blob: 8209ce9ee28fdc4e14e0171288350e82bb5beff1 [file] [log] [blame]
/*
* i386 memory mapping
*
* Copyright Fujitsu, Corp. 2011, 2012
*
* Authors:
* Wen Congyang <wency@cn.fujitsu.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "cpu.h"
#include "exec/cpu-all.h"
#include "sysemu/dump.h"
#include "elf.h"
#ifdef TARGET_X86_64
typedef struct {
target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10;
target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax;
target_ulong rip, cs, eflags;
target_ulong rsp, ss;
target_ulong fs_base, gs_base;
target_ulong ds, es, fs, gs;
} x86_64_user_regs_struct;
typedef struct {
char pad1[32];
uint32_t pid;
char pad2[76];
x86_64_user_regs_struct regs;
char pad3[8];
} x86_64_elf_prstatus;
static int x86_64_write_elf64_note(write_core_dump_function f,
CPUArchState *env, int id,
void *opaque)
{
x86_64_user_regs_struct regs;
Elf64_Nhdr *note;
char *buf;
int descsz, note_size, name_size = 5;
const char *name = "CORE";
int ret;
regs.r15 = env->regs[15];
regs.r14 = env->regs[14];
regs.r13 = env->regs[13];
regs.r12 = env->regs[12];
regs.r11 = env->regs[11];
regs.r10 = env->regs[10];
regs.r9 = env->regs[9];
regs.r8 = env->regs[8];
regs.rbp = env->regs[R_EBP];
regs.rsp = env->regs[R_ESP];
regs.rdi = env->regs[R_EDI];
regs.rsi = env->regs[R_ESI];
regs.rdx = env->regs[R_EDX];
regs.rcx = env->regs[R_ECX];
regs.rbx = env->regs[R_EBX];
regs.rax = env->regs[R_EAX];
regs.rip = env->eip;
regs.eflags = env->eflags;
regs.orig_rax = 0; /* FIXME */
regs.cs = env->segs[R_CS].selector;
regs.ss = env->segs[R_SS].selector;
regs.fs_base = env->segs[R_FS].base;
regs.gs_base = env->segs[R_GS].base;
regs.ds = env->segs[R_DS].selector;
regs.es = env->segs[R_ES].selector;
regs.fs = env->segs[R_FS].selector;
regs.gs = env->segs[R_GS].selector;
descsz = sizeof(x86_64_elf_prstatus);
note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc(note_size);
memset(note, 0, note_size);
note->n_namesz = cpu_to_le32(name_size);
note->n_descsz = cpu_to_le32(descsz);
note->n_type = cpu_to_le32(NT_PRSTATUS);
buf = (char *)note;
buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4;
memcpy(buf, name, name_size);
buf += ((name_size + 3) / 4) * 4;
memcpy(buf + 32, &id, 4); /* pr_pid */
buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong);
memcpy(buf, &regs, sizeof(x86_64_user_regs_struct));
ret = f(note, note_size, opaque);
g_free(note);
if (ret < 0) {
return -1;
}
return 0;
}
#endif
typedef struct {
uint32_t ebx, ecx, edx, esi, edi, ebp, eax;
unsigned short ds, __ds, es, __es;
unsigned short fs, __fs, gs, __gs;
uint32_t orig_eax, eip;
unsigned short cs, __cs;
uint32_t eflags, esp;
unsigned short ss, __ss;
} x86_user_regs_struct;
typedef struct {
char pad1[24];
uint32_t pid;
char pad2[44];
x86_user_regs_struct regs;
char pad3[4];
} x86_elf_prstatus;
static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUArchState *env,
int id)
{
memset(prstatus, 0, sizeof(x86_elf_prstatus));
prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff;
prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff;
prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff;
prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff;
prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff;
prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff;
prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff;
prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff;
prstatus->regs.eip = env->eip & 0xffffffff;
