| /* |
| * PowerPC floating point and SPE emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "cpu.h" |
| #include "helper.h" |
| |
| /*****************************************************************************/ |
| /* Floating point operations helpers */ |
| uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg) |
| { |
| CPU_FloatU f; |
| CPU_DoubleU d; |
| |
| f.l = arg; |
| d.d = float32_to_float64(f.f, &env->fp_status); |
| return d.ll; |
| } |
| |
| uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_FloatU f; |
| CPU_DoubleU d; |
| |
| d.ll = arg; |
| f.f = float64_to_float32(d.d, &env->fp_status); |
| return f.l; |
| } |
| |
| static inline int isden(float64 d) |
| { |
| CPU_DoubleU u; |
| |
| u.d = d; |
| |
| return ((u.ll >> 52) & 0x7FF) == 0; |
| } |
| |
| uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf) |
| { |
| CPU_DoubleU farg; |
| int isneg; |
| int ret; |
| |
| farg.ll = arg; |
| isneg = float64_is_neg(farg.d); |
| if (unlikely(float64_is_any_nan(farg.d))) { |
| if (float64_is_signaling_nan(farg.d)) { |
| /* Signaling NaN: flags are undefined */ |
| ret = 0x00; |
| } else { |
| /* Quiet NaN */ |
| ret = 0x11; |
| } |
| } else if (unlikely(float64_is_infinity(farg.d))) { |
| /* +/- infinity */ |
| if (isneg) { |
| ret = 0x09; |
| } else { |
| ret = 0x05; |
| } |
| } else { |
| if (float64_is_zero(farg.d)) { |
| /* +/- zero */ |
| if (isneg) { |
| ret = 0x12; |
| } else { |
| ret = 0x02; |
| } |
| } else { |
| if (isden(farg.d)) { |
| /* Denormalized numbers */ |
| ret = 0x10; |
| } else { |
| /* Normalized numbers */ |
| ret = 0x00; |
| } |
| if (isneg) { |
| ret |= 0x08; |
| } else { |
| ret |= 0x04; |
| } |
| } |
| } |
| if (set_fprf) { |
| /* We update FPSCR_FPRF */ |
| env->fpscr &= ~(0x1F << FPSCR_FPRF); |
| env->fpscr |= ret << FPSCR_FPRF; |
| } |
| /* We just need fpcc to update Rc1 */ |
| return ret & 0xF; |
| } |
| |
| /* Floating-point invalid operations exception */ |
| static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op) |
| { |
| uint64_t ret = 0; |
| int ve; |
| |
| ve = fpscr_ve; |
| switch (op) { |
| case POWERPC_EXCP_FP_VXSNAN: |
| env->fpscr |= 1 << FPSCR_VXSNAN; |
| break; |
| case POWERPC_EXCP_FP_VXSOFT: |
| env->fpscr |= 1 << FPSCR_VXSOFT; |
| break; |
| case POWERPC_EXCP_FP_VXISI: |
| /* Magnitude subtraction of infinities */ |
| env->fpscr |= 1 << FPSCR_VXISI; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXIDI: |
| /* Division of infinity by infinity */ |
| env->fpscr |= 1 << FPSCR_VXIDI; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXZDZ: |
| /* Division of zero by zero */ |
| env->fpscr |= 1 << FPSCR_VXZDZ; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXIMZ: |
| /* Multiplication of zero by infinity */ |
| env->fpscr |= 1 << FPSCR_VXIMZ; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXVC: |
| /* Ordered comparison of NaN */ |
| env->fpscr |= 1 << FPSCR_VXVC; |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| /* We must update the target FPR before raising the exception */ |
| if (ve != 0) { |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* Exception is differed */ |
| ve = 0; |
| } |
| break; |
| case POWERPC_EXCP_FP_VXSQRT: |
| /* Square root of a negative number */ |
| env->fpscr |= 1 << FPSCR_VXSQRT; |
| update_arith: |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| if (ve == 0) { |
| /* Set the result to quiet NaN */ |
| ret = 0x7FF8000000000000ULL; |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| } |
| break; |
| case POWERPC_EXCP_FP_VXCVI: |
| /* Invalid conversion */ |
| env->fpscr |= 1 << FPSCR_VXCVI; |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| if (ve == 0) { |
| /* Set the result to quiet NaN */ |
| ret = 0x7FF8000000000000ULL; |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| } |
| break; |
| } |
| /* Update the floating-point invalid operation summary */ |
| env->fpscr |= 1 << FPSCR_VX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (ve != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| if (msr_fe0 != 0 || msr_fe1 != 0) { |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_FP | op); |
| } |
| } |
| return ret; |
| } |
| |
