|  | /* | 
|  | * ARM Generic Interrupt Controller v3 (emulation) | 
|  | * | 
|  | * Copyright (c) 2016 Linaro Limited | 
|  | * Written by Peter Maydell | 
|  | * | 
|  | * This code is licensed under the GPL, version 2 or (at your option) | 
|  | * any later version. | 
|  | */ | 
|  |  | 
|  | /* This file contains the code for the system register interface | 
|  | * portions of the GICv3. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/bitops.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "trace.h" | 
|  | #include "gicv3_internal.h" | 
|  | #include "hw/irq.h" | 
|  | #include "cpu.h" | 
|  | #include "target/arm/cpregs.h" | 
|  | #include "sysemu/tcg.h" | 
|  | #include "sysemu/qtest.h" | 
|  |  | 
|  | /* | 
|  | * Special case return value from hppvi_index(); must be larger than | 
|  | * the architecturally maximum possible list register index (which is 15) | 
|  | */ | 
|  | #define HPPVI_INDEX_VLPI 16 | 
|  |  | 
|  | static GICv3CPUState *icc_cs_from_env(CPUARMState *env) | 
|  | { | 
|  | return env->gicv3state; | 
|  | } | 
|  |  | 
|  | static bool gicv3_use_ns_bank(CPUARMState *env) | 
|  | { | 
|  | /* Return true if we should use the NonSecure bank for a banked GIC | 
|  | * CPU interface register. Note that this differs from the | 
|  | * access_secure_reg() function because GICv3 banked registers are | 
|  | * banked even for AArch64, unlike the other CPU system registers. | 
|  | */ | 
|  | return !arm_is_secure_below_el3(env); | 
|  | } | 
|  |  | 
|  | /* The minimum BPR for the virtual interface is a configurable property */ | 
|  | static inline int icv_min_vbpr(GICv3CPUState *cs) | 
|  | { | 
|  | return 7 - cs->vprebits; | 
|  | } | 
|  |  | 
|  | static inline int ich_num_aprs(GICv3CPUState *cs) | 
|  | { | 
|  | /* Return the number of virtual APR registers (1, 2, or 4) */ | 
|  | int aprmax = 1 << (cs->vprebits - 5); | 
|  | assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); | 
|  | return aprmax; | 
|  | } | 
|  |  | 
|  | /* Simple accessor functions for LR fields */ | 
|  | static uint32_t ich_lr_vintid(uint64_t lr) | 
|  | { | 
|  | return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); | 
|  | } | 
|  |  | 
|  | static uint32_t ich_lr_pintid(uint64_t lr) | 
|  | { | 
|  | return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); | 
|  | } | 
|  |  | 
|  | static uint32_t ich_lr_prio(uint64_t lr) | 
|  | { | 
|  | return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); | 
|  | } | 
|  |  | 
|  | static int ich_lr_state(uint64_t lr) | 
|  | { | 
|  | return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); | 
|  | } | 
|  |  | 
|  | static bool icv_access(CPUARMState *env, int hcr_flags) | 
|  | { | 
|  | /* Return true if this ICC_ register access should really be | 
|  | * directed to an ICV_ access. hcr_flags is a mask of | 
|  | * HCR_EL2 bits to check: we treat this as an ICV_ access | 
|  | * if we are in NS EL1 and at least one of the specified | 
|  | * HCR_EL2 bits is set. | 
|  | * | 
|  | * ICV registers fall into four categories: | 
|  | *  * access if NS EL1 and HCR_EL2.FMO == 1: | 
|  | *    all ICV regs with '0' in their name | 
|  | *  * access if NS EL1 and HCR_EL2.IMO == 1: | 
|  | *    all ICV regs with '1' in their name | 
|  | *  * access if NS EL1 and either IMO or FMO == 1: | 
|  | *    CTLR, DIR, PMR, RPR | 
|  | */ | 
|  | uint64_t hcr_el2 = arm_hcr_el2_eff(env); | 
|  | bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); | 
|  |  | 
|  | return flagmatch && arm_current_el(env) == 1 | 
|  | && !arm_is_secure_below_el3(env); | 
|  | } | 
|  |  | 
|  | static int read_vbpr(GICv3CPUState *cs, int grp) | 
|  | { | 
|  | /* Read VBPR value out of the VMCR field (caller must handle | 
|  | * VCBPR effects if required) | 
