blob: fec1e1380f0b4f491ae20a847d53ade9d0c4eb1c [file] [log] [blame]
/*
* QEMU PC System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/hw.h"
#include "hw/i386/pc.h"
#include "hw/char/serial.h"
#include "hw/i386/apic.h"
#include "hw/block/fdc.h"
#include "hw/ide.h"
#include "hw/pci/pci.h"
#include "monitor/monitor.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/timer/hpet.h"
#include "hw/i386/smbios.h"
#include "hw/loader.h"
#include "elf.h"
#include "multiboot.h"
#include "hw/timer/mc146818rtc.h"
#include "hw/timer/i8254.h"
#include "hw/audio/pcspk.h"
#include "hw/pci/msi.h"
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_i386.h"
#include "hw/xen/xen.h"
#include "sysemu/blockdev.h"
#include "hw/block/block.h"
#include "ui/qemu-spice.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "sysemu/arch_init.h"
#include "qemu/bitmap.h"
#include "qemu/config-file.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/cpu_hotplug.h"
#include "hw/cpu/icc_bus.h"
#include "hw/boards.h"
#include "hw/pci/pci_host.h"
#include "acpi-build.h"
#include "hw/mem/pc-dimm.h"
#include "trace.h"
#include "qapi/visitor.h"
/* debug PC/ISA interrupts */
//#define DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, ...) \
do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...)
#endif
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
#define ACPI_DATA_SIZE 0x10000
#define BIOS_CFG_IOPORT 0x510
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
#define E820_NR_ENTRIES 16
struct e820_entry {
uint64_t address;
uint64_t length;
uint32_t type;
} QEMU_PACKED __attribute((__aligned__(4)));
struct e820_table {
uint32_t count;
struct e820_entry entry[E820_NR_ENTRIES];
} QEMU_PACKED __attribute((__aligned__(4)));
static struct e820_table e820_reserve;
static struct e820_entry *e820_table;
static unsigned e820_entries;
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
void gsi_handler(void *opaque, int n, int level)
{
GSIState *s = opaque;
DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
if (n < ISA_NUM_IRQS) {
qemu_set_irq(s->i8259_irq[n], level);
}
qemu_set_irq(s->ioapic_irq[n], level);
}
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
}
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* MSDOS compatibility mode FPU exception support */
static qemu_irq ferr_irq;
void pc_register_ferr_irq(qemu_irq irq)
{
ferr_irq = irq;
}
/* XXX: add IGNNE support */
void cpu_set_ferr(CPUX86State *s)
{
qemu_irq_raise(ferr_irq);
}
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
qemu_irq_lower(ferr_irq);
}
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_ticks();
}
/* SMM support */
static cpu_set_smm_t smm_set;
static void *smm_arg;
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
{
assert(smm_set == NULL);
assert(smm_arg == NULL);
smm_set = callback;
smm_arg = arg;
}
void cpu_smm_update(CPUX86State *env)
{
if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
}
}
/* IRQ handling */
int cpu_get_pic_interrupt(CPUX86State *env)
{
X86CPU *cpu = x86_env_get_cpu(env);
int intno;
intno = apic_get_interrupt(cpu->apic_state);
if (intno >= 0) {
return intno;
}
/* read the irq from the PIC */
if (!apic_accept_pic_intr(cpu->apic_state)) {
return -1;
}
intno = pic_read_irq(isa_pic);
return intno;
}
static void pic_irq_request(void *opaque, int irq, int level)
{
CPUState *cs = first_cpu;
X86CPU *cpu = X86_CPU(cs);
DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
if (cpu->apic_state) {
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
if (apic_accept_pic_intr(cpu->apic_state)) {
apic_deliver_pic_intr(cpu->apic_state, level);
}
}
} else {
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
}
/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE 0x14
static int cmos_get_fd_drive_type(FDriveType fd0)
{
int val;
switch (fd0) {
case FDRIVE_DRV_144:
/* 1.44 Mb 3"5 drive */
val = 4;
break;
case FDRIVE_DRV_288:
/* 2.88 Mb 3"5 drive */
val = 5;
break;
case FDRIVE_DRV_120:
/* 1.2 Mb 5"5 drive */
val = 2;
break;
case FDRIVE_DRV_NONE:
default:
val = 0;
break;
}
return val;
}
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
int16_t cylinders, int8_t heads, int8_t sectors)
{
rtc_set_memory(s, type_ofs, 47);
rtc_set_memory(s, info_ofs, cylinders);
rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
rtc_set_memory(s, info_ofs + 2, heads);
rtc_set_memory(s, info_ofs + 3, 0xff);
rtc_set_memory(s, info_ofs + 4, 0xff);
rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
rtc_set_memory(s, info_ofs + 6, cylinders);
rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
rtc_set_memory(s, info_ofs + 8, sectors);
}
/* convert boot_device letter to something recognizable by the bios */
static int boot_device2nibble(char boot_device)
{
switch(boot_device) {
case 'a':
case 'b':
return 0x01; /* floppy boot */
case 'c':
return 0x02; /* hard drive boot */
case 'd':
return 0x03; /* CD-ROM boot */
case 'n':
return 0x04; /* Network boot */
}
return 0;
}
static int set_boot_dev(ISADevice *s, const char *boot_device)
{
#define PC_MAX_BOOT_DEVICES 3
int nbds, bds[3] = { 0, };
int i;
nbds = strlen(boot_device);
if (nbds > PC_MAX_BOOT_DEVICES) {
error_report("Too many boot devices for PC");
return(1);
}
for (i = 0; i < nbds; i++) {
bds[i] = boot_device2nibble(boot_device[i]);
if (bds[i] == 0) {
error_report("Invalid boot device for PC: '%c'",
boot_device[i]);
return(1);
}
}
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
return(0);
}
static int pc_boot_set(void *opaque, const char *boot_device)
{
return set_boot_dev(opaque, boot_device);
}
typedef struct pc_cmos_init_late_arg {
ISADevice *rtc_state;
BusState *idebus[2];
} pc_cmos_init_late_arg;
static void pc_cmos_init_late(void *opaque)
{
pc_cmos_init_late_arg *arg = opaque;
ISADevice *s = arg->rtc_state;
int16_t cylinders;
int8_t heads, sectors;
int val;
int i, trans;
val = 0;
if (ide_get_geometry(arg->idebus[0], 0,
&cylinders, &heads, &sectors) >= 0) {
cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
val |= 0xf0;
}
if (ide_get_geometry(arg->idebus[0], 1,
&cylinders, &heads, &sectors) >= 0) {
cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
val |= 0x0f;
}
rtc_set_memory(s, 0x12, val);
val = 0;
for (i = 0; i < 4; i++) {
/* NOTE: ide_get_geometry() returns the physical
geometry. It is always such that: 1 <= sects <= 63, 1
<= heads <= 16, 1 <= cylinders <= 16383. The BIOS
geometry can be different if a translation is done. */
if (ide_get_geometry(arg->idebus[i / 2], i % 2,
&cylinders, &heads, &sectors) >= 0) {
trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
assert((trans & ~3) == 0);
val |= trans << (i * 2);
}
}
rtc_set_memory(s, 0x39, val);
qemu_unregister_reset(pc_cmos_init_late, opaque);
}
typedef struct RTCCPUHotplugArg {
Notifier cpu_added_notifier;
ISADevice *rtc_state;
} RTCCPUHotplugArg;
static void rtc_notify_cpu_added(Notifier *notifier, void *data)
{
RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
cpu_added_notifier);
ISADevice *s = arg->rtc_state;
/* increment the number of CPUs */
rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
}
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
const char *boot_device,
ISADevice *floppy, BusState *idebus0, BusState *idebus1,
ISADevice *s)
{
int val, nb, i;
FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
static pc_cmos_init_late_arg arg;
static RTCCPUHotplugArg cpu_hotplug_cb;
/* various important CMOS locations needed by PC/Bochs bios */
/* memory size */
/* base memory (first MiB) */
val = MIN(ram_size / 1024, 640);
rtc_set_memory(s, 0x15, val);
rtc_set_memory(s, 0x16, val >> 8);
/* extended memory (next 64MiB) */
if (ram_size > 1024 * 1024) {
val = (ram_size - 1024 * 1024) / 1024;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x17, val);
rtc_set_memory(s, 0x18, val >> 8);
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
/* memory between 16MiB and 4GiB */
if (ram_size > 16 * 1024 * 1024) {
val = (ram_size - 16 * 1024 * 1024) / 65536;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
/* memory above 4GiB */
val = above_4g_mem_size / 65536;
rtc_set_memory(s, 0x5b, val);
rtc_set_memory(s, 0x5c, val >> 8);
rtc_set_memory(s, 0x5d, val >> 16);
/* set the number of CPU */
rtc_set_memory(s, 0x5f, smp_cpus - 1);
/* init CPU hotplug notifier */
cpu_hotplug_cb.rtc_state = s;
cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
if (set_boot_dev(s, boot_device)) {
exit(1);
}
/* floppy type */
if (floppy) {
for (i = 0; i < 2; i++) {
fd_type[i] = isa_fdc_get_drive_type(floppy, i);
}
}
