blob: 02bb295c13338b18e919d073206d62870fd5f265 [file] [log] [blame]
# -*- Mode: Python -*-
#
##
# = Miscellanea
##
{ 'include': 'common.json' }
##
# @qmp_capabilities:
#
# Enable QMP capabilities.
#
# Arguments:
#
# @enable: An optional list of QMPCapability values to enable. The
# client must not enable any capability that is not
# mentioned in the QMP greeting message. If the field is not
# provided, it means no QMP capabilities will be enabled.
# (since 2.12)
#
# Example:
#
# -> { "execute": "qmp_capabilities",
# "arguments": { "enable": [ "oob" ] } }
# <- { "return": {} }
#
# Notes: This command is valid exactly when first connecting: it must be
# issued before any other command will be accepted, and will fail once the
# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
#
# The QMP client needs to explicitly enable QMP capabilities, otherwise
# all the QMP capabilities will be turned off by default.
#
# Since: 0.13
#
##
{ 'command': 'qmp_capabilities',
'data': { '*enable': [ 'QMPCapability' ] },
'allow-preconfig': true }
##
# @QMPCapability:
#
# Enumeration of capabilities to be advertised during initial client
# connection, used for agreeing on particular QMP extension behaviors.
#
# @oob: QMP ability to support Out-Of-Band requests.
# (Please refer to qmp-spec.txt for more information on OOB)
#
# Since: 2.12
#
##
{ 'enum': 'QMPCapability',
'data': [ 'oob' ] }
##
# @VersionTriple:
#
# A three-part version number.
#
# @major: The major version number.
#
# @minor: The minor version number.
#
# @micro: The micro version number.
#
# Since: 2.4
##
{ 'struct': 'VersionTriple',
'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
##
# @VersionInfo:
#
# A description of QEMU's version.
#
# @qemu: The version of QEMU. By current convention, a micro
# version of 50 signifies a development branch. A micro version
# greater than or equal to 90 signifies a release candidate for
# the next minor version. A micro version of less than 50
# signifies a stable release.
#
# @package: QEMU will always set this field to an empty string. Downstream
# versions of QEMU should set this to a non-empty string. The
# exact format depends on the downstream however it highly
# recommended that a unique name is used.
#
# Since: 0.14.0
##
{ 'struct': 'VersionInfo',
'data': {'qemu': 'VersionTriple', 'package': 'str'} }
##
# @query-version:
#
# Returns the current version of QEMU.
#
# Returns: A @VersionInfo object describing the current version of QEMU.
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "query-version" }
# <- {
# "return":{
# "qemu":{
# "major":0,
# "minor":11,
# "micro":5
# },
# "package":""
# }
# }
#
##
{ 'command': 'query-version', 'returns': 'VersionInfo' }
##
# @CommandInfo:
#
# Information about a QMP command
#
# @name: The command name
#
# Since: 0.14.0
##
{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
##
# @query-commands:
#
# Return a list of supported QMP commands by this server
#
# Returns: A list of @CommandInfo for all supported commands
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "query-commands" }
# <- {
# "return":[
# {
# "name":"query-balloon"
# },
# {
# "name":"system_powerdown"
# }
# ]
# }
#
# Note: This example has been shortened as the real response is too long.
#
##
{ 'command': 'query-commands', 'returns': ['CommandInfo'],
'allow-preconfig': true }
##
# @LostTickPolicy:
#
# Policy for handling lost ticks in timer devices.
#
# @discard: throw away the missed tick(s) and continue with future injection
# normally. Guest time may be delayed, unless the OS has explicit
# handling of lost ticks
#
# @delay: continue to deliver ticks at the normal rate. Guest time will be
# delayed due to the late tick
#
# @merge: merge the missed tick(s) into one tick and inject. Guest time
# may be delayed, depending on how the OS reacts to the merging
# of ticks
#
# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
# guest time should not be delayed once catchup is complete.
#
# Since: 2.0
##
{ 'enum': 'LostTickPolicy',
'data': ['discard', 'delay', 'merge', 'slew' ] }
##
# @add_client:
#
# Allow client connections for VNC, Spice and socket based
# character devices to be passed in to QEMU via SCM_RIGHTS.
#
# @protocol: protocol name. Valid names are "vnc", "spice" or the
# name of a character device (eg. from -chardev id=XXXX)
#
# @fdname: file descriptor name previously passed via 'getfd' command
#
# @skipauth: whether to skip authentication. Only applies
# to "vnc" and "spice" protocols
#
# @tls: whether to perform TLS. Only applies to the "spice"
# protocol
#
# Returns: nothing on success.
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
# "fdname": "myclient" } }
# <- { "return": {} }
#
##
{ 'command': 'add_client',
'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
'*tls': 'bool' } }
##
# @NameInfo:
#
# Guest name information.
#
# @name: The name of the guest
#
# Since: 0.14.0
##
{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
##
# @query-name:
#
# Return the name information of a guest.
#
# Returns: @NameInfo of the guest
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "query-name" }
# <- { "return": { "name": "qemu-name" } }
#
##
{ 'command': 'query-name', 'returns': 'NameInfo' }
##
# @KvmInfo:
#
# Information about support for KVM acceleration
#
# @enabled: true if KVM acceleration is active
#
# @present: true if KVM acceleration is built into this executable
#
# Since: 0.14.0
##
{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
##
# @query-kvm:
#
# Returns information about KVM acceleration
#
# Returns: @KvmInfo
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "query-kvm" }
# <- { "return": { "enabled": true, "present": true } }
#
##
{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
##
# @UuidInfo:
#
# Guest UUID information (Universally Unique Identifier).
#
# @UUID: the UUID of the guest
#
# Since: 0.14.0
#
# Notes: If no UUID was specified for the guest, a null UUID is returned.
##
{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
##
# @query-uuid:
#
# Query the guest UUID information.
#
# Returns: The @UuidInfo for the guest
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "query-uuid" }
# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
#
##
{ 'command': 'query-uuid', 'returns': 'UuidInfo' }
##
# @EventInfo:
#
# Information about a QMP event
#
# @name: The event name
#
# Since: 1.2.0
##
{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
##
# @query-events:
#
# Return a list of supported QMP events by this server
#
# Returns: A list of @EventInfo for all supported events
#
# Since: 1.2.0
#
# Example:
#
# -> { "execute": "query-events" }
# <- {
# "return": [
# {
# "name":"SHUTDOWN"
# },
# {
# "name":"RESET"
# }
# ]
# }
#
# Note: This example has been shortened as the real response is too long.
#
##
{ 'command': 'query-events', 'returns': ['EventInfo'] }
##
# @CpuInfoArch:
#
# An enumeration of cpu types that enable additional information during
# @query-cpus and @query-cpus-fast.
#
# @s390: since 2.12
#
# @riscv: since 2.12
#
# Since: 2.6
##
{ 'enum': 'CpuInfoArch',
'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
##
# @CpuInfo:
#
# Information about a virtual CPU
#
# @CPU: the index of the virtual CPU
#
# @current: this only exists for backwards compatibility and should be ignored
#
# @halted: true if the virtual CPU is in the halt state. Halt usually refers
# to a processor specific low power mode.
#
# @qom_path: path to the CPU object in the QOM tree (since 2.4)
#
# @thread_id: ID of the underlying host thread
#
# @props: properties describing to which node/socket/core/thread
# virtual CPU belongs to, provided if supported by board (since 2.10)
#
# @arch: architecture of the cpu, which determines which additional fields
# will be listed (since 2.6)
#
# Since: 0.14.0
#
# Notes: @halted is a transient state that changes frequently. By the time the
# data is sent to the client, the guest may no longer be halted.
##
{ 'union': 'CpuInfo',
'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
'qom_path': 'str', 'thread_id': 'int',
'*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
'discriminator': 'arch',
'data': { 'x86': 'CpuInfoX86',
'sparc': 'CpuInfoSPARC',
'ppc': 'CpuInfoPPC',
'mips': 'CpuInfoMIPS',
'tricore': 'CpuInfoTricore',
's390': 'CpuInfoS390',
'riscv': 'CpuInfoRISCV',
'other': 'CpuInfoOther' } }
##
# @CpuInfoX86:
#
# Additional information about a virtual i386 or x86_64 CPU
#
# @pc: the 64-bit instruction pointer
#
# Since: 2.6
##
{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
##
# @CpuInfoSPARC:
#
# Additional information about a virtual SPARC CPU
#
# @pc: the PC component of the instruction pointer
#
# @npc: the NPC component of the instruction pointer
#
# Since: 2.6
##
{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
##
# @CpuInfoPPC:
#
# Additional information about a virtual PPC CPU
#
# @nip: the instruction pointer
#
# Since: 2.6
##
{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
##
# @CpuInfoMIPS:
#
# Additional information about a virtual MIPS CPU
#
# @PC: the instruction pointer
#
# Since: 2.6
##
{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
##
# @CpuInfoTricore:
#
# Additional information about a virtual Tricore CPU
#
# @PC: the instruction pointer
#
# Since: 2.6
##
{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
##
# @CpuInfoRISCV:
#
# Additional information about a virtual RISCV CPU
#
# @pc: the instruction pointer
#
# Since 2.12
##
{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
##
# @CpuInfoOther:
#
# No additional information is available about the virtual CPU
#
# Since: 2.6
#
##
{ 'struct': 'CpuInfoOther', 'data': { } }
##
# @CpuS390State:
#
# An enumeration of cpu states that can be assumed by a virtual
# S390 CPU
#
# Since: 2.12
##
{ 'enum': 'CpuS390State',
'prefix': 'S390_CPU_STATE',
'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
##
# @CpuInfoS390:
#
# Additional information about a virtual S390 CPU
#
# @cpu-state: the virtual CPU's state
#
# Since: 2.12
##
{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
##
# @query-cpus:
#
# Returns a list of information about each virtual CPU.
#
# This command causes vCPU threads to exit to userspace, which causes
# a small interruption to guest CPU execution. This will have a negative
# impact on realtime guests and other latency sensitive guest workloads.
# It is recommended to use @query-cpus-fast instead of this command to
# avoid the vCPU interruption.
#
# Returns: a list of @CpuInfo for each virtual CPU
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "query-cpus" }
