nb_option_roms; i++) { |
| rom_add_option(option_rom[i].name, option_rom[i].bootindex); |
| } |
| guest_info->fw_cfg = fw_cfg; |
| return fw_cfg; |
| } |
| |
| qemu_irq *pc_allocate_cpu_irq(void) |
| { |
| return qemu_allocate_irqs(pic_irq_request, NULL, 1); |
| } |
| |
| DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) |
| { |
| DeviceState *dev = NULL; |
| |
| if (pci_bus) { |
| PCIDevice *pcidev = pci_vga_init(pci_bus); |
| dev = pcidev ? &pcidev->qdev : NULL; |
| } else if (isa_bus) { |
| ISADevice *isadev = isa_vga_init(isa_bus); |
| dev = isadev ? DEVICE(isadev) : NULL; |
| } |
| return dev; |
| } |
| |
| static void cpu_request_exit(void *opaque, int irq, int level) |
| { |
| CPUState *cpu = current_cpu; |
| |
| if (cpu && level) { |
| cpu_exit(cpu); |
| } |
| } |
| |
| static const MemoryRegionOps ioport80_io_ops = { |
| .write = ioport80_write, |
| .read = ioport80_read, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 1, |
| }, |
| }; |
| |
| static const MemoryRegionOps ioportF0_io_ops = { |
| .write = ioportF0_write, |
| .read = ioportF0_read, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 1, |
| }, |
| }; |
| |
| void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, |
| ISADevice **rtc_state, |
| ISADevice **floppy, |
| bool no_vmport, |
| uint32 hpet_irqs) |
| { |
| int i; |
| DriveInfo *fd[MAX_FD]; |
| DeviceState *hpet = NULL; |
| int pit_isa_irq = 0; |
| qemu_irq pit_alt_irq = NULL; |
| qemu_irq rtc_irq = NULL; |
| qemu_irq *a20_line; |
| ISADevice *i8042, *port92, *vmmouse, *pit = NULL; |
| qemu_irq *cpu_exit_irq; |
| MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); |
| MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); |
| |
| memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); |
| memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); |
| |
| memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); |
| memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); |
| |
| /* |
| * Check if an HPET shall be created. |
| * |
| * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT |
| * when the HPET wants to take over. Thus we have to disable the latter. |
| */ |
| if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { |
| /* In order to set property, here not using sysbus_try_create_simple */ |
| hpet = qdev_try_create(NULL, TYPE_HPET); |
| if (hpet) { |
| /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 |
| * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, |
| * IRQ8 and IRQ2. |
| */ |
| uint8_t compat = object_property_get_int(OBJECT(hpet), |
| HPET_INTCAP, NULL); |
| if (!compat) { |
| qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); |
| } |
| qdev_init_nofail(hpet); |
| sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); |
| |
| for (i = 0; i < GSI_NUM_PINS; i++) { |
| sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); |
| } |
| pit_isa_irq = -1; |
| pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); |
| rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); |
| } |
| } |
| *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); |
| |
| qemu_register_boot_set(pc_boot_set, *rtc_state); |
| |
| if (!xen_enabled()) { |
| if (kvm_irqchip_in_kernel()) { |
| pit = kvm_pit_init(isa_bus, 0x40); |
| } else { |
| pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); |
| } |
| if (hpet) { |
| /* connect PIT to output control line of the HPET */ |
| qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); |
| } |
| pcspk_init(isa_bus, pit); |
| } |
| |
| for(i = 0; i < MAX_SERIAL_PORTS; i++) { |
| if (serial_hds[i]) { |
| serial_isa_init(isa_bus, i, serial_hds[i]); |
| } |
| } |
| |
| for(i = 0; i < MAX_PARALLEL_PORTS; i++) { |
| if (parallel_hds[i]) { |
| parallel_init(isa_bus, i, parallel_hds[i]); |
| } |
| } |
| |
| a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); |
| i8042 = isa_create_simple(isa_bus, "i8042"); |
| i8042_setup_a20_line(i8042, &a20_line[0]); |
| if (!no_vmport) { |
| vmport_init(isa_bus); |
| vmmouse = isa_try_create(isa_bus, "vmmouse"); |
| } else { |
| vmmouse = NULL; |
| } |
| if (vmmouse) { |
| DeviceState *dev = DEVICE(vmmouse); |
| qdev_prop_set_ptr(dev, "ps2_mouse", i8042); |
| qdev_init_nofail(dev); |
| } |
| port92 = isa_create_simple(isa_bus, "port92"); |
| port92_init(port92, &a20_line[1]); |
| |
| cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); |
| DMA_init(0, cpu_exit_irq); |
| |
| for(i = 0; i < MAX_FD; i++) { |
| fd[i] = drive_get(IF_FLOPPY, 0, i); |
| } |
| *floppy = fdctrl_init_isa(isa_bus, fd); |
| } |
| |
| void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) |
| { |
| int i; |
| |
| for (i = 0; i < nb_nics; i++) { |
| NICInfo *nd = &nd_table[i]; |
| |
| if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { |
| pc_init_ne2k_isa(isa_bus, nd); |
| } else { |
| pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); |
| } |
| } |
| } |
| |
| void pc_pci_device_init(PCIBus *pci_bus) |
| { |
| int max_bus; |
| int bus; |
| |
| max_bus = drive_get_max_bus(IF_SCSI); |