| static inline void float_zero_divide_excp(CPUPPCState *env) |
| { |
| env->fpscr |= 1 << FPSCR_ZX; |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ze != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| if (msr_fe0 != 0 || msr_fe1 != 0) { |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); |
| } |
| } |
| } |
| |
| static inline void float_overflow_excp(CPUPPCState *env) |
| { |
| env->fpscr |= 1 << FPSCR_OX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_oe != 0) { |
| /* XXX: should adjust the result */ |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
| } else { |
| env->fpscr |= 1 << FPSCR_XX; |
| env->fpscr |= 1 << FPSCR_FI; |
| } |
| } |
| |
| static inline void float_underflow_excp(CPUPPCState *env) |
| { |
| env->fpscr |= 1 << FPSCR_UX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ue != 0) { |
| /* XXX: should adjust the result */ |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
| } |
| } |
| |
| static inline void float_inexact_excp(CPUPPCState *env) |
| { |
| env->fpscr |= 1 << FPSCR_XX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_xe != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
| } |
| } |
| |
| static inline void fpscr_set_rounding_mode(CPUPPCState *env) |
| { |
| int rnd_type; |
| |
| /* Set rounding mode */ |
| switch (fpscr_rn) { |
| case 0: |
| /* Best approximation (round to nearest) */ |
| rnd_type = float_round_nearest_even; |
| break; |
| case 1: |
| /* Smaller magnitude (round toward zero) */ |
| rnd_type = float_round_to_zero; |
| break; |
| case 2: |
| /* Round toward +infinite */ |
| rnd_type = float_round_up; |
| break; |
| default: |
| case 3: |
| /* Round toward -infinite */ |
| rnd_type = float_round_down; |
| break; |
| } |
| set_float_rounding_mode(rnd_type, &env->fp_status); |
| } |
| |
| void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit) |
| { |
| int prev; |
| |
| prev = (env->fpscr >> bit) & 1; |
| env->fpscr &= ~(1 << bit); |
| if (prev == 1) { |
| switch (bit) { |
| case FPSCR_RN1: |
| case FPSCR_RN: |
| fpscr_set_rounding_mode(env); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit) |
| { |
| int prev; |
| |
| prev = (env->fpscr >> bit) & 1; |
| env->fpscr |= 1 << bit; |
| if (prev == 0) { |
| switch (bit) { |
| case FPSCR_VX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ve) { |
| goto raise_ve; |
| } |
| break; |
| case FPSCR_OX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_oe) { |
| goto raise_oe; |
| } |
| break; |
| case FPSCR_UX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ue) { |
| goto raise_ue; |
| } |
| break; |
| case FPSCR_ZX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ze) { |
| goto raise_ze; |
| } |
| break; |
| case FPSCR_XX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_xe) { |
| goto raise_xe; |
| } |
| break; |
| case FPSCR_VXSNAN: |
| case FPSCR_VXISI: |
| case FPSCR_VXIDI: |
| case FPSCR_VXZDZ: |
| case FPSCR_VXIMZ: |
| case FPSCR_VXVC: |
| case FPSCR_VXSOFT: |
| case FPSCR_VXSQRT: |
| case FPSCR_VXCVI: |
| env->fpscr |= 1 << FPSCR_VX; |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ve != 0) { |
| goto raise_ve; |
| } |
| break; |
| case FPSCR_VE: |
| if (fpscr_vx != 0) { |
| raise_ve: |
| env->error_code = POWERPC_EXCP_FP; |
| if (fpscr_vxsnan) { |
| env->error_code |= POWERPC_EXCP_FP_VXSNAN; |
| } |
| if (fpscr_vxisi) { |
| env->error_code |= POWERPC_EXCP_FP_VXISI; |
| } |
| if (fpscr_vxidi) { |
| env->error_code |= POWERPC_EXCP_FP_VXIDI; |
| } |
| if (fpscr_vxzdz) { |
| env->error_code |= POWERPC_EXCP_FP_VXZDZ; |
| } |
| if (fpscr_vximz) { |
| env->error_code |= POWERPC_EXCP_FP_VXIMZ; |
| } |
| if (fpscr_vxvc) { |
| env->error_code |= POWERPC_EXCP_FP_VXVC; |
| } |
| if (fpscr_vxsoft) { |
| env->error_code |= POWERPC_EXCP_FP_VXSOFT; |
| } |
| if (fpscr_vxsqrt) { |
| env->error_code |= POWERPC_EXCP_FP_VXSQRT; |
| } |
| if (fpscr_vxcvi) { |
| env->error_code |= POWERPC_EXCP_FP_VXCVI; |
| } |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_OE: |
| if (fpscr_ox != 0) { |
| raise_oe: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_UE: |
| if (fpscr_ux != 0) { |
| raise_ue: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_ZE: |
| if (fpscr_zx != 0) { |