# <- { "return": [
# {
# "CPU":0,
# "current":true,
# "halted":false,
# "qom_path":"/machine/unattached/device[0]",
# "arch":"x86",
# "pc":3227107138,
# "thread_id":3134
# },
# {
# "CPU":1,
# "current":false,
# "halted":true,
# "qom_path":"/machine/unattached/device[2]",
# "arch":"x86",
# "pc":7108165,
# "thread_id":3135
# }
# ]
# }
#
# Notes: This interface is deprecated (since 2.12.0), and it is strongly
# recommended that you avoid using it. Use @query-cpus-fast to
# obtain information about virtual CPUs.
#
##
{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
##
# @CpuInfoFast:
#
# Information about a virtual CPU
#
# @cpu-index: index of the virtual CPU
#
# @qom-path: path to the CPU object in the QOM tree
#
# @thread-id: ID of the underlying host thread
#
# @props: properties describing to which node/socket/core/thread
# virtual CPU belongs to, provided if supported by board
#
# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
# of @target
#
# @target: the QEMU system emulation target, which determines which
# additional fields will be listed (since 3.0)
#
# Since: 2.12
#
##
{ 'union' : 'CpuInfoFast',
'base' : { 'cpu-index' : 'int',
'qom-path' : 'str',
'thread-id' : 'int',
'*props' : 'CpuInstanceProperties',
'arch' : 'CpuInfoArch',
'target' : 'SysEmuTarget' },
'discriminator' : 'target',
'data' : { 'aarch64' : 'CpuInfoOther',
'alpha' : 'CpuInfoOther',
'arm' : 'CpuInfoOther',
'cris' : 'CpuInfoOther',
'hppa' : 'CpuInfoOther',
'i386' : 'CpuInfoOther',
'lm32' : 'CpuInfoOther',
'm68k' : 'CpuInfoOther',
'microblaze' : 'CpuInfoOther',
'microblazeel' : 'CpuInfoOther',
'mips' : 'CpuInfoOther',
'mips64' : 'CpuInfoOther',
'mips64el' : 'CpuInfoOther',
'mipsel' : 'CpuInfoOther',
'moxie' : 'CpuInfoOther',
'nios2' : 'CpuInfoOther',
'or1k' : 'CpuInfoOther',
'ppc' : 'CpuInfoOther',
'ppc64' : 'CpuInfoOther',
'ppcemb' : 'CpuInfoOther',
'riscv32' : 'CpuInfoOther',
'riscv64' : 'CpuInfoOther',
's390x' : 'CpuInfoS390',
'sh4' : 'CpuInfoOther',
'sh4eb' : 'CpuInfoOther',
'sparc' : 'CpuInfoOther',
'sparc64' : 'CpuInfoOther',
'tricore' : 'CpuInfoOther',
'unicore32' : 'CpuInfoOther',
'x86_64' : 'CpuInfoOther',
'xtensa' : 'CpuInfoOther',
'xtensaeb' : 'CpuInfoOther' } }
##
# @query-cpus-fast:
#
# Returns information about all virtual CPUs. This command does not
# incur a performance penalty and should be used in production
# instead of query-cpus.
#
# Returns: list of @CpuInfoFast
#
# Since: 2.12
#
# Example:
#
# -> { "execute": "query-cpus-fast" }
# <- { "return": [
# {
# "thread-id": 25627,
# "props": {
# "core-id": 0,
# "thread-id": 0,
# "socket-id": 0
# },
# "qom-path": "/machine/unattached/device[0]",
# "arch":"x86",
# "target":"x86_64",
# "cpu-index": 0
# },
# {
# "thread-id": 25628,
# "props": {
# "core-id": 0,
# "thread-id": 0,
# "socket-id": 1
# },
# "qom-path": "/machine/unattached/device[2]",
# "arch":"x86",
# "target":"x86_64",
# "cpu-index": 1
# }
# ]
# }
##
{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
##
# @IOThreadInfo:
#
# Information about an iothread
#
# @id: the identifier of the iothread
#
# @thread-id: ID of the underlying host thread
#
# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
# (since 2.9)
#
# @poll-grow: how many ns will be added to polling time, 0 means that it's not
# configured (since 2.9)
#
# @poll-shrink: how many ns will be removed from polling time, 0 means that
# it's not configured (since 2.9)
#
# Since: 2.0
##
{ 'struct': 'IOThreadInfo',
'data': {'id': 'str',
'thread-id': 'int',
'poll-max-ns': 'int',
'poll-grow': 'int',
'poll-shrink': 'int' } }
##
# @query-iothreads:
#
# Returns a list of information about each iothread.
#
# Note: this list excludes the QEMU main loop thread, which is not declared
# using the -object iothread command-line option. It is always the main thread
# of the process.
#
# Returns: a list of @IOThreadInfo for each iothread
#
# Since: 2.0
#
# Example:
#
# -> { "execute": "query-iothreads" }
# <- { "return": [
# {
# "id":"iothread0",
# "thread-id":3134
# },
# {
# "id":"iothread1",
# "thread-id":3135
# }
# ]
# }
#
##
{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
##
# @BalloonInfo:
#
# Information about the guest balloon device.
#
# @actual: the number of bytes the balloon currently contains
#
# Since: 0.14.0
#
##
{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
##
# @query-balloon:
#
# Return information about the balloon device.
#
# Returns: @BalloonInfo on success
#
# If the balloon driver is enabled but not functional because the KVM
# kernel module cannot support it, KvmMissingCap
#
# If no balloon device is present, DeviceNotActive
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "query-balloon" }
# <- { "return": {
# "actual": 1073741824,
# }
# }
#
##
{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
##
# @BALLOON_CHANGE:
#
# Emitted when the guest changes the actual BALLOON level. This value is
# equivalent to the @actual field return by the 'query-balloon' command
#
# @actual: actual level of the guest memory balloon in bytes
#
# Note: this event is rate-limited.
#
# Since: 1.2
#
# Example:
#
# <- { "event": "BALLOON_CHANGE",
# "data": { "actual": 944766976 },
# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
#
##
{ 'event': 'BALLOON_CHANGE',
'data': { 'actual': 'int' } }
##
# @PciMemoryRange:
#
# A PCI device memory region
#
# @base: the starting address (guest physical)
#
# @limit: the ending address (guest physical)
#
# Since: 0.14.0
##
{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
##
# @PciMemoryRegion:
#
# Information about a PCI device I/O region.
#
# @bar: the index of the Base Address Register for this region
#
# @type: 'io' if the region is a PIO region
# 'memory' if the region is a MMIO region
#
# @size: memory size
#
# @prefetch: if @type is 'memory', true if the memory is prefetchable
#
# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
#
# Since: 0.14.0
##
{ 'struct': 'PciMemoryRegion',
'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
'*prefetch': 'bool', '*mem_type_64': 'bool' } }
##
# @PciBusInfo:
#
# Information about a bus of a PCI Bridge device
#
# @number: primary bus interface number. This should be the number of the
# bus the device resides on.
#
# @secondary: secondary bus interface number. This is the number of the
# main bus for the bridge
#
# @subordinate: This is the highest number bus that resides below the
# bridge.
#
# @io_range: The PIO range for all devices on this bridge
#
# @memory_range: The MMIO range for all devices on this bridge
#
# @prefetchable_range: The range of prefetchable MMIO for all devices on
# this bridge
#
# Since: 2.4
##
{ 'struct': 'PciBusInfo',
'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
'io_range': 'PciMemoryRange',
'memory_range': 'PciMemoryRange',
'prefetchable_range': 'PciMemoryRange' } }
##
# @PciBridgeInfo:
#
# Information about a PCI Bridge device
#
# @bus: information about the bus the device resides on
#
# @devices: a list of @PciDeviceInfo for each device on this bridge
#
# Since: 0.14.0
##
{ 'struct': 'PciBridgeInfo',
'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
##
# @PciDeviceClass:
#
# Information about the Class of a PCI device
#
# @desc: a string description of the device's class
#
# @class: the class code of the device
#
# Since: 2.4
##
{ 'struct': 'PciDeviceClass',
'data': {'*desc': 'str', 'class': 'int'} }
##
# @PciDeviceId:
#
# Information about the Id of a PCI device
#
# @device: the PCI device id
#
# @vendor: the PCI vendor id
#
# Since: 2.4
##
{ 'struct': 'PciDeviceId',
'data': {'device': 'int', 'vendor': 'int'} }
##
# @PciDeviceInfo:
#
# Information about a PCI device
#
# @bus: the bus number of the device
#
# @slot: the slot the device is located in
#
# @function: the function of the slot used by the device
#
# @class_info: the class of the device
#
# @id: the PCI device id
#
# @irq: if an IRQ is assigned to the device, the IRQ number
#
# @qdev_id: the device name of the PCI device
#
# @pci_bridge: if the device is a PCI bridge, the bridge information
#
# @regions: a list of the PCI I/O regions associated with the device
#
# Notes: the contents of @class_info.desc are not stable and should only be
# treated as informational.
#
# Since: 0.14.0
##
{ 'struct': 'PciDeviceInfo',
'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
'*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
'regions': ['PciMemoryRegion']} }
##
# @PciInfo:
#
# Information about a PCI bus
#
# @bus: the bus index
#
# @devices: a list of devices on this bus
#
# Since: 0.14.0
##
{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
##
# @query-pci:
#
# Return information about the PCI bus topology of the guest.
#
# Returns: a list of @PciInfo for each PCI bus. Each bus is
# represented by a json-object, which has a key with a json-array of
# all PCI devices attached to it. Each device is represented by a
# json-object.
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "query-pci" }
# <- { "return": [
# {
# "bus": 0,
# "devices": [
# {
# "bus": 0,
# "qdev_id": "",
# "slot": 0,
# "class_info": {
# "class": 1536,
# "desc": "Host bridge"
# },
# "id": {
# "device": 32902,
# "vendor": 4663
# },
# "function": 0,
# "regions": [
# ]
# },
# {
# "bus": 0,
# "qdev_id": "",
# "slot": 1,
# "class_info": {
# "class": 1537,
# "desc": "ISA bridge"
# },
# "id": {
# "device": 32902,
# "vendor": 28672
# },
# "function": 0,
# "regions": [
# ]
# },
# {
# "bus": 0,
# "qdev_id": "",
# "slot": 1,
# "class_info": {
# "class": 257,
# "desc": "IDE controller"
# },
# "id": {
# "device": 32902,
# "vendor": 28688
# },
# "function": 1,
# "regions": [
# {
# "bar": 4,
# "size": 16,
# "address": 49152,
# "type": "io"
# }
# ]
# },
# {
# "bus": 0,
# "qdev_id": "",
# "slot": 2,
# "class_info": {
# "class": 768,
# "desc": "VGA controller"
# },
# "id": {
# "device": 4115,
# "vendor": 184
# },
# "function": 0,
# "regions": [
# {
# "prefetch": true,
# "mem_type_64": false,
# "bar": 0,
# "size": 33554432,
# "address": 4026531840,
# "type": "memory"
# },
# {
# "prefetch": false,
# "mem_type_64": false,
# "bar": 1,
# "size": 4096,
# "address": 4060086272,
# "type": "memory"
# },
# {
# "prefetch": false,
# "mem_type_64": false,
# "bar": 6,
# "size": 65536,
# "address": -1,
# "type": "memory"
# }
# ]
# },
# {
# "bus": 0,
# "qdev_id": "",
# "irq": 11,
# "slot": 4,
# "class_info": {
# "class": 1280,
# "desc": "RAM controller"
# },
# "id": {
# "device": 6900,
# "vendor": 4098
# },
# "function": 0,
# "regions": [
# {
# "bar": 0,
# "size": 32,
# "address": 49280,
# "type": "io"
# }
# ]
# }
# ]
# }
# ]
# }
#
# Note: This example has been shortened as the real response is too long.
#
##
{ 'command': 'query-pci', 'returns': ['PciInfo'] }