|  | */ | 
|  | if (grp == GICV3_G0) { | 
|  | return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, | 
|  | ICH_VMCR_EL2_VBPR0_LENGTH); | 
|  | } else { | 
|  | return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, | 
|  | ICH_VMCR_EL2_VBPR1_LENGTH); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_vbpr(GICv3CPUState *cs, int grp, int value) | 
|  | { | 
|  | /* Write new VBPR1 value, handling the "writing a value less than | 
|  | * the minimum sets it to the minimum" semantics. | 
|  | */ | 
|  | int min = icv_min_vbpr(cs); | 
|  |  | 
|  | if (grp != GICV3_G0) { | 
|  | min++; | 
|  | } | 
|  |  | 
|  | value = MAX(value, min); | 
|  |  | 
|  | if (grp == GICV3_G0) { | 
|  | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, | 
|  | ICH_VMCR_EL2_VBPR0_LENGTH, value); | 
|  | } else { | 
|  | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, | 
|  | ICH_VMCR_EL2_VBPR1_LENGTH, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t icv_fullprio_mask(GICv3CPUState *cs) | 
|  | { | 
|  | /* Return a mask word which clears the unimplemented priority bits | 
|  | * from a priority value for a virtual interrupt. (Not to be confused | 
|  | * with the group priority, whose mask depends on the value of VBPR | 
|  | * for the interrupt group.) | 
|  | */ | 
|  | return (~0U << (8 - cs->vpribits)) & 0xff; | 
|  | } | 
|  |  | 
|  | static int ich_highest_active_virt_prio(GICv3CPUState *cs) | 
|  | { | 
|  | /* Calculate the current running priority based on the set bits | 
|  | * in the ICH Active Priority Registers. | 
|  | */ | 
|  | int i; | 
|  | int aprmax = ich_num_aprs(cs); | 
|  |  | 
|  | for (i = 0; i < aprmax; i++) { | 
|  | uint32_t apr = cs->ich_apr[GICV3_G0][i] | | 
|  | cs->ich_apr[GICV3_G1NS][i]; | 
|  |  | 
|  | if (!apr) { | 
|  | continue; | 
|  | } | 
|  | return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); | 
|  | } | 
|  | /* No current active interrupts: return idle priority */ | 
|  | return 0xff; | 
|  | } | 
|  |  | 
|  | static int hppvi_index(GICv3CPUState *cs) | 
|  | { | 
|  | /* | 
|  | * Return the list register index of the highest priority pending | 
|  | * virtual interrupt, as per the HighestPriorityVirtualInterrupt | 
|  | * pseudocode. If no pending virtual interrupts, return -1. | 
|  | * If the highest priority pending virtual interrupt is a vLPI, | 
|  | * return HPPVI_INDEX_VLPI. | 
|  | * (The pseudocode handles checking whether the vLPI is higher | 
|  | * priority than the highest priority list register at every | 
|  | * callsite of HighestPriorityVirtualInterrupt; we check it here.) | 
|  | */ | 
|  | ARMCPU *cpu = ARM_CPU(cs->cpu); | 
|  | CPUARMState *env = &cpu->env; | 
|  | int idx = -1; | 
|  | int i; | 
|  | /* Note that a list register entry with a priority of 0xff will | 
|  | * never be reported by this function; this is the architecturally | 
|  | * correct behaviour. | 
|  | */ | 
|  | int prio = 0xff; | 
|  |  | 
|  | if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { | 
|  | /* Both groups disabled, definitely nothing to do */ | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < cs->num_list_regs; i++) { | 
|  | uint64_t lr = cs->ich_lr_el2[i]; | 
|  | int thisprio; | 
|  |  | 
|  | if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { | 
|  | /* Not Pending */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Ignore interrupts if relevant group enable not set */ | 
|  | if (lr & ICH_LR_EL2_GROUP) { | 
|  | if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | thisprio = ich_lr_prio(lr); | 
|  |  | 
|  | if (thisprio < prio) { | 
|  | prio = thisprio; | 
|  | idx = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * "no pending vLPI" is indicated with prio = 0xff, which always | 