val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
cmos_get_fd_drive_type(fd_type[1]);
rtc_set_memory(s, 0x10, val);
val = 0;
nb = 0;
if (fd_type[0] < FDRIVE_DRV_NONE) {
nb++;
}
if (fd_type[1] < FDRIVE_DRV_NONE) {
nb++;
}
switch (nb) {
case 0:
break;
case 1:
val |= 0x01; /* 1 drive, ready for boot */
break;
case 2:
val |= 0x41; /* 2 drives, ready for boot */
break;
}
val |= 0x02; /* FPU is there */
val |= 0x04; /* PS/2 mouse installed */
rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
/* hard drives */
arg.rtc_state = s;
arg.idebus[0] = idebus0;
arg.idebus[1] = idebus1;
qemu_register_reset(pc_cmos_init_late, &arg);
}
#define TYPE_PORT92 "port92"
#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
/* port 92 stuff: could be split off */
typedef struct Port92State {
ISADevice parent_obj;
MemoryRegion io;
uint8_t outport;
qemu_irq *a20_out;
} Port92State;
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
Port92State *s = opaque;
int oldval = s->outport;
DPRINTF("port92: write 0x%02x\n", val);
s->outport = val;
qemu_set_irq(*s->a20_out, (val >> 1) & 1);
if ((val & 1) && !(oldval & 1)) {
qemu_system_reset_request();
}
}
static uint64_t port92_read(void *opaque, hwaddr addr,
unsigned size)
{
Port92State *s = opaque;
uint32_t ret;
ret = s->outport;
DPRINTF("port92: read 0x%02x\n", ret);
return ret;
}
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
{
Port92State *s = PORT92(dev);
s->a20_out = a20_out;
}
static const VMStateDescription vmstate_port92_isa = {
.name = "port92",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(outport, Port92State),
VMSTATE_END_OF_LIST()
}
};
static void port92_reset(DeviceState *d)
{
Port92State *s = PORT92(d);
s->outport &= ~1;
}
static const MemoryRegionOps port92_ops = {
.read = port92_read,
.write = port92_write,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void port92_initfn(Object *obj)
{
Port92State *s = PORT92(obj);
memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
s->outport = 0;
}
static void port92_realizefn(DeviceState *dev, Error **errp)
{
ISADevice *isadev = ISA_DEVICE(dev);
Port92State *s = PORT92(dev);
isa_register_ioport(isadev, &s->io, 0x92);
}
static void port92_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = port92_realizefn;
dc->reset = port92_reset;
dc->vmsd = &vmstate_port92_isa;
/*
* Reason: unlike ordinary ISA devices, this one needs additional
* wiring: its A20 output line needs to be wired up by
* port92_init().
*/
dc->cannot_instantiate_with_device_add_yet = true;
}
static const TypeInfo port92_info = {
.name = TYPE_PORT92,
.parent = TYPE_ISA_DEVICE,
.instance_size = sizeof(Port92State),
.instance_init = port92_initfn,
.class_init = port92_class_initfn,
};
static void port92_register_types(void)
{
type_register_static(&port92_info);
}
type_init(port92_register_types)
static void handle_a20_line_change(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
/* XXX: send to all CPUs ? */
/* XXX: add logic to handle multiple A20 line sources */
x86_cpu_set_a20(cpu, level);
}
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
{
int index = le32_to_cpu(e820_reserve.count);
struct e820_entry *entry;
if (type != E820_RAM) {
/* old FW_CFG_E820_TABLE entry -- reservations only */
if (index >= E820_NR_ENTRIES) {
return -EBUSY;
}
entry = &e820_reserve.entry[index++];
entry->address = cpu_to_le64(address);
entry->length = cpu_to_le64(length);
entry->type = cpu_to_le32(type);
e820_reserve.count = cpu_to_le32(index);
}
/* new "etc/e820" file -- include ram too */
e820_table = g_realloc(e820_table,
sizeof(struct e820_entry) * (e820_entries+1));
e820_table[e820_entries].address = cpu_to_le64(address);
e820_table[e820_entries].length = cpu_to_le64(length);
e820_table[e820_entries].type = cpu_to_le32(type);
e820_entries++;
return e820_entries;
}
int e820_get_num_entries(void)
{
return e820_entries;
}
bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
{
if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
*address = le64_to_cpu(e820_table[idx].address);
*length = le64_to_cpu(e820_table[idx].length);
return true;
}
return false;
}
/* Calculates the limit to CPU APIC ID values
*
* This function returns the limit for the APIC ID value, so that all
* CPU APIC IDs are < pc_apic_id_limit().