##
# @quit:
#
# This command will cause the QEMU process to exit gracefully. While every
# attempt is made to send the QMP response before terminating, this is not
# guaranteed. When using this interface, a premature EOF would not be
# unexpected.
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "quit" }
# <- { "return": {} }
##
{ 'command': 'quit' }
##
# @stop:
#
# Stop all guest VCPU execution.
#
# Since: 0.14.0
#
# Notes: This function will succeed even if the guest is already in the stopped
# state. In "inmigrate" state, it will ensure that the guest
# remains paused once migration finishes, as if the -S option was
# passed on the command line.
#
# Example:
#
# -> { "execute": "stop" }
# <- { "return": {} }
#
##
{ 'command': 'stop' }
##
# @system_reset:
#
# Performs a hard reset of a guest.
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "system_reset" }
# <- { "return": {} }
#
##
{ 'command': 'system_reset' }
##
# @system_powerdown:
#
# Requests that a guest perform a powerdown operation.
#
# Since: 0.14.0
#
# Notes: A guest may or may not respond to this command. This command
# returning does not indicate that a guest has accepted the request or
# that it has shut down. Many guests will respond to this command by
# prompting the user in some way.
# Example:
#
# -> { "execute": "system_powerdown" }
# <- { "return": {} }
#
##
{ 'command': 'system_powerdown' }
##
# @cpu-add:
#
# Adds CPU with specified ID
#
# @id: ID of CPU to be created, valid values [0..max_cpus)
#
# Returns: Nothing on success
#
# Since: 1.5
#
# Example:
#
# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
# <- { "return": {} }
#
##
{ 'command': 'cpu-add', 'data': {'id': 'int'} }
##
# @memsave:
#
# Save a portion of guest memory to a file.
#
# @val: the virtual address of the guest to start from
#
# @size: the size of memory region to save
#
# @filename: the file to save the memory to as binary data
#
# @cpu-index: the index of the virtual CPU to use for translating the
# virtual address (defaults to CPU 0)
#
# Returns: Nothing on success
#
# Since: 0.14.0
#
# Notes: Errors were not reliably returned until 1.1
#
# Example:
#
# -> { "execute": "memsave",
# "arguments": { "val": 10,
# "size": 100,
# "filename": "/tmp/virtual-mem-dump" } }
# <- { "return": {} }
#
##
{ 'command': 'memsave',
'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
##
# @pmemsave:
#
# Save a portion of guest physical memory to a file.
#
# @val: the physical address of the guest to start from
#
# @size: the size of memory region to save
#
# @filename: the file to save the memory to as binary data
#
# Returns: Nothing on success
#
# Since: 0.14.0
#
# Notes: Errors were not reliably returned until 1.1
#
# Example:
#
# -> { "execute": "pmemsave",
# "arguments": { "val": 10,
# "size": 100,
# "filename": "/tmp/physical-mem-dump" } }
# <- { "return": {} }
#
##
{ 'command': 'pmemsave',
'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
##
# @cont:
#
# Resume guest VCPU execution.
#
# Since: 0.14.0
#
# Returns: If successful, nothing
#
# Notes: This command will succeed if the guest is currently running. It
# will also succeed if the guest is in the "inmigrate" state; in
# this case, the effect of the command is to make sure the guest
# starts once migration finishes, removing the effect of the -S
# command line option if it was passed.
#
# Example:
#
# -> { "execute": "cont" }
# <- { "return": {} }
#
##
{ 'command': 'cont' }
##
# @exit-preconfig:
#
# Exit from "preconfig" state
#
# This command makes QEMU exit the preconfig state and proceed with
# VM initialization using configuration data provided on the command line
# and via the QMP monitor during the preconfig state. The command is only
# available during the preconfig state (i.e. when the --preconfig command
# line option was in use).
#
# Since 3.0
#
# Returns: nothing
#
# Example:
#
# -> { "execute": "exit-preconfig" }
# <- { "return": {} }
#
##
{ 'command': 'exit-preconfig', 'allow-preconfig': true }
##
# @system_wakeup:
#
# Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
#
# Since: 1.1
#
# Returns: nothing.
#
# Example:
#
# -> { "execute": "system_wakeup" }
# <- { "return": {} }
#
##
{ 'command': 'system_wakeup' }
##
# @inject-nmi:
#
# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
# The command fails when the guest doesn't support injecting.
#
# Returns: If successful, nothing
#
# Since: 0.14.0
#
# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
#
# Example:
#
# -> { "execute": "inject-nmi" }
# <- { "return": {} }
#
##
{ 'command': 'inject-nmi' }
##
# @balloon:
#
# Request the balloon driver to change its balloon size.
#
# @value: the target size of the balloon in bytes
#
# Returns: Nothing on success
# If the balloon driver is enabled but not functional because the KVM
# kernel module cannot support it, KvmMissingCap
# If no balloon device is present, DeviceNotActive
#
# Notes: This command just issues a request to the guest. When it returns,
# the balloon size may not have changed. A guest can change the balloon
# size independent of this command.
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
# <- { "return": {} }
#
##
{ 'command': 'balloon', 'data': {'value': 'int'} }
##
# @human-monitor-command:
#
# Execute a command on the human monitor and return the output.
#
# @command-line: the command to execute in the human monitor
#
# @cpu-index: The CPU to use for commands that require an implicit CPU
#
# Returns: the output of the command as a string
#
# Since: 0.14.0
#
# Notes: This command only exists as a stop-gap. Its use is highly
# discouraged. The semantics of this command are not
# guaranteed: this means that command names, arguments and
# responses can change or be removed at ANY time. Applications
# that rely on long term stability guarantees should NOT
# use this command.
#
# Known limitations:
#
# * This command is stateless, this means that commands that depend
# on state information (such as getfd) might not work
#
# * Commands that prompt the user for data don't currently work
#
# Example:
#
# -> { "execute": "human-monitor-command",
# "arguments": { "command-line": "info kvm" } }
# <- { "return": "kvm support: enabled\r\n" }
#
##
{ 'command': 'human-monitor-command',
'data': {'command-line': 'str', '*cpu-index': 'int'},
'returns': 'str' }
##
# @ObjectPropertyInfo:
#
# @name: the name of the property
#
# @type: the type of the property. This will typically come in one of four
# forms:
#
# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
# These types are mapped to the appropriate JSON type.
#
# 2) A child type in the form 'child<subtype>' where subtype is a qdev
# device type name. Child properties create the composition tree.
#
# 3) A link type in the form 'link<subtype>' where subtype is a qdev
# device type name. Link properties form the device model graph.
#
# @description: if specified, the description of the property.
#
# Since: 1.2
##
{ 'struct': 'ObjectPropertyInfo',
'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
##
# @qom-list:
#
# This command will list any properties of a object given a path in the object
# model.
#
# @path: the path within the object model. See @qom-get for a description of
# this parameter.
#
# Returns: a list of @ObjectPropertyInfo that describe the properties of the
# object.
#
# Since: 1.2
##
{ 'command': 'qom-list',
'data': { 'path': 'str' },
'returns': [ 'ObjectPropertyInfo' ] }
##
# @qom-get:
#
# This command will get a property from a object model path and return the
# value.
#
# @path: The path within the object model. There are two forms of supported
# paths--absolute and partial paths.
#
# Absolute paths are derived from the root object and can follow child<>
# or link<> properties. Since they can follow link<> properties, they
# can be arbitrarily long. Absolute paths look like absolute filenames
# and are prefixed with a leading slash.
#
# Partial paths look like relative filenames. They do not begin
# with a prefix. The matching rules for partial paths are subtle but
# designed to make specifying objects easy. At each level of the
# composition tree, the partial path is matched as an absolute path.
# The first match is not returned. At least two matches are searched
# for. A successful result is only returned if only one match is
# found. If more than one match is found, a flag is return to
# indicate that the match was ambiguous.
#
# @property: The property name to read
#
# Returns: The property value. The type depends on the property
# type. child<> and link<> properties are returned as #str
# pathnames. All integer property types (u8, u16, etc) are
# returned as #int.
#
# Since: 1.2
##
{ 'command': 'qom-get',
'data': { 'path': 'str', 'property': 'str' },
'returns': 'any' }
##
# @qom-set:
#
# This command will set a property from a object model path.
#
# @path: see @qom-get for a description of this parameter
#
# @property: the property name to set
#
# @value: a value who's type is appropriate for the property type. See @qom-get
# for a description of type mapping.
#
# Since: 1.2
##
{ 'command': 'qom-set',
'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
##
# @change:
#
# This command is multiple commands multiplexed together.
#
# @device: This is normally the name of a block device but it may also be 'vnc'.
# when it's 'vnc', then sub command depends on @target
#
# @target: If @device is a block device, then this is the new filename.
# If @device is 'vnc', then if the value 'password' selects the vnc
# change password command. Otherwise, this specifies a new server URI
# address to listen to for VNC connections.
#
# @arg: If @device is a block device, then this is an optional format to open
# the device with.
# If @device is 'vnc' and @target is 'password', this is the new VNC
# password to set. See change-vnc-password for additional notes.
#
# Returns: Nothing on success.
# If @device is not a valid block device, DeviceNotFound
#
# Notes: This interface is deprecated, and it is strongly recommended that you
# avoid using it. For changing block devices, use
# blockdev-change-medium; for changing VNC parameters, use
# change-vnc-password.
#
# Since: 0.14.0
#
# Example:
#
# 1. Change a removable medium
#
# -> { "execute": "change",
# "arguments": { "device": "ide1-cd0",
# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