prstatus->regs.eflags = env->eflags & 0xffffffff;
prstatus->regs.cs = env->segs[R_CS].selector;
prstatus->regs.ss = env->segs[R_SS].selector;
prstatus->regs.ds = env->segs[R_DS].selector;
prstatus->regs.es = env->segs[R_ES].selector;
prstatus->regs.fs = env->segs[R_FS].selector;
prstatus->regs.gs = env->segs[R_GS].selector;
prstatus->pid = id;
}
static int x86_write_elf64_note(write_core_dump_function f, CPUArchState *env,
int id, void *opaque)
{
x86_elf_prstatus prstatus;
Elf64_Nhdr *note;
char *buf;
int descsz, note_size, name_size = 5;
const char *name = "CORE";
int ret;
x86_fill_elf_prstatus(&prstatus, env, id);
descsz = sizeof(x86_elf_prstatus);
note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc(note_size);
memset(note, 0, note_size);
note->n_namesz = cpu_to_le32(name_size);
note->n_descsz = cpu_to_le32(descsz);
note->n_type = cpu_to_le32(NT_PRSTATUS);
buf = (char *)note;
buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4;
memcpy(buf, name, name_size);
buf += ((name_size + 3) / 4) * 4;
memcpy(buf, &prstatus, sizeof(prstatus));
ret = f(note, note_size, opaque);
g_free(note);
if (ret < 0) {
return -1;
}
return 0;
}
int cpu_write_elf64_note(write_core_dump_function f, CPUArchState *env,
int cpuid, void *opaque)
{
int ret;
#ifdef TARGET_X86_64
bool lma = !!(first_cpu->hflags & HF_LMA_MASK);
if (lma) {
ret = x86_64_write_elf64_note(f, env, cpuid, opaque);
} else {
#endif
ret = x86_write_elf64_note(f, env, cpuid, opaque);
#ifdef TARGET_X86_64
}
#endif
return ret;
}
int cpu_write_elf32_note(write_core_dump_function f, CPUArchState *env,
int cpuid, void *opaque)
{
x86_elf_prstatus prstatus;
Elf32_Nhdr *note;
char *buf;
int descsz, note_size, name_size = 5;
const char *name = "CORE";
int ret;
x86_fill_elf_prstatus(&prstatus, env, cpuid);
descsz = sizeof(x86_elf_prstatus);
note_size = ((sizeof(Elf32_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc(note_size);
memset(note, 0, note_size);
note->n_namesz = cpu_to_le32(name_size);
note->n_descsz = cpu_to_le32(descsz);
note->n_type = cpu_to_le32(NT_PRSTATUS);
buf = (char *)note;
buf += ((sizeof(Elf32_Nhdr) + 3) / 4) * 4;
memcpy(buf, name, name_size);
buf += ((name_size + 3) / 4) * 4;
memcpy(buf, &prstatus, sizeof(prstatus));
ret = f(note, note_size, opaque);
g_free(note);
if (ret < 0) {
return -1;
}
return 0;
}
/*
* please count up QEMUCPUSTATE_VERSION if you have changed definition of
* QEMUCPUState, and modify the tools using this information accordingly.
*/
#define QEMUCPUSTATE_VERSION (1)
struct QEMUCPUSegment {
uint32_t selector;
uint32_t limit;
uint32_t flags;
uint32_t pad;
uint64_t base;
};
typedef struct QEMUCPUSegment QEMUCPUSegment;
struct QEMUCPUState {
uint32_t version;
uint32_t size;
uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp;
uint64_t r8, r9, r10, r11, r12, r13, r14, r15;
uint64_t rip, rflags;
QEMUCPUSegment cs, ds, es, fs, gs, ss;
QEMUCPUSegment ldt, tr, gdt, idt;
uint64_t cr[5];
};
typedef struct QEMUCPUState QEMUCPUState;
static void copy_segment(QEMUCPUSegment *d, SegmentCache *s)
{
d->pad = 0;
d->selector = s->selector;
d->limit = s->limit;
d->flags = s->flags;
d->base = s->base;
}
static void qemu_get_cpustate(QEMUCPUState *s, CPUArchState *env)
{
memset(s, 0, sizeof(QEMUCPUState));
s->version = QEMUCPUSTATE_VERSION;
s->size = sizeof(QEMUCPUState);
s->rax = env->regs[R_EAX];
s->rbx = env->regs[R_EBX];
s->rcx = env->regs[R_ECX];
s->rdx = env->regs[R_EDX];
s->rsi = env->regs[R_ESI];