*
* This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
*/
static unsigned int pc_apic_id_limit(unsigned int max_cpus)
{
return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
}
static FWCfgState *bochs_bios_init(void)
{
FWCfgState *fw_cfg;
uint8_t *smbios_tables, *smbios_anchor;
size_t smbios_tables_len, smbios_anchor_len;
uint64_t *numa_fw_cfg;
int i, j;
unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
/* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
*
* SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
* QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
* ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
* "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
* may see".
*
* So, this means we must not use max_cpus, here, but the maximum possible
* APIC ID value, plus one.
*
* [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
* the APIC ID, not the "CPU index"
*/
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
acpi_tables, acpi_tables_len);
fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
if (smbios_tables) {
fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
smbios_tables, smbios_tables_len);
}
smbios_get_tables(&smbios_tables, &smbios_tables_len,
&smbios_anchor, &smbios_anchor_len);
if (smbios_anchor) {
fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
smbios_tables, smbios_tables_len);
fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
smbios_anchor, smbios_anchor_len);
}
fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
&e820_reserve, sizeof(e820_reserve));
fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
sizeof(struct e820_entry) * e820_entries);
fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
/* allocate memory for the NUMA channel: one (64bit) word for the number
* of nodes, one word for each VCPU->node and one word for each node to
* hold the amount of memory.
*/
numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
for (i = 0; i < max_cpus; i++) {
unsigned int apic_id = x86_cpu_apic_id_from_index(i);
assert(apic_id < apic_id_limit);
for (j = 0; j < nb_numa_nodes; j++) {
if (test_bit(i, node_cpumask[j])) {
numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
break;
}
}
}
for (i = 0; i < nb_numa_nodes; i++) {
numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
}
fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
(1 + apic_id_limit + nb_numa_nodes) *
sizeof(*numa_fw_cfg));
return fw_cfg;
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
static void load_linux(FWCfgState *fw_cfg,
const char *kernel_filename,
const char *initrd_filename,
const char *kernel_cmdline,
hwaddr max_ram_size)
{
uint16_t protocol;
int setup_size, kernel_size, initrd_size = 0, cmdline_size;
uint32_t initrd_max;
uint8_t header[8192], *setup, *kernel, *initrd_data;
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f;
char *vmode;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
#if 0
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
if (ldl_p(header+0x202) == 0x53726448) {
protocol = lduw_p(header+0x206);
} else {
/* This looks like a multiboot kernel. If it is, let's stop
treating it like a Linux kernel. */
if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
kernel_cmdline, kernel_size, header)) {
return;
}
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
real_addr,
cmdline_addr,
prot_addr);
#endif
/* highest address for loading the initrd */
if (protocol >= 0x203) {
initrd_max = ldl_p(header+0x22c);
} else {
initrd_max = 0x37ffffff;
}
if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
video_mode = strtol(vmode, NULL, 0);
}
stw_p(header+0x1fa, video_mode);
}
/* loader type */
/* High nybble = B reserved for QEMU; low nybble is revision number.