| for (bus = 0; bus <= max_bus; bus++) { |
| pci_create_simple(pci_bus, -1, "lsi53c895a"); |
| } |
| } |
| |
| void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) |
| { |
| DeviceState *dev; |
| SysBusDevice *d; |
| unsigned int i; |
| |
| if (kvm_irqchip_in_kernel()) { |
| dev = qdev_create(NULL, "kvm-ioapic"); |
| } else { |
| dev = qdev_create(NULL, "ioapic"); |
| } |
| if (parent_name) { |
| object_property_add_child(object_resolve_path(parent_name, NULL), |
| "ioapic", OBJECT(dev), NULL); |
| } |
| qdev_init_nofail(dev); |
| d = SYS_BUS_DEVICE(dev); |
| sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); |
| |
| for (i = 0; i < IOAPIC_NUM_PINS; i++) { |
| gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); |
| } |
| } |
| |
| static void pc_generic_machine_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| QEMUMachine *qm = data; |
| |
| mc->name = qm->name; |
| mc->alias = qm->alias; |
| mc->desc = qm->desc; |
| mc->init = qm->init; |
| mc->reset = qm->reset; |
| mc->hot_add_cpu = qm->hot_add_cpu; |
| mc->kvm_type = qm->kvm_type; |
| mc->block_default_type = qm->block_default_type; |
| mc->max_cpus = qm->max_cpus; |
| mc->no_serial = qm->no_serial; |
| mc->no_parallel = qm->no_parallel; |
| mc->use_virtcon = qm->use_virtcon; |
| mc->use_sclp = qm->use_sclp; |
| mc->no_floppy = qm->no_floppy; |
| mc->no_cdrom = qm->no_cdrom; |
| mc->no_sdcard = qm->no_sdcard; |
| mc->is_default = qm->is_default; |
| mc->default_machine_opts = qm->default_machine_opts; |
| mc->default_boot_order = qm->default_boot_order; |
| mc->compat_props = qm->compat_props; |
| mc->hw_version = qm->hw_version; |
| } |
| |
| void qemu_register_pc_machine(QEMUMachine *m) |
| { |
| char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL); |
| TypeInfo ti = { |
| .name = name, |
| .parent = TYPE_PC_MACHINE, |
| .class_init = pc_generic_machine_class_init, |
| .class_data = (void *)m, |
| }; |
| |
| type_register(&ti); |
| g_free(name); |
| } |
| |
| static void pc_dimm_plug(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| int slot; |
| HotplugHandlerClass *hhc; |
| Error *local_err = NULL; |
| PCMachineState *pcms = PC_MACHINE(hotplug_dev); |
| MachineState *machine = MACHINE(hotplug_dev); |
| PCDIMMDevice *dimm = PC_DIMM(dev); |
| PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); |
| MemoryRegion *mr = ddc->get_memory_region(dimm); |
| uint64_t addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, |
| &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base, |
| memory_region_size(&pcms->hotplug_memory), |
| !addr ? NULL : &addr, |
| memory_region_size(mr), &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| trace_mhp_pc_dimm_assigned_address(addr); |
| |
| slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot, |
| machine->ram_slots, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| trace_mhp_pc_dimm_assigned_slot(slot); |
| |
| if (!pcms->acpi_dev) { |
| error_setg(&local_err, |
| "memory hotplug is not enabled: missing acpi device"); |
| goto out; |
| } |
| |
| memory_region_add_subregion(&pcms->hotplug_memory, |
| addr - pcms->hotplug_memory_base, mr); |
| vmstate_register_ram(mr, dev); |
| |
| hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); |
| hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| pc_dimm_plug(hotplug_dev, dev, errp); |
| } |
| } |
| |
| static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, |
| DeviceState *dev) |
| { |
| PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); |
| |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| return HOTPLUG_HANDLER(machine); |
| } |
| |
| return pcmc->get_hotplug_handler ? |
| pcmc->get_hotplug_handler(machine, dev) : NULL; |
| } |
| |
| static void |
| pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque, |
| const char *name, Error **errp) |
| { |
| PCMachineState *pcms = PC_MACHINE(obj); |
| int64_t value = memory_region_size(&pcms->hotplug_memory); |
| |
| visit_type_int(v, &value, name, errp); |
| } |
| |
| static void pc_machine_initfn(Object *obj) |
| { |
| object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int", |
| pc_machine_get_hotplug_memory_region_size, |
| NULL, NULL, NULL, NULL); |
| } |
| |
| static void pc_machine_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); |
| HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); |
| |
| pcmc->get_hotplug_handler = mc->get_hotplug_handler; |
| mc->get_hotplug_handler = pc_get_hotpug_handler; |
| hc->plug = pc_machine_device_plug_cb; |
| } |
| |
| static const TypeInfo pc_machine_info = { |
| .name = TYPE_PC_MACHINE, |
| .parent = TYPE_MACHINE, |
| .abstract = true, |
| .instance_size = sizeof(PCMachineState), |
| .instance_init = pc_machine_initfn, |
| .class_size = sizeof(PCMachineClass), |
| .class_init = pc_machine_class_init, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_HOTPLUG_HANDLER }, |
| { } |
| }, |
| }; |
| |
| static void pc_machine_register_types(void) |
| { |
| type_register_static(&pc_machine_info); |
| } |
| |
| type_init(pc_machine_register_types) |