s->rdi = env->regs[R_EDI];
s->rsp = env->regs[R_ESP];
s->rbp = env->regs[R_EBP];
#ifdef TARGET_X86_64
s->r8 = env->regs[8];
s->r9 = env->regs[9];
s->r10 = env->regs[10];
s->r11 = env->regs[11];
s->r12 = env->regs[12];
s->r13 = env->regs[13];
s->r14 = env->regs[14];
s->r15 = env->regs[15];
#endif
s->rip = env->eip;
s->rflags = env->eflags;
copy_segment(&s->cs, &env->segs[R_CS]);
copy_segment(&s->ds, &env->segs[R_DS]);
copy_segment(&s->es, &env->segs[R_ES]);
copy_segment(&s->fs, &env->segs[R_FS]);
copy_segment(&s->gs, &env->segs[R_GS]);
copy_segment(&s->ss, &env->segs[R_SS]);
copy_segment(&s->ldt, &env->ldt);
copy_segment(&s->tr, &env->tr);
copy_segment(&s->gdt, &env->gdt);
copy_segment(&s->idt, &env->idt);
s->cr[0] = env->cr[0];
s->cr[1] = env->cr[1];
s->cr[2] = env->cr[2];
s->cr[3] = env->cr[3];
s->cr[4] = env->cr[4];
}
static inline int cpu_write_qemu_note(write_core_dump_function f,
CPUArchState *env,
void *opaque,
int type)
{
QEMUCPUState state;
Elf64_Nhdr *note64;
Elf32_Nhdr *note32;
void *note;
char *buf;
int descsz, note_size, name_size = 5, note_head_size;
const char *name = "QEMU";
int ret;
qemu_get_cpustate(&state, env);
descsz = sizeof(state);
if (type == 0) {
note_head_size = sizeof(Elf32_Nhdr);
} else {
note_head_size = sizeof(Elf64_Nhdr);
}
note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc(note_size);
memset(note, 0, note_size);
if (type == 0) {
note32 = note;
note32->n_namesz = cpu_to_le32(name_size);
note32->n_descsz = cpu_to_le32(descsz);
note32->n_type = 0;
} else {
note64 = note;
note64->n_namesz = cpu_to_le32(name_size);
note64->n_descsz = cpu_to_le32(descsz);
note64->n_type = 0;
}
buf = note;
buf += ((note_head_size + 3) / 4) * 4;
memcpy(buf, name, name_size);
buf += ((name_size + 3) / 4) * 4;
memcpy(buf, &state, sizeof(state));
ret = f(note, note_size, opaque);
g_free(note);
if (ret < 0) {
return -1;
}
return 0;
}
int cpu_write_elf64_qemunote(write_core_dump_function f, CPUArchState *env,
void *opaque)
{
return cpu_write_qemu_note(f, env, opaque, 1);
}
int cpu_write_elf32_qemunote(write_core_dump_function f, CPUArchState *env,
void *opaque)
{
return cpu_write_qemu_note(f, env, opaque, 0);
}
int cpu_get_dump_info(ArchDumpInfo *info)
{
bool lma = false;
RAMBlock *block;
#ifdef TARGET_X86_64
lma = !!(first_cpu->hflags & HF_LMA_MASK);
#endif
if (lma) {
info->d_machine = EM_X86_64;
} else {
info->d_machine = EM_386;
}
info->d_endian = ELFDATA2LSB;
if (lma) {
info->d_class = ELFCLASS64;
} else {
info->d_class = ELFCLASS32;
QLIST_FOREACH(block, &ram_list.blocks, next) {
if (block->offset + block->length > UINT_MAX) {
/* The memory size is greater than 4G */
info->d_class = ELFCLASS64;
break;
}
}
}
return 0;
}
ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
{
int name_size = 5; /* "CORE" or "QEMU" */
size_t elf_note_size = 0;
size_t qemu_note_size = 0;
int elf_desc_size = 0;
int qemu_desc_size = 0;
int note_head_size;
if (class == ELFCLASS32) {
note_head_size = sizeof(Elf32_Nhdr);
} else {
note_head_size = sizeof(Elf64_Nhdr);
}
if (machine == EM_386) {
elf_desc_size = sizeof(x86_elf_prstatus);
}
#ifdef TARGET_X86_64
else {
elf_desc_size = sizeof(x86_64_elf_prstatus);
}
#endif
qemu_desc_size = sizeof(QEMUCPUState);
elf_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
(elf_desc_size + 3) / 4) * 4;
qemu_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
(qemu_desc_size + 3) / 4) * 4;
return (elf_note_size + qemu_note_size) * nr_cpus;
}