|  | * fails the priority check here. vLPIs are only considered | 
|  | * when we are in Non-Secure state. | 
|  | */ | 
|  | if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) { | 
|  | if (cs->hppvlpi.grp == GICV3_G0) { | 
|  | if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) { | 
|  | return HPPVI_INDEX_VLPI; | 
|  | } | 
|  | } else { | 
|  | if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) { | 
|  | return HPPVI_INDEX_VLPI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) | 
|  | { | 
|  | /* Return a mask word which clears the subpriority bits from | 
|  | * a priority value for a virtual interrupt in the specified group. | 
|  | * This depends on the VBPR value. | 
|  | * If using VBPR0 then: | 
|  | *  a BPR of 0 means the group priority bits are [7:1]; | 
|  | *  a BPR of 1 means they are [7:2], and so on down to | 
|  | *  a BPR of 7 meaning no group priority bits at all. | 
|  | * If using VBPR1 then: | 
|  | *  a BPR of 0 is impossible (the minimum value is 1) | 
|  | *  a BPR of 1 means the group priority bits are [7:1]; | 
|  | *  a BPR of 2 means they are [7:2], and so on down to | 
|  | *  a BPR of 7 meaning the group priority is [7]. | 
|  | * | 
|  | * Which BPR to use depends on the group of the interrupt and | 
|  | * the current ICH_VMCR_EL2.VCBPR settings. | 
|  | * | 
|  | * This corresponds to the VGroupBits() pseudocode. | 
|  | */ | 
|  | int bpr; | 
|  |  | 
|  | if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { | 
|  | group = GICV3_G0; | 
|  | } | 
|  |  | 
|  | bpr = read_vbpr(cs, group); | 
|  | if (group == GICV3_G1NS) { | 
|  | assert(bpr > 0); | 
|  | bpr--; | 
|  | } | 
|  |  | 
|  | return ~0U << (bpr + 1); | 
|  | } | 
|  |  | 
|  | static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) | 
|  | { | 
|  | /* Return true if we can signal this virtual interrupt defined by | 
|  | * the given list register value; see the pseudocode functions | 
|  | * CanSignalVirtualInterrupt and CanSignalVirtualInt. | 
|  | * Compare also icc_hppi_can_preempt() which is the non-virtual | 
|  | * equivalent of these checks. | 
|  | */ | 
|  | int grp; | 
|  | uint32_t mask, prio, rprio, vpmr; | 
|  |  | 
|  | if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { | 
|  | /* Virtual interface disabled */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* We don't need to check that this LR is in Pending state because | 
|  | * that has already been done in hppvi_index(). | 
|  | */ | 
|  |  | 
|  | prio = ich_lr_prio(lr); | 
|  | vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | 
|  | ICH_VMCR_EL2_VPMR_LENGTH); | 
|  |  | 
|  | if (prio >= vpmr) { | 
|  | /* Priority mask masks this interrupt */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | rprio = ich_highest_active_virt_prio(cs); | 
|  | if (rprio == 0xff) { | 
|  | /* No running interrupt so we can preempt */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | 
|  |  | 
|  | mask = icv_gprio_mask(cs, grp); | 
|  |  | 
|  | /* We only preempt a running interrupt if the pending interrupt's | 
|  | * group priority is sufficient (the subpriorities are not considered). | 
|  | */ | 
|  | if ((prio & mask) < (rprio & mask)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs) | 
|  | { | 
|  | /* | 
|  | * Return true if we can signal the highest priority pending vLPI. | 
|  | * We can assume we're Non-secure because hppvi_index() already | 
|  | * tested for that. | 
|  | */ | 
|  | uint32_t mask, rprio, vpmr; | 
|  |  | 
|  | if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { | 
|  | /* Virtual interface disabled */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | 
|  | ICH_VMCR_EL2_VPMR_LENGTH); | 
|  |  | 
|  | if (cs->hppvlpi.prio >= vpmr) { | 