| raise_ze: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_XE: |
| if (fpscr_xx != 0) { |
| raise_xe: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_RN1: |
| case FPSCR_RN: |
| fpscr_set_rounding_mode(env); |
| break; |
| default: |
| break; |
| raise_excp: |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We have to update Rc1 before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| break; |
| } |
| } |
| } |
| |
| void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask) |
| { |
| /* |
| * We use only the 32 LSB of the incoming fpr |
| */ |
| uint32_t prev, new; |
| int i; |
| |
| prev = env->fpscr; |
| new = (uint32_t)arg; |
| new &= ~0x60000000; |
| new |= prev & 0x60000000; |
| for (i = 0; i < 8; i++) { |
| if (mask & (1 << i)) { |
| env->fpscr &= ~(0xF << (4 * i)); |
| env->fpscr |= new & (0xF << (4 * i)); |
| } |
| } |
| /* Update VX and FEX */ |
| if (fpscr_ix != 0) { |
| env->fpscr |= 1 << FPSCR_VX; |
| } else { |
| env->fpscr &= ~(1 << FPSCR_VX); |
| } |
| if ((fpscr_ex & fpscr_eex) != 0) { |
| env->fpscr |= 1 << FPSCR_FEX; |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| /* XXX: we should compute it properly */ |
| env->error_code = POWERPC_EXCP_FP; |
| } else { |
| env->fpscr &= ~(1 << FPSCR_FEX); |
| } |
| fpscr_set_rounding_mode(env); |
| } |
| |
| void helper_float_check_status(CPUPPCState *env) |
| { |
| if (env->exception_index == POWERPC_EXCP_PROGRAM && |
| (env->error_code & POWERPC_EXCP_FP)) { |
| /* Differred floating-point exception after target FPR update */ |
| if (msr_fe0 != 0 || msr_fe1 != 0) { |
| helper_raise_exception_err(env, env->exception_index, |
| env->error_code); |
| } |
| } else { |
| int status = get_float_exception_flags(&env->fp_status); |
| if (status & float_flag_divbyzero) { |
| float_zero_divide_excp(env); |
| } else if (status & float_flag_overflow) { |
| float_overflow_excp(env); |
| } else if (status & float_flag_underflow) { |
| float_underflow_excp(env); |
| } else if (status & float_flag_inexact) { |
| float_inexact_excp(env); |
| } |
| } |
| } |
| |
| void helper_reset_fpstatus(CPUPPCState *env) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| } |
| |
| /* fadd - fadd. */ |
| uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && |
| float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN addition */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); |
| } |
| |
| return farg1.ll; |
| } |
| |
| /* fsub - fsub. */ |
| uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && |
| float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN subtraction */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); |
| } |
| |
| return farg1.ll; |
| } |
| |
| /* fmul - fmul. */ |
| uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN multiplication */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
| } |
| |
| return farg1.ll; |
| } |
| |
| /* fdiv - fdiv. */ |
| uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_infinity(farg1.d) && |
| float64_is_infinity(farg2.d))) { |
| /* Division of infinity by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI); |
| } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) { |
| /* Division of zero by zero */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN division */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); |
| } |
| |
| return farg1.ll; |
| } |
| |
| /* fabs */ |
| uint64_t helper_fabs(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| farg.d = float64_abs(farg.d); |
| return farg.ll; |
| } |
| |
| /* fnabs */ |
| uint64_t helper_fnabs(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| farg.d = float64_abs(farg.d); |
| farg.d = float64_chs(farg.d); |
| return farg.ll; |
| } |
| |
| /* fneg */ |
| uint64_t helper_fneg(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| farg.d = float64_chs(farg.d); |
| return farg.ll; |
| } |
| |
| /* fctiw - fctiw. */ |
| uint64_t helper_fctiw(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN conversion */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN | |
| POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_quiet_nan(farg.d) || |
| float64_is_infinity(farg.d))) { |