If this code is substantially changed, you may want to consider
incrementing the revision. */
if (protocol >= 0x200) {
header[0x210] = 0xB0;
}
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
}
/* load initrd */
if (initrd_filename) {
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
initrd_size = get_image_size(initrd_filename);
if (initrd_size < 0) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, strerror(errno));
exit(1);
}
initrd_addr = (initrd_max-initrd_size) & ~4095;
initrd_data = g_malloc(initrd_size);
load_image(initrd_filename, initrd_data);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* load kernel and setup */
setup_size = header[0x1f1];
if (setup_size == 0) {
setup_size = 4;
}
setup_size = (setup_size+1)*512;
kernel_size -= setup_size;
setup = g_malloc(setup_size);
kernel = g_malloc(kernel_size);
fseek(f, 0, SEEK_SET);
if (fread(setup, 1, setup_size, f) != setup_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
fclose(f);
memcpy(setup, header, MIN(sizeof(header), setup_size));
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
option_rom[nb_option_roms].name = "linuxboot.bin";
option_rom[nb_option_roms].bootindex = 0;
nb_option_roms++;
}
#define NE2000_NB_MAX 6
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
0x280, 0x380 };
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
{
static int nb_ne2k = 0;
if (nb_ne2k == NE2000_NB_MAX)
return;
isa_ne2000_init(bus, ne2000_io[nb_ne2k],
ne2000_irq[nb_ne2k], nd);
nb_ne2k++;
}
DeviceState *cpu_get_current_apic(void)
{
if (current_cpu) {
X86CPU *cpu = X86_CPU(current_cpu);
return cpu->apic_state;
} else {
return NULL;
}
}
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
if (level) {
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
}
}
static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
DeviceState *icc_bridge, Error **errp)
{
X86CPU *cpu;
Error *local_err = NULL;
cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return NULL;
}
object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
if (local_err) {
error_propagate(errp, local_err);
object_unref(OBJECT(cpu));
cpu = NULL;
}
return cpu;
}
static const char *current_cpu_model;
void pc_hot_add_cpu(const int64_t id, Error **errp)
{
DeviceState *icc_bridge;
int64_t apic_id = x86_cpu_apic_id_from_index(id);
if (id < 0) {
error_setg(errp, "Invalid CPU id: %" PRIi64, id);
return;
}
if (cpu_exists(apic_id)) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", it already exists", id);
return;
}
if (id >= max_cpus) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", max allowed: %d", id, max_cpus - 1);
return;
}
if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", resulting APIC ID (%" PRIi64 ") is too large",
id, apic_id);
return;
}
icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
TYPE_ICC_BRIDGE, NULL));
pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
}
void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
{
int i;
X86CPU *cpu = NULL;
Error *error = NULL;
unsigned long apic_id_limit;
/* init CPUs */
if (cpu_model == NULL) {
#ifdef TARGET_X86_64
cpu_model = "qemu64";
#else
cpu_model = "qemu32";
#endif
}
current_cpu_model = cpu_model;
apic_id_limit = pc_apic_id_limit(max_cpus);
if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
error_report("max_cpus is too large. APIC ID of last CPU is %lu",
apic_id_limit - 1);
exit(1);
}
for (i = 0; i < smp_cpus; i++) {
cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
icc_bridge, &error);
if (error) {
error_report("%s", error_get_pretty(error));
error_free(error);
exit(1);
}
}
/* map APIC MMIO area if CPU has APIC */
if (cpu && cpu->apic_state) {
/* XXX: what if the base changes? */
sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
APIC_DEFAULT_ADDRESS, 0x1000);
}
/* tell smbios about cpuid version and features */
smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
}
/* pci-info ROM file. Little endian format */
typedef struct PcRomPciInfo {
uint64_t w32_min;
uint64_t w32_max;
uint64_t w64_min;
uint64_t w64_max;
} PcRomPciInfo;
static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
{
PcRomPciInfo *info;
Object *pci_info;
bool ambiguous = false;
if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
return;
}
pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
g_assert(!ambiguous);
if (!pci_info) {
return;
}
info = g_malloc(sizeof *info);
info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
PCI_HOST_PROP_PCI_HOLE_START, NULL));
info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
PCI_HOST_PROP_PCI_HOLE_END, NULL));
info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
PCI_HOST_PROP_PCI_HOLE64_START, NULL));
info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
PCI_HOST_PROP_PCI_HOLE64_END, NULL));
/* Pass PCI hole info to guest via a side channel.
