blob: 0687ffd3433dbdf9c74a208845c568ee763340bf [file] [log] [blame]
/*
* QEMU educational PCI device
*
* Copyright (c) 2012-2015 Jiri Slaby
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/pci/pci.h"
#include "hw/pci/msi.h"
#include "qemu/timer.h"
#include "qemu/main-loop.h" /* iothread mutex */
#include "qapi/visitor.h"
#define TYPE_PCI_EDU_DEVICE "edu"
#define EDU(obj) OBJECT_CHECK(EduState, obj, TYPE_PCI_EDU_DEVICE)
#define FACT_IRQ 0x00000001
#define DMA_IRQ 0x00000100
#define DMA_START 0x40000
#define DMA_SIZE 4096
typedef struct {
PCIDevice pdev;
MemoryRegion mmio;
QemuThread thread;
QemuMutex thr_mutex;
QemuCond thr_cond;
bool stopping;
uint32_t addr4;
uint32_t fact;
#define EDU_STATUS_COMPUTING 0x01
#define EDU_STATUS_IRQFACT 0x80
uint32_t status;
uint32_t irq_status;
#define EDU_DMA_RUN 0x1
#define EDU_DMA_DIR(cmd) (((cmd) & 0x2) >> 1)
# define EDU_DMA_FROM_PCI 0
# define EDU_DMA_TO_PCI 1
#define EDU_DMA_IRQ 0x4
struct dma_state {
dma_addr_t src;
dma_addr_t dst;
dma_addr_t cnt;
dma_addr_t cmd;
} dma;
QEMUTimer dma_timer;
char dma_buf[DMA_SIZE];
uint64_t dma_mask;
} EduState;
static bool edu_msi_enabled(EduState *edu)
{
return msi_enabled(&edu->pdev);
}
static void edu_raise_irq(EduState *edu, uint32_t val)
{
edu->irq_status |= val;
if (edu->irq_status) {
if (edu_msi_enabled(edu)) {
msi_notify(&edu->pdev, 0);
} else {
pci_set_irq(&edu->pdev, 1);
}
}
}
static void edu_lower_irq(EduState *edu, uint32_t val)
{
edu->irq_status &= ~val;
if (!edu->irq_status && !edu_msi_enabled(edu)) {
pci_set_irq(&edu->pdev, 0);
}
}
static bool within(uint32_t addr, uint32_t start, uint32_t end)
{
return start <= addr && addr < end;
}
static void edu_check_range(uint32_t addr, uint32_t size1, uint32_t start,
uint32_t size2)
{
uint32_t end1 = addr + size1;
uint32_t end2 = start + size2;
if (within(addr, start, end2) &&
end1 > addr && within(end1, start, end2)) {
return;
}
hw_error("EDU: DMA range 0x%.8x-0x%.8x out of bounds (0x%.8x-0x%.8x)!",
addr, end1 - 1, start, end2 - 1);
}
static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
{
dma_addr_t res = addr & edu->dma_mask;
if (addr != res) {
printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res);
}
return res;
}
static void edu_dma_timer(void *opaque)
{
EduState *edu = opaque;
bool raise_irq = false;
if (!(edu->dma.cmd & EDU_DMA_RUN)) {
return;
}
if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
uint32_t dst = edu->dma.dst;
edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
dst -= DMA_START;
pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
edu->dma_buf + dst, edu->dma.cnt);
} else {
uint32_t src = edu->dma.src;
edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
src -= DMA_START;
pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
edu->dma_buf + src, edu->dma.cnt);
}
edu->dma.cmd &= ~EDU_DMA_RUN;
if (edu->dma.cmd & EDU_DMA_IRQ) {
raise_irq = true;
}
if (raise_irq) {
edu_raise_irq(edu, DMA_IRQ);
}
}
static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
bool timer)
{
if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
return;
}
if (write) {
*dma = *val;
} else {
*val = *dma;
}
if (timer) {
timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
}
}
static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
EduState *edu = opaque;
uint64_t val = ~0ULL;
if (size != 4) {
return val;
}
switch (addr) {
case 0x00:
val = 0x010000edu;
break;
case 0x04:
val = edu->addr4;
break;
case 0x08:
qemu_mutex_lock(&edu->thr_mutex);
val = edu->fact;
qemu_mutex_unlock(&edu->thr_mutex);
break;
case 0x20:
val = atomic_read(&edu->status);
break;
case 0x24:
val = edu->irq_status;
break;
case 0x80:
dma_rw(edu, false, &val, &edu->dma.src, false);
break;
case 0x88:
dma_rw(edu, false, &val, &edu->dma.dst, false);
break;
case 0x90:
dma_rw(edu, false, &val, &edu->dma.cnt, false);
break;
case 0x98:
dma_rw(edu, false, &val, &edu->dma.cmd, false);
break;
}
return val;
}
static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
EduState *edu = opaque;
if (addr < 0x80 && size != 4) {
return;
}
if (addr >= 0x80 && size != 4 && size != 8) {
return;
}
switch (addr) {
case 0x04:
edu->addr4 = ~val;
break;
case 0x08:
if (atomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
break;
}
/* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
* set in this function and it is under the iothread mutex.