| /* qNan / infinity conversion */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI); |
| } else { |
| farg.ll = float64_to_int32(farg.d, &env->fp_status); |
| /* XXX: higher bits are not supposed to be significant. |
| * to make tests easier, return the same as a real PowerPC 750 |
| */ |
| farg.ll |= 0xFFF80000ULL << 32; |
| } |
| return farg.ll; |
| } |
| |
| /* fctiwz - fctiwz. */ |
| uint64_t helper_fctiwz(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN conversion */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN | |
| POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_quiet_nan(farg.d) || |
| float64_is_infinity(farg.d))) { |
| /* qNan / infinity conversion */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI); |
| } else { |
| farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status); |
| /* XXX: higher bits are not supposed to be significant. |
| * to make tests easier, return the same as a real PowerPC 750 |
| */ |
| farg.ll |= 0xFFF80000ULL << 32; |
| } |
| return farg.ll; |
| } |
| |
| #if defined(TARGET_PPC64) |
| /* fcfid - fcfid. */ |
| uint64_t helper_fcfid(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.d = int64_to_float64(arg, &env->fp_status); |
| return farg.ll; |
| } |
| |
| /* fctid - fctid. */ |
| uint64_t helper_fctid(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN conversion */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN | |
| POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_quiet_nan(farg.d) || |
| float64_is_infinity(farg.d))) { |
| /* qNan / infinity conversion */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI); |
| } else { |
| farg.ll = float64_to_int64(farg.d, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| /* fctidz - fctidz. */ |
| uint64_t helper_fctidz(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN conversion */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN | |
| POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_quiet_nan(farg.d) || |
| float64_is_infinity(farg.d))) { |
| /* qNan / infinity conversion */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI); |
| } else { |
| farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| #endif |
| |
| static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg, |
| int rounding_mode) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN round */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN | |
| POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_quiet_nan(farg.d) || |
| float64_is_infinity(farg.d))) { |
| /* qNan / infinity round */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI); |
| } else { |
| set_float_rounding_mode(rounding_mode, &env->fp_status); |
| farg.ll = float64_round_to_int(farg.d, &env->fp_status); |
| /* Restore rounding mode from FPSCR */ |
| fpscr_set_rounding_mode(env); |
| } |
| return farg.ll; |
| } |
| |
| uint64_t helper_frin(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_nearest_even); |
| } |
| |
| uint64_t helper_friz(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_to_zero); |
| } |
| |
| uint64_t helper_frip(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_up); |
| } |
| |
| uint64_t helper_frim(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_down); |
| } |
| |
| /* fmadd - fmadd. */ |
| uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| |
| if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && |
| float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| } |
| |
| return farg1.ll; |
| } |
| |
| /* fmsub - fmsub. */ |
| uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| |
| if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && |
| float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && |
| float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| } |
| return farg1.ll; |
| } |
| |
| /* fnmadd - fnmadd. */ |
| uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| |
| if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && |
| float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| if (likely(!float64_is_any_nan(farg1.d))) { |
| farg1.d = float64_chs(farg1.d); |
| } |
| } |
| return farg1.ll; |
| } |
| |
| /* fnmsub - fnmsub. */ |
| uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| |
| if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && |
| float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && |
| float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| if (likely(!float64_is_any_nan(farg1.d))) { |
| farg1.d = float64_chs(farg1.d); |
| } |
| } |
| return farg1.ll; |
| } |
| |
| /* frsp - frsp. */ |
| uint64_t helper_frsp(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN square root */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| |
| return farg.ll; |
| } |
| |
| /* fsqrt - fsqrt. */ |
| uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { |
| /* Square root of a negative nonzero number */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN square root */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| farg.d = float64_sqrt(farg.d, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| /* fre - fre. */ |
| uint64_t helper_fre(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN reciprocal */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| farg.d = float64_div(float64_one, farg.d, &env->fp_status); |
| return farg.d; |
| } |
| |
| /* fres - fres. */ |
| uint64_t helper_fres(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN reciprocal */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| farg.d = float64_div(float64_one, farg.d, &env->fp_status); |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| |
| return farg.ll; |
| } |
| |
| /* frsqrte - frsqrte. */ |
| uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { |
| /* Reciprocal square root of a negative nonzero number */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN reciprocal square root */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| farg.d = float64_sqrt(farg.d, &env->fp_status); |
| farg.d = float64_div(float64_one, farg.d, &env->fp_status); |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| /* fsel - fsel. */ |
| uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1; |
| |
| farg1.ll = arg1; |
| |
| if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && |
| !float64_is_any_nan(farg1.d)) { |
| return arg2; |
| } else { |
| return arg3; |
| } |
| } |
| |
| void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint32_t crfD) |
| { |
| CPU_DoubleU farg1, farg2; |
| uint32_t ret = 0; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_any_nan(farg1.d) || |
| float64_is_any_nan(farg2.d))) { |
| ret = 0x01UL; |
| } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x08UL; |
| } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x04UL; |
| } else { |
| ret = 0x02UL; |
| } |
| |
| env->fpscr &= ~(0x0F << FPSCR_FPRF); |
| env->fpscr |= ret << FPSCR_FPRF; |
| env->crf[crfD] = ret; |
| if (unlikely(ret == 0x01UL |
| && (float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d)))) { |
| /* sNaN comparison */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN); |
| } |
| } |
| |
| void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint32_t crfD) |
| { |
| CPU_DoubleU farg1, farg2; |
| uint32_t ret = 0; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_any_nan(farg1.d) || |
| float64_is_any_nan(farg2.d))) { |
| ret = 0x01UL; |
| } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x08UL; |
| } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x04UL; |
| } else { |
| ret = 0x02UL; |
| } |
| |
| env->fpscr &= ~(0x0F << FPSCR_FPRF); |
| env->fpscr |= ret << FPSCR_FPRF; |
| env->crf[crfD] = ret; |
| if (unlikely(ret == 0x01UL)) { |
| if (float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d)) { |
| /* sNaN comparison */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN | |
| POWERPC_EXCP_FP_VXVC); |
| } else { |
| /* qNaN comparison */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC); |
| } |
| } |
| } |
| |
| /* Single-precision floating-point conversions */ |
| static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.f = int32_to_float32(val, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline uint32_t efscfui(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.f = uint32_to_float32(val, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline int32_t efsctsi(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| |