# <- { "return": {} }
#
# 2. Change VNC password
#
# -> { "execute": "change",
# "arguments": { "device": "vnc", "target": "password",
# "arg": "foobar1" } }
# <- { "return": {} }
#
##
{ 'command': 'change',
'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
##
# @ObjectTypeInfo:
#
# This structure describes a search result from @qom-list-types
#
# @name: the type name found in the search
#
# @abstract: the type is abstract and can't be directly instantiated.
# Omitted if false. (since 2.10)
#
# @parent: Name of parent type, if any (since 2.10)
#
# Since: 1.1
##
{ 'struct': 'ObjectTypeInfo',
'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
##
# @qom-list-types:
#
# This command will return a list of types given search parameters
#
# @implements: if specified, only return types that implement this type name
#
# @abstract: if true, include abstract types in the results
#
# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
#
# Since: 1.1
##
{ 'command': 'qom-list-types',
'data': { '*implements': 'str', '*abstract': 'bool' },
'returns': [ 'ObjectTypeInfo' ] }
##
# @device-list-properties:
#
# List properties associated with a device.
#
# @typename: the type name of a device
#
# Returns: a list of ObjectPropertyInfo describing a devices properties
#
# Since: 1.2
##
{ 'command': 'device-list-properties',
'data': { 'typename': 'str'},
'returns': [ 'ObjectPropertyInfo' ] }
##
# @qom-list-properties:
#
# List properties associated with a QOM object.
#
# @typename: the type name of an object
#
# Returns: a list of ObjectPropertyInfo describing object properties
#
# Since: 2.12
##
{ 'command': 'qom-list-properties',
'data': { 'typename': 'str'},
'returns': [ 'ObjectPropertyInfo' ] }
##
# @xen-set-global-dirty-log:
#
# Enable or disable the global dirty log mode.
#
# @enable: true to enable, false to disable.
#
# Returns: nothing
#
# Since: 1.3
#
# Example:
#
# -> { "execute": "xen-set-global-dirty-log",
# "arguments": { "enable": true } }
# <- { "return": {} }
#
##
{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
##
# @device_add:
#
# @driver: the name of the new device's driver
#
# @bus: the device's parent bus (device tree path)
#
# @id: the device's ID, must be unique
#
# Additional arguments depend on the type.
#
# Add a device.
#
# Notes:
# 1. For detailed information about this command, please refer to the
# 'docs/qdev-device-use.txt' file.
#
# 2. It's possible to list device properties by running QEMU with the
# "-device DEVICE,help" command-line argument, where DEVICE is the
# device's name
#
# Example:
#
# -> { "execute": "device_add",
# "arguments": { "driver": "e1000", "id": "net1",
# "bus": "pci.0",
# "mac": "52:54:00:12:34:56" } }
# <- { "return": {} }
#
# TODO: This command effectively bypasses QAPI completely due to its
# "additional arguments" business. It shouldn't have been added to
# the schema in this form. It should be qapified properly, or
# replaced by a properly qapified command.
#
# Since: 0.13
##
{ 'command': 'device_add',
'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
'gen': false } # so we can get the additional arguments
##
# @device_del:
#
# Remove a device from a guest
#
# @id: the device's ID or QOM path
#
# Returns: Nothing on success
# If @id is not a valid device, DeviceNotFound
#
# Notes: When this command completes, the device may not be removed from the
# guest. Hot removal is an operation that requires guest cooperation.
# This command merely requests that the guest begin the hot removal
# process. Completion of the device removal process is signaled with a
# DEVICE_DELETED event. Guest reset will automatically complete removal
# for all devices.
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "device_del",
# "arguments": { "id": "net1" } }
# <- { "return": {} }
#
# -> { "execute": "device_del",
# "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
# <- { "return": {} }
#
##
{ 'command': 'device_del', 'data': {'id': 'str'} }
##
# @DEVICE_DELETED:
#
# Emitted whenever the device removal completion is acknowledged by the guest.
# At this point, it's safe to reuse the specified device ID. Device removal can
# be initiated by the guest or by HMP/QMP commands.
#
# @device: device name
#
# @path: device path
#
# Since: 1.5
#
# Example:
#
# <- { "event": "DEVICE_DELETED",
# "data": { "device": "virtio-net-pci-0",
# "path": "/machine/peripheral/virtio-net-pci-0" },
# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
#
##
{ 'event': 'DEVICE_DELETED',
'data': { '*device': 'str', 'path': 'str' } }
##
# @DumpGuestMemoryFormat:
#
# An enumeration of guest-memory-dump's format.
#
# @elf: elf format
#
# @kdump-zlib: kdump-compressed format with zlib-compressed
#
# @kdump-lzo: kdump-compressed format with lzo-compressed
#
# @kdump-snappy: kdump-compressed format with snappy-compressed
#
# Since: 2.0
##
{ 'enum': 'DumpGuestMemoryFormat',
'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
##
# @dump-guest-memory:
#
# Dump guest's memory to vmcore. It is a synchronous operation that can take
# very long depending on the amount of guest memory.
#
# @paging: if true, do paging to get guest's memory mapping. This allows
# using gdb to process the core file.
#
# IMPORTANT: this option can make QEMU allocate several gigabytes
# of RAM. This can happen for a large guest, or a
# malicious guest pretending to be large.
#
# Also, paging=true has the following limitations:
#
# 1. The guest may be in a catastrophic state or can have corrupted
# memory, which cannot be trusted
# 2. The guest can be in real-mode even if paging is enabled. For
# example, the guest uses ACPI to sleep, and ACPI sleep state
# goes in real-mode
# 3. Currently only supported on i386 and x86_64.
#
# @protocol: the filename or file descriptor of the vmcore. The supported
# protocols are:
#
# 1. file: the protocol starts with "file:", and the following
# string is the file's path.
# 2. fd: the protocol starts with "fd:", and the following string
# is the fd's name.
#
# @detach: if true, QMP will return immediately rather than
# waiting for the dump to finish. The user can track progress
# using "query-dump". (since 2.6).
#
# @begin: if specified, the starting physical address.
#
# @length: if specified, the memory size, in bytes. If you don't
# want to dump all guest's memory, please specify the start @begin
# and @length
#
# @format: if specified, the format of guest memory dump. But non-elf
# format is conflict with paging and filter, ie. @paging, @begin and
# @length is not allowed to be specified with non-elf @format at the
# same time (since 2.0)
#
# Note: All boolean arguments default to false
#
# Returns: nothing on success
#
# Since: 1.2
#
# Example:
#
# -> { "execute": "dump-guest-memory",
# "arguments": { "protocol": "fd:dump" } }
# <- { "return": {} }
#
##
{ 'command': 'dump-guest-memory',
'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
'*begin': 'int', '*length': 'int',
'*format': 'DumpGuestMemoryFormat'} }
##
# @DumpStatus:
#
# Describe the status of a long-running background guest memory dump.
#
# @none: no dump-guest-memory has started yet.
#
# @active: there is one dump running in background.
#
# @completed: the last dump has finished successfully.
#
# @failed: the last dump has failed.
#
# Since: 2.6
##
{ 'enum': 'DumpStatus',
'data': [ 'none', 'active', 'completed', 'failed' ] }
##
# @DumpQueryResult:
#
# The result format for 'query-dump'.
#
# @status: enum of @DumpStatus, which shows current dump status
#
# @completed: bytes written in latest dump (uncompressed)
#
# @total: total bytes to be written in latest dump (uncompressed)
#
# Since: 2.6
##
{ 'struct': 'DumpQueryResult',
'data': { 'status': 'DumpStatus',
'completed': 'int',
'total': 'int' } }
##
# @query-dump:
#
# Query latest dump status.
#
# Returns: A @DumpStatus object showing the dump status.
#
# Since: 2.6
#
# Example:
#
# -> { "execute": "query-dump" }
# <- { "return": { "status": "active", "completed": 1024000,
# "total": 2048000 } }
#
##
{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
##
# @DUMP_COMPLETED:
#
# Emitted when background dump has completed
#
# @result: final dump status
#
# @error: human-readable error string that provides
# hint on why dump failed. Only presents on failure. The
# user should not try to interpret the error string.
#
# Since: 2.6
#
# Example:
#
# { "event": "DUMP_COMPLETED",
# "data": {"result": {"total": 1090650112, "status": "completed",
# "completed": 1090650112} } }
#
##
{ 'event': 'DUMP_COMPLETED' ,
'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
##
# @DumpGuestMemoryCapability:
#
# A list of the available formats for dump-guest-memory
#
# Since: 2.0
##
{ 'struct': 'DumpGuestMemoryCapability',
'data': {
'formats': ['DumpGuestMemoryFormat'] } }
##
# @query-dump-guest-memory-capability:
#
# Returns the available formats for dump-guest-memory
#
# Returns: A @DumpGuestMemoryCapability object listing available formats for
# dump-guest-memory
#
# Since: 2.0
#
# Example:
#
# -> { "execute": "query-dump-guest-memory-capability" }
# <- { "return": { "formats":
# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
#
##
{ 'command': 'query-dump-guest-memory-capability',
'returns': 'DumpGuestMemoryCapability' }
##
# @dump-skeys:
#
# Dump guest's storage keys
#
# @filename: the path to the file to dump to
#
# This command is only supported on s390 architecture.
#
# Since: 2.5
#
# Example:
#
# -> { "execute": "dump-skeys",
# "arguments": { "filename": "/tmp/skeys" } }
# <- { "return": {} }
#
##
{ 'command': 'dump-skeys',
'data': { 'filename': 'str' } }
##
# @object-add:
#
# Create a QOM object.
#
# @qom-type: the class name for the object to be created
#
# @id: the name of the new object
#
# @props: a dictionary of properties to be passed to the backend
#
# Returns: Nothing on success
# Error if @qom-type is not a valid class name
#
# Since: 2.0
#
# Example:
#
# -> { "execute": "object-add",
# "arguments": { "qom-type": "rng-random", "id": "rng1",
# "props": { "filename": "/dev/hwrng" } } }
# <- { "return": {} }
#
##
{ 'command': 'object-add',
