| /* | 
 |  * QEMU fw_cfg helpers (X86 specific) | 
 |  * | 
 |  * Copyright (c) 2019 Red Hat, Inc. | 
 |  * | 
 |  * Author: | 
 |  *   Philippe Mathieu-Daudé <philmd@redhat.com> | 
 |  * | 
 |  * SPDX-License-Identifier: GPL-2.0-or-later | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
 |  * See the COPYING file in the top-level directory. | 
 |  */ | 
 |  | 
 | #include "qemu/osdep.h" | 
 | #include "system/numa.h" | 
 | #include "hw/acpi/acpi.h" | 
 | #include "hw/acpi/aml-build.h" | 
 | #include "hw/firmware/smbios.h" | 
 | #include "hw/i386/fw_cfg.h" | 
 | #include "hw/timer/hpet.h" | 
 | #include "hw/nvram/fw_cfg.h" | 
 | #include "e820_memory_layout.h" | 
 | #include "kvm/kvm_i386.h" | 
 | #include "qapi/error.h" | 
 | #include CONFIG_DEVICES | 
 | #include "target/i386/cpu.h" | 
 |  | 
 | #if !defined(CONFIG_HPET) | 
 | struct hpet_fw_config hpet_fw_cfg = {.count = UINT8_MAX}; | 
 | #endif | 
 |  | 
 | const char *fw_cfg_arch_key_name(uint16_t key) | 
 | { | 
 |     static const struct { | 
 |         uint16_t key; | 
 |         const char *name; | 
 |     } fw_cfg_arch_wellknown_keys[] = { | 
 |         {FW_CFG_ACPI_TABLES, "acpi_tables"}, | 
 |         {FW_CFG_SMBIOS_ENTRIES, "smbios_entries"}, | 
 |         {FW_CFG_IRQ0_OVERRIDE, "irq0_override"}, | 
 |         {FW_CFG_HPET, "hpet"}, | 
 |     }; | 
 |  | 
 |     for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) { | 
 |         if (fw_cfg_arch_wellknown_keys[i].key == key) { | 
 |             return fw_cfg_arch_wellknown_keys[i].name; | 
 |         } | 
 |     } | 
 |     return NULL; | 
 | } | 
 |  | 
 | /* Add etc/e820 late, once all regions should be present */ | 
 | void fw_cfg_add_e820(FWCfgState *fw_cfg) | 
 | { | 
 |     struct e820_entry *table; | 
 |     int nr_e820 = e820_get_table(&table); | 
 |  | 
 |     fw_cfg_add_file(fw_cfg, "etc/e820", table, nr_e820 * sizeof(*table)); | 
 | } | 
 |  | 
 | void fw_cfg_build_smbios(PCMachineState *pcms, FWCfgState *fw_cfg, | 
 |                          SmbiosEntryPointType ep_type) | 
 | { | 
 | #ifdef CONFIG_SMBIOS | 
 |     uint8_t *smbios_tables, *smbios_anchor; | 
 |     size_t smbios_tables_len, smbios_anchor_len; | 
 |     struct smbios_phys_mem_area *mem_array; | 
 |     unsigned i, array_count; | 
 |     MachineState *ms = MACHINE(pcms); | 
 |     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); | 
 |     MachineClass *mc = MACHINE_GET_CLASS(pcms); | 
 |     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); | 
 |     int nr_e820; | 
 |  | 
 |     if (pcmc->smbios_defaults) { | 
 |         /* These values are guest ABI, do not change */ | 
 |         smbios_set_defaults("QEMU", mc->desc, mc->name); | 
 |     } | 
 |  | 
 |     /* tell smbios about cpuid version and features */ | 
 |     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); | 
 |  | 
 |     if (pcmc->smbios_legacy_mode) { | 
 |         smbios_tables = smbios_get_table_legacy(&smbios_tables_len, | 
 |                                                 &error_fatal); | 
 |         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, | 
 |                          smbios_tables, smbios_tables_len); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* build the array of physical mem area from e820 table */ | 
 |     nr_e820 = e820_get_table(NULL); | 
 |     mem_array = g_malloc0(sizeof(*mem_array) * nr_e820); | 
 |     for (i = 0, array_count = 0; i < nr_e820; i++) { | 
 |         uint64_t addr, len; | 
 |  | 
 |         if (e820_get_entry(i, E820_RAM, &addr, &len)) { | 
 |             mem_array[array_count].address = addr; | 
 |             mem_array[array_count].length = len; | 
 |             array_count++; | 
 |         } | 
 |     } | 
 |     smbios_get_tables(ms, ep_type, mem_array, array_count, | 
 |                       &smbios_tables, &smbios_tables_len, | 
 |                       &smbios_anchor, &smbios_anchor_len, | 
 |                       &error_fatal); | 
 |     g_free(mem_array); | 
 |  | 
 |     if (smbios_anchor) { | 
 |         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", | 
 |                         smbios_tables, smbios_tables_len); | 
 |         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", | 
 |                         smbios_anchor, smbios_anchor_len); | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | FWCfgState *fw_cfg_arch_create(MachineState *ms, | 
 |                                       uint16_t boot_cpus, | 
 |                                       uint16_t apic_id_limit) | 
 | { | 
 |     FWCfgState *fw_cfg; | 
 |     uint64_t *numa_fw_cfg; | 
 |     int i; | 
 |     MachineClass *mc = MACHINE_GET_CLASS(ms); | 
 |     const CPUArchIdList *cpus = mc->possible_cpu_arch_ids(ms); | 
 |     int nb_numa_nodes = ms->numa_state->num_nodes; | 
 |  | 
 |     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, | 