| return float32_to_int32(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctui(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| |
| return float32_to_uint32(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| |
| return float32_to_int32_round_to_zero(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| |
| return float32_to_uint32_round_to_zero(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.f = int32_to_float32(val, &env->vec_status); |
| tmp = int64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_div(u.f, tmp, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.f = uint32_to_float32(val, &env->vec_status); |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_div(u.f, tmp, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_mul(u.f, tmp, &env->vec_status); |
| |
| return float32_to_int32(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_mul(u.f, tmp, &env->vec_status); |
| |
| return float32_to_uint32(u.f, &env->vec_status); |
| } |
| |
| #define HELPER_SPE_SINGLE_CONV(name) \ |
| uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \ |
| { \ |
| return e##name(env, val); \ |
| } |
| /* efscfsi */ |
| HELPER_SPE_SINGLE_CONV(fscfsi); |
| /* efscfui */ |
| HELPER_SPE_SINGLE_CONV(fscfui); |
| /* efscfuf */ |
| HELPER_SPE_SINGLE_CONV(fscfuf); |
| /* efscfsf */ |
| HELPER_SPE_SINGLE_CONV(fscfsf); |
| /* efsctsi */ |
| HELPER_SPE_SINGLE_CONV(fsctsi); |
| /* efsctui */ |
| HELPER_SPE_SINGLE_CONV(fsctui); |
| /* efsctsiz */ |
| HELPER_SPE_SINGLE_CONV(fsctsiz); |
| /* efsctuiz */ |
| HELPER_SPE_SINGLE_CONV(fsctuiz); |
| /* efsctsf */ |
| HELPER_SPE_SINGLE_CONV(fsctsf); |
| /* efsctuf */ |
| HELPER_SPE_SINGLE_CONV(fsctuf); |
| |
| #define HELPER_SPE_VECTOR_CONV(name) \ |
| uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \ |
| { \ |
| return ((uint64_t)e##name(env, val >> 32) << 32) | \ |
| (uint64_t)e##name(env, val); \ |
| } |
| /* evfscfsi */ |
| HELPER_SPE_VECTOR_CONV(fscfsi); |
| /* evfscfui */ |
| HELPER_SPE_VECTOR_CONV(fscfui); |
| /* evfscfuf */ |
| HELPER_SPE_VECTOR_CONV(fscfuf); |
| /* evfscfsf */ |
| HELPER_SPE_VECTOR_CONV(fscfsf); |
| /* evfsctsi */ |
| HELPER_SPE_VECTOR_CONV(fsctsi); |
| /* evfsctui */ |
| HELPER_SPE_VECTOR_CONV(fsctui); |
| /* evfsctsiz */ |
| HELPER_SPE_VECTOR_CONV(fsctsiz); |
| /* evfsctuiz */ |
| HELPER_SPE_VECTOR_CONV(fsctuiz); |
| /* evfsctsf */ |
| HELPER_SPE_VECTOR_CONV(fsctsf); |
| /* evfsctuf */ |
| HELPER_SPE_VECTOR_CONV(fsctuf); |
| |
| /* Single-precision floating-point arithmetic */ |
| static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_add(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_sub(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_mul(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_div(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| #define HELPER_SPE_SINGLE_ARITH(name) \ |
| uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ |
| { \ |
| return e##name(env, op1, op2); \ |
| } |
| /* efsadd */ |
| HELPER_SPE_SINGLE_ARITH(fsadd); |
| /* efssub */ |
| HELPER_SPE_SINGLE_ARITH(fssub); |
| /* efsmul */ |
| HELPER_SPE_SINGLE_ARITH(fsmul); |
| /* efsdiv */ |
| HELPER_SPE_SINGLE_ARITH(fsdiv); |
| |
| #define HELPER_SPE_VECTOR_ARITH(name) \ |
| uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ |
| { \ |
| return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \ |
| (uint64_t)e##name(env, op1, op2); \ |
| } |
| /* evfsadd */ |
| HELPER_SPE_VECTOR_ARITH(fsadd); |
| /* evfssub */ |
| HELPER_SPE_VECTOR_ARITH(fssub); |
| /* evfsmul */ |
| HELPER_SPE_VECTOR_ARITH(fsmul); |
| /* evfsdiv */ |
| HELPER_SPE_VECTOR_ARITH(fsdiv); |
| |
| /* Single-precision floating-point comparisons */ |
| static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; |
| } |
| |
| static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; |
| } |
| |
| static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; |
| } |
| |
| static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: ignore special values (NaN, infinites, ...) */ |
| return efscmplt(env, op1, op2); |
| } |
| |
| static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: ignore special values (NaN, infinites, ...) */ |