'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
##
# @object-del:
#
# Remove a QOM object.
#
# @id: the name of the QOM object to remove
#
# Returns: Nothing on success
# Error if @id is not a valid id for a QOM object
#
# Since: 2.0
#
# Example:
#
# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
# <- { "return": {} }
#
##
{ 'command': 'object-del', 'data': {'id': 'str'} }
##
# @getfd:
#
# Receive a file descriptor via SCM rights and assign it a name
#
# @fdname: file descriptor name
#
# Returns: Nothing on success
#
# Since: 0.14.0
#
# Notes: If @fdname already exists, the file descriptor assigned to
# it will be closed and replaced by the received file
# descriptor.
#
# The 'closefd' command can be used to explicitly close the
# file descriptor when it is no longer needed.
#
# Example:
#
# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
# <- { "return": {} }
#
##
{ 'command': 'getfd', 'data': {'fdname': 'str'} }
##
# @closefd:
#
# Close a file descriptor previously passed via SCM rights
#
# @fdname: file descriptor name
#
# Returns: Nothing on success
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
# <- { "return": {} }
#
##
{ 'command': 'closefd', 'data': {'fdname': 'str'} }
##
# @MachineInfo:
#
# Information describing a machine.
#
# @name: the name of the machine
#
# @alias: an alias for the machine name
#
# @is-default: whether the machine is default
#
# @cpu-max: maximum number of CPUs supported by the machine type
# (since 1.5.0)
#
# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
#
# Since: 1.2.0
##
{ 'struct': 'MachineInfo',
'data': { 'name': 'str', '*alias': 'str',
'*is-default': 'bool', 'cpu-max': 'int',
'hotpluggable-cpus': 'bool'} }
##
# @query-machines:
#
# Return a list of supported machines
#
# Returns: a list of MachineInfo
#
# Since: 1.2.0
##
{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
##
# @CpuDefinitionInfo:
#
# Virtual CPU definition.
#
# @name: the name of the CPU definition
#
# @migration-safe: whether a CPU definition can be safely used for
# migration in combination with a QEMU compatibility machine
# when migrating between different QMU versions and between
# hosts with different sets of (hardware or software)
# capabilities. If not provided, information is not available
# and callers should not assume the CPU definition to be
# migration-safe. (since 2.8)
#
# @static: whether a CPU definition is static and will not change depending on
# QEMU version, machine type, machine options and accelerator options.
# A static model is always migration-safe. (since 2.8)
#
# @unavailable-features: List of properties that prevent
# the CPU model from running in the current
# host. (since 2.8)
# @typename: Type name that can be used as argument to @device-list-properties,
# to introspect properties configurable using -cpu or -global.
# (since 2.9)
#
# @unavailable-features is a list of QOM property names that
# represent CPU model attributes that prevent the CPU from running.
# If the QOM property is read-only, that means there's no known
# way to make the CPU model run in the current host. Implementations
# that choose not to provide specific information return the
# property name "type".
# If the property is read-write, it means that it MAY be possible
# to run the CPU model in the current host if that property is
# changed. Management software can use it as hints to suggest or
# choose an alternative for the user, or just to generate meaningful
# error messages explaining why the CPU model can't be used.
# If @unavailable-features is an empty list, the CPU model is
# runnable using the current host and machine-type.
# If @unavailable-features is not present, runnability
# information for the CPU is not available.
#
# Since: 1.2.0
##
{ 'struct': 'CpuDefinitionInfo',
'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
'*unavailable-features': [ 'str' ], 'typename': 'str' } }
##
# @MemoryInfo:
#
# Actual memory information in bytes.
#
# @base-memory: size of "base" memory specified with command line
# option -m.
#
# @plugged-memory: size of memory that can be hot-unplugged. This field
# is omitted if target doesn't support memory hotplug
# (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
#
# Since: 2.11.0
##
{ 'struct': 'MemoryInfo',
'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
##
# @query-memory-size-summary:
#
# Return the amount of initially allocated and present hotpluggable (if
# enabled) memory in bytes.
#
# Example:
#
# -> { "execute": "query-memory-size-summary" }
# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
#
# Since: 2.11.0
##
{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
##
# @query-cpu-definitions:
#
# Return a list of supported virtual CPU definitions
#
# Returns: a list of CpuDefInfo
#
# Since: 1.2.0
##
{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
##
# @CpuModelInfo:
#
# Virtual CPU model.
#
# A CPU model consists of the name of a CPU definition, to which
# delta changes are applied (e.g. features added/removed). Most magic values
# that an architecture might require should be hidden behind the name.
# However, if required, architectures can expose relevant properties.
#
# @name: the name of the CPU definition the model is based on
# @props: a dictionary of QOM properties to be applied
#
# Since: 2.8.0
##
{ 'struct': 'CpuModelInfo',
'data': { 'name': 'str',
'*props': 'any' } }
##
# @CpuModelExpansionType:
#
# An enumeration of CPU model expansion types.
#
# @static: Expand to a static CPU model, a combination of a static base
# model name and property delta changes. As the static base model will
# never change, the expanded CPU model will be the same, independent of
# independent of QEMU version, machine type, machine options, and
# accelerator options. Therefore, the resulting model can be used by
# tooling without having to specify a compatibility machine - e.g. when
# displaying the "host" model. static CPU models are migration-safe.
#
# @full: Expand all properties. The produced model is not guaranteed to be
# migration-safe, but allows tooling to get an insight and work with
# model details.
#
# Note: When a non-migration-safe CPU model is expanded in static mode, some
# features enabled by the CPU model may be omitted, because they can't be
# implemented by a static CPU model definition (e.g. cache info passthrough and
# PMU passthrough in x86). If you need an accurate representation of the
# features enabled by a non-migration-safe CPU model, use @full. If you need a
# static representation that will keep ABI compatibility even when changing QEMU
# version or machine-type, use @static (but keep in mind that some features may
# be omitted).
#
# Since: 2.8.0
##
{ 'enum': 'CpuModelExpansionType',
'data': [ 'static', 'full' ] }
##
# @CpuModelExpansionInfo:
#
# The result of a cpu model expansion.
#
# @model: the expanded CpuModelInfo.
#
# Since: 2.8.0
##
{ 'struct': 'CpuModelExpansionInfo',
'data': { 'model': 'CpuModelInfo' } }
##
# @query-cpu-model-expansion:
#
# Expands a given CPU model (or a combination of CPU model + additional options)
# to different granularities, allowing tooling to get an understanding what a
# specific CPU model looks like in QEMU under a certain configuration.
#
# This interface can be used to query the "host" CPU model.
#
# The data returned by this command may be affected by:
#
# * QEMU version: CPU models may look different depending on the QEMU version.
# (Except for CPU models reported as "static" in query-cpu-definitions.)
# * machine-type: CPU model may look different depending on the machine-type.
# (Except for CPU models reported as "static" in query-cpu-definitions.)
# * machine options (including accelerator): in some architectures, CPU models
# may look different depending on machine and accelerator options. (Except for
# CPU models reported as "static" in query-cpu-definitions.)
# * "-cpu" arguments and global properties: arguments to the -cpu option and
# global properties may affect expansion of CPU models. Using
# query-cpu-model-expansion while using these is not advised.
#
# Some architectures may not support all expansion types. s390x supports
# "full" and "static".
#
# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
# not supported, if the model cannot be expanded, if the model contains
# an unknown CPU definition name, unknown properties or properties
# with a wrong type. Also returns an error if an expansion type is
# not supported.
#
# Since: 2.8.0
##
{ 'command': 'query-cpu-model-expansion',
'data': { 'type': 'CpuModelExpansionType',
'model': 'CpuModelInfo' },
'returns': 'CpuModelExpansionInfo' }
##
# @CpuModelCompareResult:
#
# An enumeration of CPU model comparison results. The result is usually
# calculated using e.g. CPU features or CPU generations.
#
# @incompatible: If model A is incompatible to model B, model A is not
# guaranteed to run where model B runs and the other way around.
#
# @identical: If model A is identical to model B, model A is guaranteed to run
# where model B runs and the other way around.
#
# @superset: If model A is a superset of model B, model B is guaranteed to run
# where model A runs. There are no guarantees about the other way.
#
# @subset: If model A is a subset of model B, model A is guaranteed to run
# where model B runs. There are no guarantees about the other way.
#
# Since: 2.8.0
##
{ 'enum': 'CpuModelCompareResult',
'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
##
# @CpuModelCompareInfo:
#
# The result of a CPU model comparison.
#
# @result: The result of the compare operation.
# @responsible-properties: List of properties that led to the comparison result
# not being identical.
#
# @responsible-properties is a list of QOM property names that led to
# both CPUs not being detected as identical. For identical models, this
# list is empty.
# If a QOM property is read-only, that means there's no known way to make the
# CPU models identical. If the special property name "type" is included, the
# models are by definition not identical and cannot be made identical.
#
# Since: 2.8.0
##
{ 'struct': 'CpuModelCompareInfo',
'data': {'result': 'CpuModelCompareResult',
'responsible-properties': ['str']