* Required so guest PCI enumeration does the right thing. */
fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
}
typedef struct PcGuestInfoState {
PcGuestInfo info;
Notifier machine_done;
} PcGuestInfoState;
static
void pc_guest_info_machine_done(Notifier *notifier, void *data)
{
PcGuestInfoState *guest_info_state = container_of(notifier,
PcGuestInfoState,
machine_done);
pc_fw_cfg_guest_info(&guest_info_state->info);
acpi_setup(&guest_info_state->info);
}
PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
ram_addr_t above_4g_mem_size)
{
PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
PcGuestInfo *guest_info = &guest_info_state->info;
int i, j;
guest_info->ram_size_below_4g = below_4g_mem_size;
guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
guest_info->apic_xrupt_override = kvm_allows_irq0_override();
guest_info->numa_nodes = nb_numa_nodes;
guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes *
sizeof *guest_info->node_mem);
guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
sizeof *guest_info->node_cpu);
for (i = 0; i < max_cpus; i++) {
unsigned int apic_id = x86_cpu_apic_id_from_index(i);
assert(apic_id < guest_info->apic_id_limit);
for (j = 0; j < nb_numa_nodes; j++) {
if (test_bit(i, node_cpumask[j])) {
guest_info->node_cpu[apic_id] = j;
break;
}
}
}
guest_info_state->machine_done.notify = pc_guest_info_machine_done;
qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
return guest_info;
}
/* setup pci memory address space mapping into system address space */
void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
MemoryRegion *pci_address_space)
{
/* Set to lower priority than RAM */
memory_region_add_subregion_overlap(system_memory, 0x0,
pci_address_space, -1);
}
void pc_acpi_init(const char *default_dsdt)
{
char *filename;
if (acpi_tables != NULL) {
/* manually set via -acpitable, leave it alone */
return;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
if (filename == NULL) {
fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
} else {
char *arg;
QemuOpts *opts;
Error *err = NULL;
arg = g_strdup_printf("file=%s", filename);
/* creates a deep copy of "arg" */
opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
g_assert(opts != NULL);
acpi_table_add_builtin(opts, &err);
if (err) {
error_report("WARNING: failed to load %s: %s", filename,
error_get_pretty(err));
error_free(err);
}
g_free(arg);
g_free(filename);
}
}
FWCfgState *pc_memory_init(MemoryRegion *system_memory,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
ram_addr_t below_4g_mem_size,
ram_addr_t above_4g_mem_size,
MemoryRegion *rom_memory,
MemoryRegion **ram_memory,
PcGuestInfo *guest_info)
{
int linux_boot, i;
MemoryRegion *ram, *option_rom_mr;
MemoryRegion *ram_below_4g, *ram_above_4g;
FWCfgState *fw_cfg;
ram_addr_t ram_size = below_4g_mem_size + above_4g_mem_size;
MachineState *machine = MACHINE(qdev_get_machine());
PCMachineState *pcms = PC_MACHINE(machine);
linux_boot = (kernel_filename != NULL);
/* Allocate RAM. We allocate it as a single memory region and use
* aliases to address portions of it, mostly for backwards compatibility
* with older qemus that used qemu_ram_alloc().
*/
ram = g_malloc(sizeof(*ram));
memory_region_init_ram(ram, NULL, "pc.ram", ram_size);
vmstate_register_ram_global(ram);
*ram_memory = ram;
ram_below_4g = g_malloc(sizeof(*ram_below_4g));
memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
0, below_4g_mem_size);
memory_region_add_subregion(system_memory, 0, ram_below_4g);
e820_add_entry(0, below_4g_mem_size, E820_RAM);
if (above_4g_mem_size > 0) {
ram_above_4g = g_malloc(sizeof(*ram_above_4g));
memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
below_4g_mem_size, above_4g_mem_size);
memory_region_add_subregion(system_memory, 0x100000000ULL,
ram_above_4g);
e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
}
if (!guest_info->has_reserved_memory &&
(machine->ram_slots ||
(machine->maxram_size > ram_size))) {
MachineClass *mc = MACHINE_GET_CLASS(machine);
error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
mc->name);
exit(EXIT_FAILURE);
}
/* initialize hotplug memory address space */
if (guest_info->has_reserved_memory &&
(ram_size < machine->maxram_size)) {
ram_addr_t hotplug_mem_size =
machine->maxram_size - ram_size;
if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
error_report("unsupported amount of memory slots: %"PRIu64,
machine->ram_slots);
exit(EXIT_FAILURE);
}
pcms->hotplug_memory_base =
ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
if ((pcms->hotplug_memory_base + hotplug_mem_size) <