| return efscmpgt(env, op1, op2); |
| } |
| |
| static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: ignore special values (NaN, infinites, ...) */ |
| return efscmpeq(env, op1, op2); |
| } |
| |
| #define HELPER_SINGLE_SPE_CMP(name) \ |
| uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ |
| { \ |
| return e##name(env, op1, op2) << 2; \ |
| } |
| /* efststlt */ |
| HELPER_SINGLE_SPE_CMP(fststlt); |
| /* efststgt */ |
| HELPER_SINGLE_SPE_CMP(fststgt); |
| /* efststeq */ |
| HELPER_SINGLE_SPE_CMP(fststeq); |
| /* efscmplt */ |
| HELPER_SINGLE_SPE_CMP(fscmplt); |
| /* efscmpgt */ |
| HELPER_SINGLE_SPE_CMP(fscmpgt); |
| /* efscmpeq */ |
| HELPER_SINGLE_SPE_CMP(fscmpeq); |
| |
| static inline uint32_t evcmp_merge(int t0, int t1) |
| { |
| return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); |
| } |
| |
| #define HELPER_VECTOR_SPE_CMP(name) \ |
| uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ |
| { \ |
| return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \ |
| e##name(env, op1, op2)); \ |
| } |
| /* evfststlt */ |
| HELPER_VECTOR_SPE_CMP(fststlt); |
| /* evfststgt */ |
| HELPER_VECTOR_SPE_CMP(fststgt); |
| /* evfststeq */ |
| HELPER_VECTOR_SPE_CMP(fststeq); |
| /* evfscmplt */ |
| HELPER_VECTOR_SPE_CMP(fscmplt); |
| /* evfscmpgt */ |
| HELPER_VECTOR_SPE_CMP(fscmpgt); |
| /* evfscmpeq */ |
| HELPER_VECTOR_SPE_CMP(fscmpeq); |
| |
| /* Double-precision floating-point conversion */ |
| uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = int32_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = int64_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = uint32_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = uint64_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_int32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctui(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_uint32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_int32_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_int64_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_uint32_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_uint64_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.d = int32_to_float64(val, &env->vec_status); |
| tmp = int64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_div(u.d, tmp, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.d = uint32_to_float64(val, &env->vec_status); |
| tmp = int64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_div(u.d, tmp, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| tmp = uint64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_mul(u.d, tmp, &env->vec_status); |
| |
| return float64_to_int32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| tmp = uint64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_mul(u.d, tmp, &env->vec_status); |
| |
| return float64_to_uint32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efscfd(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u1; |
| CPU_FloatU u2; |
| |
| u1.ll = val; |
| u2.f = float64_to_float32(u1.d, &env->vec_status); |
| |
| return u2.l; |
| } |
| |
| uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u2; |
| CPU_FloatU u1; |
| |
| u1.l = val; |
| u2.d = float32_to_float64(u1.f, &env->vec_status); |
| |
| return u2.ll; |
| } |
| |
| /* Double precision fixed-point arithmetic */ |
| uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_add(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_sub(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_mul(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_div(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| /* Double precision floating point helpers */ |
| uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; |
| } |
| |
| uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; |
| } |
| |
| uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; |
| } |
| |
| uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtstlt(env, op1, op2); |
| } |
| |
| uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtstgt(env, op1, op2); |
| } |
| |
| uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtsteq(env, op1, op2); |
| } |