}
}
##
# @query-cpu-model-comparison:
#
# Compares two CPU models, returning how they compare in a specific
# configuration. The results indicates how both models compare regarding
# runnability. This result can be used by tooling to make decisions if a
# certain CPU model will run in a certain configuration or if a compatible
# CPU model has to be created by baselining.
#
# Usually, a CPU model is compared against the maximum possible CPU model
# of a certain configuration (e.g. the "host" model for KVM). If that CPU
# model is identical or a subset, it will run in that configuration.
#
# The result returned by this command may be affected by:
#
# * QEMU version: CPU models may look different depending on the QEMU version.
# (Except for CPU models reported as "static" in query-cpu-definitions.)
# * machine-type: CPU model may look different depending on the machine-type.
# (Except for CPU models reported as "static" in query-cpu-definitions.)
# * machine options (including accelerator): in some architectures, CPU models
# may look different depending on machine and accelerator options. (Except for
# CPU models reported as "static" in query-cpu-definitions.)
# * "-cpu" arguments and global properties: arguments to the -cpu option and
# global properties may affect expansion of CPU models. Using
# query-cpu-model-expansion while using these is not advised.
#
# Some architectures may not support comparing CPU models. s390x supports
# comparing CPU models.
#
# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
# not supported, if a model cannot be used, if a model contains
# an unknown cpu definition name, unknown properties or properties
# with wrong types.
#
# Since: 2.8.0
##
{ 'command': 'query-cpu-model-comparison',
'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
'returns': 'CpuModelCompareInfo' }
##
# @CpuModelBaselineInfo:
#
# The result of a CPU model baseline.
#
# @model: the baselined CpuModelInfo.
#
# Since: 2.8.0
##
{ 'struct': 'CpuModelBaselineInfo',
'data': { 'model': 'CpuModelInfo' } }
##
# @query-cpu-model-baseline:
#
# Baseline two CPU models, creating a compatible third model. The created
# model will always be a static, migration-safe CPU model (see "static"
# CPU model expansion for details).
#
# This interface can be used by tooling to create a compatible CPU model out
# two CPU models. The created CPU model will be identical to or a subset of
# both CPU models when comparing them. Therefore, the created CPU model is
# guaranteed to run where the given CPU models run.
#
# The result returned by this command may be affected by:
#
# * QEMU version: CPU models may look different depending on the QEMU version.
# (Except for CPU models reported as "static" in query-cpu-definitions.)
# * machine-type: CPU model may look different depending on the machine-type.
# (Except for CPU models reported as "static" in query-cpu-definitions.)
# * machine options (including accelerator): in some architectures, CPU models
# may look different depending on machine and accelerator options. (Except for
# CPU models reported as "static" in query-cpu-definitions.)
# * "-cpu" arguments and global properties: arguments to the -cpu option and
# global properties may affect expansion of CPU models. Using
# query-cpu-model-expansion while using these is not advised.
#
# Some architectures may not support baselining CPU models. s390x supports
# baselining CPU models.
#
# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
# not supported, if a model cannot be used, if a model contains
# an unknown cpu definition name, unknown properties or properties
# with wrong types.
#
# Since: 2.8.0
##
{ 'command': 'query-cpu-model-baseline',
'data': { 'modela': 'CpuModelInfo',
'modelb': 'CpuModelInfo' },
'returns': 'CpuModelBaselineInfo' }
##
# @AddfdInfo:
#
# Information about a file descriptor that was added to an fd set.
#
# @fdset-id: The ID of the fd set that @fd was added to.
#
# @fd: The file descriptor that was received via SCM rights and
# added to the fd set.
#
# Since: 1.2.0
##
{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
##
# @add-fd:
#
# Add a file descriptor, that was passed via SCM rights, to an fd set.
#
# @fdset-id: The ID of the fd set to add the file descriptor to.
#
# @opaque: A free-form string that can be used to describe the fd.
#
# Returns: @AddfdInfo on success
#
# If file descriptor was not received, FdNotSupplied
#
# If @fdset-id is a negative value, InvalidParameterValue
#
# Notes: The list of fd sets is shared by all monitor connections.
#
# If @fdset-id is not specified, a new fd set will be created.
#
# Since: 1.2.0
#
# Example:
#
# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
# <- { "return": { "fdset-id": 1, "fd": 3 } }
#
##
{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
'returns': 'AddfdInfo' }
##
# @remove-fd:
#
# Remove a file descriptor from an fd set.
#
# @fdset-id: The ID of the fd set that the file descriptor belongs to.
#
# @fd: The file descriptor that is to be removed.
#
# Returns: Nothing on success
# If @fdset-id or @fd is not found, FdNotFound
#
# Since: 1.2.0
#
# Notes: The list of fd sets is shared by all monitor connections.
#
# If @fd is not specified, all file descriptors in @fdset-id
# will be removed.
#
# Example:
#
# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
# <- { "return": {} }
#
##
{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
##
# @FdsetFdInfo:
#
# Information about a file descriptor that belongs to an fd set.
#
# @fd: The file descriptor value.
#
# @opaque: A free-form string that can be used to describe the fd.
#
# Since: 1.2.0
##
{ 'struct': 'FdsetFdInfo',
'data': {'fd': 'int', '*opaque': 'str'} }
##
# @FdsetInfo:
#
# Information about an fd set.
#
# @fdset-id: The ID of the fd set.
#
# @fds: A list of file descriptors that belong to this fd set.
#
# Since: 1.2.0
##
{ 'struct': 'FdsetInfo',
'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
##
# @query-fdsets:
#
# Return information describing all fd sets.
#
# Returns: A list of @FdsetInfo
#
# Since: 1.2.0
#
# Note: The list of fd sets is shared by all monitor connections.
#
# Example:
#
# -> { "execute": "query-fdsets" }
# <- { "return": [
# {
# "fds": [
# {
# "fd": 30,
# "opaque": "rdonly:/path/to/file"
# },
# {
# "fd": 24,
# "opaque": "rdwr:/path/to/file"
# }
# ],
# "fdset-id": 1
# },
# {
# "fds": [
# {
# "fd": 28
# },
# {
# "fd": 29
# }
# ],
# "fdset-id": 0
# }
# ]
# }
#
##
{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
##
# @TargetInfo:
#
# Information describing the QEMU target.
#
# @arch: the target architecture
#
# Since: 1.2.0
##
{ 'struct': 'TargetInfo',
'data': { 'arch': 'SysEmuTarget' } }
##
# @query-target:
#
# Return information about the target for this QEMU
#
# Returns: TargetInfo
#
# Since: 1.2.0
##
{ 'command': 'query-target', 'returns': 'TargetInfo' }
##
# @AcpiTableOptions:
#
# Specify an ACPI table on the command line to load.
#
# At most one of @file and @data can be specified. The list of files specified
# by any one of them is loaded and concatenated in order. If both are omitted,
# @data is implied.
#
# Other fields / optargs can be used to override fields of the generic ACPI
# table header; refer to the ACPI specification 5.0, section 5.2.6 System
# Description Table Header. If a header field is not overridden, then the
# corresponding value from the concatenated blob is used (in case of @file), or
# it is filled in with a hard-coded value (in case of @data).
#
# String fields are copied into the matching ACPI member from lowest address
# upwards, and silently truncated / NUL-padded to length.
#
# @sig: table signature / identifier (4 bytes)
#
# @rev: table revision number (dependent on signature, 1 byte)
#
# @oem_id: OEM identifier (6 bytes)
#
# @oem_table_id: OEM table identifier (8 bytes)
#
# @oem_rev: OEM-supplied revision number (4 bytes)
#
# @asl_compiler_id: identifier of the utility that created the table
# (4 bytes)
#
# @asl_compiler_rev: revision number of the utility that created the
# table (4 bytes)
#
# @file: colon (:) separated list of pathnames to load and
# concatenate as table data. The resultant binary blob is expected to
# have an ACPI table header. At least one file is required. This field
# excludes @data.
#
# @data: colon (:) separated list of pathnames to load and
# concatenate as table data. The resultant binary blob must not have an
# ACPI table header. At least one file is required. This field excludes
# @file.
#
# Since: 1.5
##
{ 'struct': 'AcpiTableOptions',