hotplug_mem_size) {
error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
machine->maxram_size);
exit(EXIT_FAILURE);
}
memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
"hotplug-memory", hotplug_mem_size);
memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
&pcms->hotplug_memory);
}
/* Initialize PC system firmware */
pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
option_rom_mr = g_malloc(sizeof(*option_rom_mr));
memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
vmstate_register_ram_global(option_rom_mr);
memory_region_add_subregion_overlap(rom_memory,
PC_ROM_MIN_VGA,
option_rom_mr,
1);
fw_cfg = bochs_bios_init();
rom_set_fw(fw_cfg);
if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
uint64_t *val = g_malloc(sizeof(*val));
*val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
}
if (linux_boot) {
load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
}
for (i = 0; i < nb_option_roms; i++) {
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
guest_info->fw_cfg = fw_cfg;
return fw_cfg;
}
qemu_irq *pc_allocate_cpu_irq(void)
{
return qemu_allocate_irqs(pic_irq_request, NULL, 1);
}
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
{
DeviceState *dev = NULL;
if (pci_bus) {
PCIDevice *pcidev = pci_vga_init(pci_bus);
dev = pcidev ? &pcidev->qdev : NULL;
} else if (isa_bus) {
ISADevice *isadev = isa_vga_init(isa_bus);
dev = isadev ? DEVICE(isadev) : NULL;
}
return dev;
}
static void cpu_request_exit(void *opaque, int irq, int level)
{
CPUState *cpu = current_cpu;
if (cpu && level) {
cpu_exit(cpu);
}
}
static const MemoryRegionOps ioport80_io_ops = {
.write = ioport80_write,
.read = ioport80_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static const MemoryRegionOps ioportF0_io_ops = {
.write = ioportF0_write,
.read = ioportF0_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
ISADevice **rtc_state,
ISADevice **floppy,
bool no_vmport,
uint32 hpet_irqs)
{
int i;
DriveInfo *fd[MAX_FD];
DeviceState *hpet = NULL;
int pit_isa_irq = 0;
qemu_irq pit_alt_irq = NULL;
qemu_irq rtc_irq = NULL;
qemu_irq *a20_line;
ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
qemu_irq *cpu_exit_irq;
MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
/*
* Check if an HPET shall be created.
*
* Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
* when the HPET wants to take over. Thus we have to disable the latter.
*/
if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
/* In order to set property, here not using sysbus_try_create_simple */
hpet = qdev_try_create(NULL, TYPE_HPET);
if (hpet) {
/* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
* and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
* IRQ8 and IRQ2.
*/
uint8_t compat = object_property_get_int(OBJECT(hpet),
HPET_INTCAP, NULL);
if (!compat) {
qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
}
qdev_init_nofail(hpet);
sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
for (i = 0; i < GSI_NUM_PINS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
}
pit_isa_irq = -1;
pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
}
}
*rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
qemu_register_boot_set(pc_boot_set, *rtc_state);
if (!xen_enabled()) {
if (kvm_irqchip_in_kernel()) {
pit = kvm_pit_init(isa_bus, 0x40);
} else {
pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
}
if (hpet) {
/* connect PIT to output control line of the HPET */
qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
}
pcspk_init(isa_bus, pit);
}
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
serial_isa_init(isa_bus, i, serial_hds[i]);
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
if (parallel_hds[i]) {
parallel_init(isa_bus, i, parallel_hds[i]);
}
}
a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
i8042 = isa_create_simple(isa_bus, "i8042");
i8042_setup_a20_line(i8042, &a20_line[0]);
if (!no_vmport) {
vmport_init(isa_bus);
vmmouse = isa_try_create(isa_bus, "vmmouse");
} else {
vmmouse = NULL;
}
if (vmmouse) {
DeviceState *dev = DEVICE(vmmouse);
qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
qdev_init_nofail(dev);
}
port92 = isa_create_simple(isa_bus, "port92");
port92_init(port92, &a20_line[1]);
cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
DMA_init(0, cpu_exit_irq);
for(i = 0; i < MAX_FD; i++) {
fd[i] = drive_get(IF_FLOPPY, 0, i);
}
*floppy = fdctrl_init_isa(isa_bus, fd);
}
void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
{
int i;
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
pc_init_ne2k_isa(isa_bus, nd);
} else {
pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
}
}
}
void pc_pci_device_init(PCIBus *pci_bus)
{
int max_bus;
int bus;
max_bus = drive_get_max_bus(IF_SCSI);
for (bus = 0; bus <= max_bus; bus++) {
pci_create_simple(pci_bus, -1, "lsi53c895a");
}
}
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
{
DeviceState *dev;
SysBusDevice *d;
unsigned int i;
if (kvm_irqchip_in_kernel()) {
dev = qdev_create(NULL, "kvm-ioapic");
} else {
dev = qdev_create(NULL, "ioapic");
}
if (parent_name) {
object_property_add_child(object_resolve_path(parent_name, NULL),
"ioapic", OBJECT(dev), NULL);
}
qdev_init_nofail(dev);
d = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
for (i = 0; i < IOAPIC_NUM_PINS; i++) {
gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
}
}
static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
QEMUMachine *qm = data;
mc->name = qm->name;
mc->alias = qm->alias;
mc->desc = qm->desc;
mc->init = qm->init;
mc->reset = qm->reset;
mc->hot_add_cpu = qm->hot_add_cpu;
mc->kvm_type = qm->kvm_type;
mc->block_default_type = qm->block_default_type;
mc->max_cpus = qm->max_cpus;
mc->no_serial = qm->no_serial;
mc->no_parallel = qm->no_parallel;
mc->use_virtcon = qm->use_virtcon;
mc->use_sclp = qm->use_sclp;
mc->no_floppy = qm->no_floppy;
mc->no_cdrom = qm->no_cdrom;
mc->no_sdcard = qm->no_sdcard;
mc->is_default = qm->is_default;
mc->default_machine_opts = qm->default_machine_opts;
mc->default_boot_order = qm->default_boot_order;
mc->compat_props = qm->compat_props;
mc->hw_version = qm->hw_version;
}
void qemu_register_pc_machine(QEMUMachine *m)
{
char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
TypeInfo ti = {
.name = name,
.parent = TYPE_PC_MACHINE,
.class_init = pc_generic_machine_class_init,
.class_data = (void *)m,
};
type_register(&ti);
g_free(name);
}
static void pc_dimm_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
int slot;
HotplugHandlerClass *hhc;
Error *local_err = NULL;
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
MachineState *machine = MACHINE(hotplug_dev);
PCDIMMDevice *dimm = PC_DIMM(dev);
PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
MemoryRegion *mr = ddc->get_memory_region(dimm);
uint64_t addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
&local_err);
if (local_err) {
goto out;
}
addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
memory_region_size(&pcms->hotplug_memory),
!addr ? NULL : &addr,
memory_region_size(mr), &local_err);
if (local_err) {
goto out;
}
object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
if (local_err) {
goto out;
}
trace_mhp_pc_dimm_assigned_address(addr);
slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
if (local_err) {
goto out;
}
slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
machine->ram_slots, &local_err);
if (local_err) {
goto out;
}
object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
if (local_err) {
goto out;
}
trace_mhp_pc_dimm_assigned_slot(slot);
if (!pcms->acpi_dev) {
error_setg(&local_err,
"memory hotplug is not enabled: missing acpi device");
goto out;
}
memory_region_add_subregion(&pcms->hotplug_memory,
addr - pcms->hotplug_memory_base, mr);
vmstate_register_ram(mr, dev);
hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
out:
error_propagate(errp, local_err);
}
static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_dimm_plug(hotplug_dev, dev, errp);
}
}
static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
DeviceState *dev)
{
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
return HOTPLUG_HANDLER(machine);
}
return pcmc->get_hotplug_handler ?
pcmc->get_hotplug_handler(machine, dev) : NULL;
}
static void
pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
int64_t value = memory_region_size(&pcms->hotplug_memory);
visit_type_int(v, &value, name, errp);
}
static void pc_machine_initfn(Object *obj)
{
object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
pc_machine_get_hotplug_memory_region_size,
NULL, NULL, NULL, NULL);
}
static void pc_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
pcmc->get_hotplug_handler = mc->get_hotplug_handler;
mc->get_hotplug_handler = pc_get_hotpug_handler;
hc->plug = pc_machine_device_plug_cb;
}
static const TypeInfo pc_machine_info = {
.name = TYPE_PC_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(PCMachineState),
.instance_init = pc_machine_initfn,
.class_size = sizeof(PCMachineClass),
.class_init = pc_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
},
};
static void pc_machine_register_types(void)
{
type_register_static(&pc_machine_info);
}
type_init(pc_machine_register_types)