*/
qemu_mutex_lock(&edu->thr_mutex);
edu->fact = val;
atomic_or(&edu->status, EDU_STATUS_COMPUTING);
qemu_cond_signal(&edu->thr_cond);
qemu_mutex_unlock(&edu->thr_mutex);
break;
case 0x20:
if (val & EDU_STATUS_IRQFACT) {
atomic_or(&edu->status, EDU_STATUS_IRQFACT);
} else {
atomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
}
break;
case 0x60:
edu_raise_irq(edu, val);
break;
case 0x64:
edu_lower_irq(edu, val);
break;
case 0x80:
dma_rw(edu, true, &val, &edu->dma.src, false);
break;
case 0x88:
dma_rw(edu, true, &val, &edu->dma.dst, false);
break;
case 0x90:
dma_rw(edu, true, &val, &edu->dma.cnt, false);
break;
case 0x98:
if (!(val & EDU_DMA_RUN)) {
break;
}
dma_rw(edu, true, &val, &edu->dma.cmd, true);
break;
}
}
static const MemoryRegionOps edu_mmio_ops = {
.read = edu_mmio_read,
.write = edu_mmio_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
/*
* We purposely use a thread, so that users are forced to wait for the status
* register.
*/
static void *edu_fact_thread(void *opaque)
{
EduState *edu = opaque;
while (1) {
uint32_t val, ret = 1;
qemu_mutex_lock(&edu->thr_mutex);
while ((atomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
!edu->stopping) {
qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
}
if (edu->stopping) {
qemu_mutex_unlock(&edu->thr_mutex);
break;
}
val = edu->fact;
qemu_mutex_unlock(&edu->thr_mutex);
while (val > 0) {
ret *= val--;
}
/*
* We should sleep for a random period here, so that students are
* forced to check the status properly.
*/
qemu_mutex_lock(&edu->thr_mutex);
edu->fact = ret;
qemu_mutex_unlock(&edu->thr_mutex);
atomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
if (atomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
qemu_mutex_lock_iothread();
edu_raise_irq(edu, FACT_IRQ);
qemu_mutex_unlock_iothread();
}
}
return NULL;
}
static void pci_edu_realize(PCIDevice *pdev, Error **errp)
{
EduState *edu = DO_UPCAST(EduState, pdev, pdev);
uint8_t *pci_conf = pdev->config;
pci_config_set_interrupt_pin(pci_conf, 1);
if (msi_init(pdev, 0, 1, true, false, errp)) {
return;
}
timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
qemu_mutex_init(&edu->thr_mutex);
qemu_cond_init(&edu->thr_cond);
qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
edu, QEMU_THREAD_JOINABLE);
memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
"edu-mmio", 1 * MiB);
pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
}
static void pci_edu_uninit(PCIDevice *pdev)
{
EduState *edu = DO_UPCAST(EduState, pdev, pdev);
qemu_mutex_lock(&edu->thr_mutex);
edu->stopping = true;
qemu_mutex_unlock(&edu->thr_mutex);
qemu_cond_signal(&edu->thr_cond);
qemu_thread_join(&edu->thread);
qemu_cond_destroy(&edu->thr_cond);
qemu_mutex_destroy(&edu->thr_mutex);
timer_del(&edu->dma_timer);
}
static void edu_obj_uint64(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
uint64_t *val = opaque;
visit_type_uint64(v, name, val, errp);
}
static void edu_instance_init(Object *obj)
{
EduState *edu = EDU(obj);
edu->dma_mask = (1UL << 28) - 1;
object_property_add(obj, "dma_mask", "uint64", edu_obj_uint64,
edu_obj_uint64, NULL, &edu->dma_mask, NULL);
}
static void edu_class_init(ObjectClass *class, void *data)
{
PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
k->realize = pci_edu_realize;
k->exit = pci_edu_uninit;
k->vendor_id = PCI_VENDOR_ID_QEMU;
k->device_id = 0x11e8;
k->revision = 0x10;
k->class_id = PCI_CLASS_OTHERS;
}
static void pci_edu_register_types(void)
{
static InterfaceInfo interfaces[] = {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ },
};
static const TypeInfo edu_info = {
.name = TYPE_PCI_EDU_DEVICE,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(EduState),
.instance_init = edu_instance_init,
.class_init = edu_class_init,
.interfaces = interfaces,
};
type_register_static(&edu_info);
}
type_init(pci_edu_register_types)