'data': {
'*sig': 'str',
'*rev': 'uint8',
'*oem_id': 'str',
'*oem_table_id': 'str',
'*oem_rev': 'uint32',
'*asl_compiler_id': 'str',
'*asl_compiler_rev': 'uint32',
'*file': 'str',
'*data': 'str' }}
##
# @CommandLineParameterType:
#
# Possible types for an option parameter.
#
# @string: accepts a character string
#
# @boolean: accepts "on" or "off"
#
# @number: accepts a number
#
# @size: accepts a number followed by an optional suffix (K)ilo,
# (M)ega, (G)iga, (T)era
#
# Since: 1.5
##
{ 'enum': 'CommandLineParameterType',
'data': ['string', 'boolean', 'number', 'size'] }
##
# @CommandLineParameterInfo:
#
# Details about a single parameter of a command line option.
#
# @name: parameter name
#
# @type: parameter @CommandLineParameterType
#
# @help: human readable text string, not suitable for parsing.
#
# @default: default value string (since 2.1)
#
# Since: 1.5
##
{ 'struct': 'CommandLineParameterInfo',
'data': { 'name': 'str',
'type': 'CommandLineParameterType',
'*help': 'str',
'*default': 'str' } }
##
# @CommandLineOptionInfo:
#
# Details about a command line option, including its list of parameter details
#
# @option: option name
#
# @parameters: an array of @CommandLineParameterInfo
#
# Since: 1.5
##
{ 'struct': 'CommandLineOptionInfo',
'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
##
# @query-command-line-options:
#
# Query command line option schema.
#
# @option: option name
#
# Returns: list of @CommandLineOptionInfo for all options (or for the given
# @option). Returns an error if the given @option doesn't exist.
#
# Since: 1.5
#
# Example:
#
# -> { "execute": "query-command-line-options",
# "arguments": { "option": "option-rom" } }
# <- { "return": [
# {
# "parameters": [
# {
# "name": "romfile",
# "type": "string"
# },
# {
# "name": "bootindex",
# "type": "number"
# }
# ],
# "option": "option-rom"
# }
# ]
# }
#
##
{'command': 'query-command-line-options', 'data': { '*option': 'str' },
'returns': ['CommandLineOptionInfo'],
'allow-preconfig': true }
##
# @X86CPURegister32:
#
# A X86 32-bit register
#
# Since: 1.5
##
{ 'enum': 'X86CPURegister32',
'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
##
# @X86CPUFeatureWordInfo:
#
# Information about a X86 CPU feature word
#
# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
#
# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
# feature word
#
# @cpuid-register: Output register containing the feature bits
#
# @features: value of output register, containing the feature bits
#
# Since: 1.5
##
{ 'struct': 'X86CPUFeatureWordInfo',
'data': { 'cpuid-input-eax': 'int',
'*cpuid-input-ecx': 'int',
'cpuid-register': 'X86CPURegister32',
'features': 'int' } }
##
# @DummyForceArrays:
#
# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
#
# Since: 2.5
##
{ 'struct': 'DummyForceArrays',
'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
##
# @NumaOptionsType:
#
# @node: NUMA nodes configuration
#
# @dist: NUMA distance configuration (since 2.10)
#
# @cpu: property based CPU(s) to node mapping (Since: 2.10)
#
# Since: 2.1
##
{ 'enum': 'NumaOptionsType',
'data': [ 'node', 'dist', 'cpu' ] }
##
# @NumaOptions:
#
# A discriminated record of NUMA options. (for OptsVisitor)
#
# Since: 2.1
##
{ 'union': 'NumaOptions',
'base': { 'type': 'NumaOptionsType' },
'discriminator': 'type',
'data': {
'node': 'NumaNodeOptions',
'dist': 'NumaDistOptions',
'cpu': 'NumaCpuOptions' }}
##
# @NumaNodeOptions:
#
# Create a guest NUMA node. (for OptsVisitor)
#
# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
#
# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
# if omitted)
#
# @mem: memory size of this node; mutually exclusive with @memdev.
# Equally divide total memory among nodes if both @mem and @memdev are
# omitted.
#
# @memdev: memory backend object. If specified for one node,
# it must be specified for all nodes.
#
# Since: 2.1
##
{ 'struct': 'NumaNodeOptions',
'data': {
'*nodeid': 'uint16',
'*cpus': ['uint16'],
'*mem': 'size',
'*memdev': 'str' }}
##
# @NumaDistOptions:
#
# Set the distance between 2 NUMA nodes.
#
# @src: source NUMA node.
#
# @dst: destination NUMA node.
#
# @val: NUMA distance from source node to destination node.
# When a node is unreachable from another node, set the distance
# between them to 255.
#
# Since: 2.10
##
{ 'struct': 'NumaDistOptions',
'data': {
'src': 'uint16',
'dst': 'uint16',
'val': 'uint8' }}
##
# @NumaCpuOptions:
#
# Option "-numa cpu" overrides default cpu to node mapping.
# It accepts the same set of cpu properties as returned by
# query-hotpluggable-cpus[].props, where node-id could be used to
# override default node mapping.
#
# Since: 2.10
##
{ 'struct': 'NumaCpuOptions',
'base': 'CpuInstanceProperties',
'data' : {} }
##
# @HostMemPolicy:
#
# Host memory policy types
#
# @default: restore default policy, remove any nondefault policy
#
# @preferred: set the preferred host nodes for allocation
#
# @bind: a strict policy that restricts memory allocation to the
# host nodes specified
#
# @interleave: memory allocations are interleaved across the set
# of host nodes specified
#
# Since: 2.1
##
{ 'enum': 'HostMemPolicy',
'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
##
# @Memdev:
#
# Information about memory backend
#
# @id: backend's ID if backend has 'id' property (since 2.9)
#
# @size: memory backend size
#
# @merge: enables or disables memory merge support
#
# @dump: includes memory backend's memory in a core dump or not
#
# @prealloc: enables or disables memory preallocation
#
# @host-nodes: host nodes for its memory policy
#
# @policy: memory policy of memory backend
#
# Since: 2.1
##
{ 'struct': 'Memdev',
'data': {
'*id': 'str',
'size': 'size',
'merge': 'bool',
'dump': 'bool',
'prealloc': 'bool',
'host-nodes': ['uint16'],
'policy': 'HostMemPolicy' }}
##
# @query-memdev:
#
# Returns information for all memory backends.
#
# Returns: a list of @Memdev.
#
# Since: 2.1
#
# Example:
#
# -> { "execute": "query-memdev" }
# <- { "return": [
# {
# "id": "mem1",
# "size": 536870912,
# "merge": false,
# "dump": true,
# "prealloc": false,
# "host-nodes": [0, 1],
# "policy": "bind"
# },
# {
# "size": 536870912,
# "merge": false,
# "dump": true,
# "prealloc": true,
# "host-nodes": [2, 3],
# "policy": "preferred"
# }
# ]
# }
#
##
{ 'command': 'query-memdev', 'returns': ['Memdev'] }
##
# @PCDIMMDeviceInfo:
#
# PCDIMMDevice state information
#
# @id: device's ID
#
# @addr: physical address, where device is mapped
#
# @size: size of memory that the device provides
#
# @slot: slot number at which device is plugged in
#
# @node: NUMA node number where device is plugged in
#
# @memdev: memory backend linked with device
#
# @hotplugged: true if device was hotplugged
#
# @hotpluggable: true if device if could be added/removed while machine is running
#
# Since: 2.1
##
{ 'struct': 'PCDIMMDeviceInfo',
'data': { '*id': 'str',
'addr': 'int',
'size': 'int',
'slot': 'int',
'node': 'int',
'memdev': 'str',
'hotplugged': 'bool',
'hotpluggable': 'bool'
}
}
##
# @MemoryDeviceInfo:
#
# Union containing information about a memory device
#
# Since: 2.1
##
{ 'union': 'MemoryDeviceInfo',
'data': { 'dimm': 'PCDIMMDeviceInfo',
'nvdimm': 'PCDIMMDeviceInfo'