 |                                 &address_space_memory); | 
 |     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, boot_cpus); | 
 |  | 
 |     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: | 
 |      * | 
 |      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for | 
 |      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, | 
 |      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface | 
 |      * for CPU hotplug also uses APIC ID and not "CPU index". | 
 |      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", | 
 |      * but the "limit to the APIC ID values SeaBIOS may see". | 
 |      * | 
 |      * So for compatibility reasons with old BIOSes we are stuck with | 
 |      * "etc/max-cpus" actually being apic_id_limit | 
 |      */ | 
 |     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, apic_id_limit); | 
 |     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size); | 
 |     if (acpi_builtin()) { | 
 |         fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, | 
 |                          acpi_tables, acpi_tables_len); | 
 |     } | 
 |     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, 1); | 
 |  | 
 |     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_fw_cfg, sizeof(hpet_fw_cfg)); | 
 |     /* allocate memory for the NUMA channel: one (64bit) word for the number | 
 |      * of nodes, one word for each VCPU->node and one word for each node to | 
 |      * hold the amount of memory. | 
 |      */ | 
 |     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); | 
 |     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); | 
 |     for (i = 0; i < cpus->len; i++) { | 
 |         unsigned int apic_id = cpus->cpus[i].arch_id; | 
 |         assert(apic_id < apic_id_limit); | 
 |         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); | 
 |     } | 
 |     for (i = 0; i < nb_numa_nodes; i++) { | 
 |         numa_fw_cfg[apic_id_limit + 1 + i] = | 
 |             cpu_to_le64(ms->numa_state->nodes[i].node_mem); | 
 |     } | 
 |     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, | 
 |                      (1 + apic_id_limit + nb_numa_nodes) * | 
 |                      sizeof(*numa_fw_cfg)); | 
 |  | 
 |     return fw_cfg; | 
 | } | 
 |  | 
 | void fw_cfg_build_feature_control(MachineState *ms, FWCfgState *fw_cfg) | 
 | { | 
 |     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); | 
 |     CPUX86State *env = &cpu->env; | 
 |     uint32_t unused, ebx, ecx, edx; | 
 |     uint64_t feature_control_bits = 0; | 
 |     uint64_t *val; | 
 |  | 
 |     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); | 
 |     if (ecx & CPUID_EXT_VMX) { | 
 |         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; | 
 |     } | 
 |  | 
 |     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == | 
 |         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && | 
 |         (env->mcg_cap & MCG_LMCE_P)) { | 
 |         feature_control_bits |= FEATURE_CONTROL_LMCE; | 
 |     } | 
 |  | 
 |     if (env->cpuid_level >= 7) { | 
 |         cpu_x86_cpuid(env, 0x7, 0, &unused, &ebx, &ecx, &unused); | 
 |         if (ebx & CPUID_7_0_EBX_SGX) { | 
 |             feature_control_bits |= FEATURE_CONTROL_SGX; | 
 |         } | 
 |         if (ecx & CPUID_7_0_ECX_SGX_LC) { | 
 |             feature_control_bits |= FEATURE_CONTROL_SGX_LC; | 
 |         } | 
 |     } | 
 |  | 
 |     if (!feature_control_bits) { | 
 |         return; | 
 |     } | 
 |  | 
 |     val = g_malloc(sizeof(*val)); | 
 |     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); | 
 |     fw_cfg_add_file(fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | void fw_cfg_add_acpi_dsdt(Aml *scope, FWCfgState *fw_cfg) | 
 | { | 
 |     /* | 
 |      * when using port i/o, the 8-bit data register *always* overlaps | 
 |      * with half of the 16-bit control register. Hence, the total size | 
 |      * of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the | 
 |      * DMA control register is located at FW_CFG_DMA_IO_BASE + 4 | 
 |      */ | 
 |     Object *obj = OBJECT(fw_cfg); | 
 |     uint8_t io_size = object_property_get_bool(obj, "dma_enabled", NULL) ? | 
 |         ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) : | 
 |         FW_CFG_CTL_SIZE; | 
 |     Aml *dev = aml_device("FWCF"); | 
 |     Aml *crs = aml_resource_template(); | 
 |  | 
 |     aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002"))); | 
 |  | 
 |     /* device present, functioning, decoding, not shown in UI */ | 
 |     aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); | 
 |  | 
 |     aml_append(crs, | 
 |         aml_io(AML_DECODE16, FW_CFG_IO_BASE, FW_CFG_IO_BASE, 0x01, io_size)); | 
 |  | 
 |     aml_append(dev, aml_name_decl("_CRS", crs)); | 
 |     aml_append(scope, dev); | 
 | } | 
 | #endif |