}
}
##
# @query-memory-devices:
#
# Lists available memory devices and their state
#
# Since: 2.1
#
# Example:
#
# -> { "execute": "query-memory-devices" }
# <- { "return": [ { "data":
# { "addr": 5368709120,
# "hotpluggable": true,
# "hotplugged": true,
# "id": "d1",
# "memdev": "/objects/memX",
# "node": 0,
# "size": 1073741824,
# "slot": 0},
# "type": "dimm"
# } ] }
#
##
{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
##
# @MEM_UNPLUG_ERROR:
#
# Emitted when memory hot unplug error occurs.
#
# @device: device name
#
# @msg: Informative message
#
# Since: 2.4
#
# Example:
#
# <- { "event": "MEM_UNPLUG_ERROR"
# "data": { "device": "dimm1",
# "msg": "acpi: device unplug for unsupported device"
# },
# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
#
##
{ 'event': 'MEM_UNPLUG_ERROR',
'data': { 'device': 'str', 'msg': 'str' } }
##
# @ACPISlotType:
#
# @DIMM: memory slot
# @CPU: logical CPU slot (since 2.7)
##
{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
##
# @ACPIOSTInfo:
#
# OSPM Status Indication for a device
# For description of possible values of @source and @status fields
# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
#
# @device: device ID associated with slot
#
# @slot: slot ID, unique per slot of a given @slot-type
#
# @slot-type: type of the slot
#
# @source: an integer containing the source event
#
# @status: an integer containing the status code
#
# Since: 2.1
##
{ 'struct': 'ACPIOSTInfo',
'data' : { '*device': 'str',
'slot': 'str',
'slot-type': 'ACPISlotType',
'source': 'int',
'status': 'int' } }
##
# @query-acpi-ospm-status:
#
# Return a list of ACPIOSTInfo for devices that support status
# reporting via ACPI _OST method.
#
# Since: 2.1
#
# Example:
#
# -> { "execute": "query-acpi-ospm-status" }
# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
# ]}
#
##
{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
##
# @ACPI_DEVICE_OST:
#
# Emitted when guest executes ACPI _OST method.
#
# @info: OSPM Status Indication
#
# Since: 2.1
#
# Example:
#
# <- { "event": "ACPI_DEVICE_OST",
# "data": { "device": "d1", "slot": "0",
# "slot-type": "DIMM", "source": 1, "status": 0 } }
#
##
{ 'event': 'ACPI_DEVICE_OST',
'data': { 'info': 'ACPIOSTInfo' } }
##
# @rtc-reset-reinjection:
#
# This command will reset the RTC interrupt reinjection backlog.
# Can be used if another mechanism to synchronize guest time
# is in effect, for example QEMU guest agent's guest-set-time
# command.
#
# Since: 2.1
#
# Example:
#
# -> { "execute": "rtc-reset-reinjection" }
# <- { "return": {} }
#
##
{ 'command': 'rtc-reset-reinjection' }
##
# @RTC_CHANGE:
#
# Emitted when the guest changes the RTC time.
#
# @offset: offset between base RTC clock (as specified by -rtc base), and
# new RTC clock value
#
# Note: This event is rate-limited.
#
# Since: 0.13.0
#
# Example:
#
# <- { "event": "RTC_CHANGE",
# "data": { "offset": 78 },
# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
#
##
{ 'event': 'RTC_CHANGE',
'data': { 'offset': 'int' } }
##
# @ReplayMode:
#
# Mode of the replay subsystem.
#
# @none: normal execution mode. Replay or record are not enabled.
#
# @record: record mode. All non-deterministic data is written into the
# replay log.
#
# @play: replay mode. Non-deterministic data required for system execution
# is read from the log.
#
# Since: 2.5
##
{ 'enum': 'ReplayMode',
'data': [ 'none', 'record', 'play' ] }
##
# @xen-load-devices-state:
#
# Load the state of all devices from file. The RAM and the block devices
# of the VM are not loaded by this command.
#
# @filename: the file to load the state of the devices from as binary
# data. See xen-save-devices-state.txt for a description of the binary
# format.
#
# Since: 2.7
#
# Example:
#
# -> { "execute": "xen-load-devices-state",
# "arguments": { "filename": "/tmp/resume" } }
# <- { "return": {} }
#
##
{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
##
# @GICCapability:
#
# The struct describes capability for a specific GIC (Generic
# Interrupt Controller) version. These bits are not only decided by
# QEMU/KVM software version, but also decided by the hardware that
# the program is running upon.
#
# @version: version of GIC to be described. Currently, only 2 and 3
# are supported.
#
# @emulated: whether current QEMU/hardware supports emulated GIC
# device in user space.
#
# @kernel: whether current QEMU/hardware supports hardware
# accelerated GIC device in kernel.
#
# Since: 2.6
##
{ 'struct': 'GICCapability',
'data': { 'version': 'int',
'emulated': 'bool',
'kernel': 'bool' } }
##
# @query-gic-capabilities:
#
# This command is ARM-only. It will return a list of GICCapability
# objects that describe its capability bits.
#
# Returns: a list of GICCapability objects.
#
# Since: 2.6
#
# Example:
#
# -> { "execute": "query-gic-capabilities" }
# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
# { "version": 3, "emulated": false, "kernel": true } ] }
#
##
{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
##
# @CpuInstanceProperties:
#
# List of properties to be used for hotplugging a CPU instance,
# it should be passed by management with device_add command when
# a CPU is being hotplugged.
#
# @node-id: NUMA node ID the CPU belongs to
# @socket-id: socket number within node/board the CPU belongs to
# @core-id: core number within socket the CPU belongs to
# @thread-id: thread number within core the CPU belongs to
#
# Note: currently there are 4 properties that could be present
# but management should be prepared to pass through other
# properties with device_add command to allow for future
# interface extension. This also requires the filed names to be kept in
# sync with the properties passed to -device/device_add.
#
# Since: 2.7
##
{ 'struct': 'CpuInstanceProperties',
'data': { '*node-id': 'int',
'*socket-id': 'int',
'*core-id': 'int',
'*thread-id': 'int'
}
}
##
# @HotpluggableCPU:
#
# @type: CPU object type for usage with device_add command
# @props: list of properties to be used for hotplugging CPU
# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
# @qom-path: link to existing CPU object if CPU is present or
# omitted if CPU is not present.
#
# Since: 2.7
##
{ 'struct': 'HotpluggableCPU',
'data': { 'type': 'str',
'vcpus-count': 'int',
'props': 'CpuInstanceProperties',
'*qom-path': 'str'
}
}
##
# @query-hotpluggable-cpus:
#
# Returns: a list of HotpluggableCPU objects.
#
# Since: 2.7
#
# Example:
#
# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
#
# -> { "execute": "query-hotpluggable-cpus" }
# <- {"return": [
# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
# "vcpus-count": 1 },
# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
# ]}'
#
# For pc machine type started with -smp 1,maxcpus=2:
#
# -> { "execute": "query-hotpluggable-cpus" }
# <- {"return": [
# {
# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
# },
# {
# "qom-path": "/machine/unattached/device[0]",
# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
# }
# ]}
#
# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
# (Since: 2.11):
#
# -> { "execute": "query-hotpluggable-cpus" }
# <- {"return": [
# {
# "type": "qemu-s390x-cpu", "vcpus-count": 1,
# "props": { "core-id": 1 }
# },
# {
# "qom-path": "/machine/unattached/device[0]",
# "type": "qemu-s390x-cpu", "vcpus-count": 1,
# "props": { "core-id": 0 }
# }
# ]}
#
##
{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
'allow-preconfig': true }
##
# @GuidInfo:
#
# GUID information.
#
# @guid: the globally unique identifier
#
# Since: 2.9
##
{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
##
# @query-vm-generation-id:
#
# Show Virtual Machine Generation ID
#
# Since: 2.9
##
{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
##
# @SevState:
#
# An enumeration of SEV state information used during @query-sev.
#
# @uninit: The guest is uninitialized.
#
# @launch-update: The guest is currently being launched; plaintext data and
# register state is being imported.
#
# @launch-secret: The guest is currently being launched; ciphertext data
# is being imported.
#
# @running: The guest is fully launched or migrated in.
#
# @send-update: The guest is currently being migrated out to another machine.
#
# @receive-update: The guest is currently being migrated from another machine.
#
# Since: 2.12
##
{ 'enum': 'SevState',
'data': ['uninit', 'launch-update', 'launch-secret', 'running',
'send-update', 'receive-update' ] }
##
# @SevInfo:
#
# Information about Secure Encrypted Virtualization (SEV) support
#
# @enabled: true if SEV is active
#
# @api-major: SEV API major version
#
# @api-minor: SEV API minor version
#
# @build-id: SEV FW build id
#
# @policy: SEV policy value
#
# @state: SEV guest state
#
# @handle: SEV firmware handle
#
# Since: 2.12
##
{ 'struct': 'SevInfo',
'data': { 'enabled': 'bool',
'api-major': 'uint8',
'api-minor' : 'uint8',
'build-id' : 'uint8',
'policy' : 'uint32',
'state' : 'SevState',
'handle' : 'uint32'
}
}
##
# @query-sev:
#
# Returns information about SEV
#
# Returns: @SevInfo
#
# Since: 2.12
#
# Example:
#
# -> { "execute": "query-sev" }
# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
# "build-id" : 0, "policy" : 0, "state" : "running",
# "handle" : 1 } }
#
##
{ 'command': 'query-sev', 'returns': 'SevInfo' }
##
# @SevLaunchMeasureInfo:
#
# SEV Guest Launch measurement information
#
# @data: the measurement value encoded in base64
#
# Since: 2.12
#
##
{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
##
# @query-sev-launch-measure:
#
# Query the SEV guest launch information.
#
# Returns: The @SevLaunchMeasureInfo for the guest
#
# Since: 2.12
#
# Example:
#
# -> { "execute": "query-sev-launch-measure" }
# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
#
##
{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
##
# @SevCapability:
#
# The struct describes capability for a Secure Encrypted Virtualization
# feature.
#
# @pdh: Platform Diffie-Hellman key (base64 encoded)
#
# @cert-chain: PDH certificate chain (base64 encoded)
#
# @cbitpos: C-bit location in page table entry
#
# @reduced-phys-bits: Number of physical Address bit reduction when SEV is
# enabled
#
# Since: 2.12
##
{ 'struct': 'SevCapability',
'data': { 'pdh': 'str',
'cert-chain': 'str',
'cbitpos': 'int',
'reduced-phys-bits': 'int'} }
##
# @query-sev-capabilities:
#
# This command is used to get the SEV capabilities, and is supported on AMD
# X86 platforms only.
#
# Returns: SevCapability objects.
#
# Since: 2.12
#
# Example:
#
# -> { "execute": "query-sev-capabilities" }
# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
# "cbitpos": 47, "reduced-phys-bits": 5}}
#
##
{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
##
# @CommandDropReason:
#
# Reasons that caused one command to be dropped.
#
# @queue-full: the command queue is full. This can only occur when
# the client sends a new non-oob command before the
# response to the previous non-oob command has been
# received.
#
# Since: 2.12
##
{ 'enum': 'CommandDropReason',
'data': [ 'queue-full' ] }
##
# @COMMAND_DROPPED:
#
# Emitted when a command is dropped due to some reason. Commands can
# only be dropped when the oob capability is enabled.
#
# @id: The dropped command's "id" field.
#
# @reason: The reason why the command is dropped.
#
# Since: 2.12
#
# Example:
#
# { "event": "COMMAND_DROPPED",
# "data": {"result": {"id": "libvirt-102",
# "reason": "queue-full" } } }
#
##
{ 'event': 'COMMAND_DROPPED' ,
'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
##
# @x-oob-test:
#
# Test OOB functionality. When sending this command with lock=true,
# it'll try to hang the dispatcher. When sending it with lock=false,
# it'll try to notify the locked thread to continue. Note: it should
# only be used by QMP test program rather than anything else.
#
# Since: 2.12
#
# Example:
#
# { "execute": "x-oob-test",
# "arguments": { "lock": true } }
##
{ 'command': 'x-oob-test', 'data' : { 'lock': 'bool' },
'allow-oob': true }
##
# @set-numa-node:
#
# Runtime equivalent of '-numa' CLI option, available at
# preconfigure stage to configure numa mapping before initializing
# machine.
#
# Since 3.0
##
{ 'command': 'set-numa-node', 'boxed': true,
'data': 'NumaOptions',
'allow-preconfig': true
}