|  | /* Priority mask masks this interrupt */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | rprio = ich_highest_active_virt_prio(cs); | 
|  | if (rprio == 0xff) { | 
|  | /* No running interrupt so we can preempt */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | mask = icv_gprio_mask(cs, cs->hppvlpi.grp); | 
|  |  | 
|  | /* | 
|  | * We only preempt a running interrupt if the pending interrupt's | 
|  | * group priority is sufficient (the subpriorities are not considered). | 
|  | */ | 
|  | if ((cs->hppvlpi.prio & mask) < (rprio & mask)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, | 
|  | uint32_t *misr) | 
|  | { | 
|  | /* Return a set of bits indicating the EOI maintenance interrupt status | 
|  | * for each list register. The EOI maintenance interrupt status is | 
|  | * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 | 
|  | * (see the GICv3 spec for the ICH_EISR_EL2 register). | 
|  | * If misr is not NULL then we should also collect the information | 
|  | * about the MISR.EOI, MISR.NP and MISR.U bits. | 
|  | */ | 
|  | uint32_t value = 0; | 
|  | int validcount = 0; | 
|  | bool seenpending = false; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cs->num_list_regs; i++) { | 
|  | uint64_t lr = cs->ich_lr_el2[i]; | 
|  |  | 
|  | if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) | 
|  | == ICH_LR_EL2_EOI) { | 
|  | value |= (1 << i); | 
|  | } | 
|  | if ((lr & ICH_LR_EL2_STATE_MASK)) { | 
|  | validcount++; | 
|  | } | 
|  | if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { | 
|  | seenpending = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (misr) { | 
|  | if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { | 
|  | *misr |= ICH_MISR_EL2_U; | 
|  | } | 
|  | if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { | 
|  | *misr |= ICH_MISR_EL2_NP; | 
|  | } | 
|  | if (value) { | 
|  | *misr |= ICH_MISR_EL2_EOI; | 
|  | } | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) | 
|  | { | 
|  | /* Return a set of bits indicating the maintenance interrupt status | 
|  | * (as seen in the ICH_MISR_EL2 register). | 
|  | */ | 
|  | uint32_t value = 0; | 
|  |  | 
|  | /* Scan list registers and fill in the U, NP and EOI bits */ | 
|  | eoi_maintenance_interrupt_state(cs, &value); | 
|  |  | 
|  | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && | 
|  | (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { | 
|  | value |= ICH_MISR_EL2_LRENP; | 
|  | } | 
|  |  | 
|  | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && | 
|  | (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { | 
|  | value |= ICH_MISR_EL2_VGRP0E; | 
|  | } | 
|  |  | 
|  | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && | 
|  | !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | 
|  | value |= ICH_MISR_EL2_VGRP0D; | 
|  | } | 
|  | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && | 
|  | (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | 
|  | value |= ICH_MISR_EL2_VGRP1E; | 
|  | } | 
|  |  | 
|  | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && | 
|  | !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | 
|  | value |= ICH_MISR_EL2_VGRP1D; | 
|  | } | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs) | 
|  | { | 
|  | /* | 
|  | * Tell the CPU about any pending virtual interrupts. | 
|  | * This should only be called for changes that affect the | 
|  | * vIRQ and vFIQ status and do not change the maintenance | 
|  | * interrupt status. This means that unlike gicv3_cpuif_virt_update() | 
|  | * this function won't recursively call back into the GIC code. | 
|  | * The main use of this is when the redistributor has changed the | 
|  | * highest priority pending virtual LPI. | 
|  | */ | 
|  | int idx; | 
|  | int irqlevel = 0; | 
|  | int fiqlevel = 0; | 
|  |  | 
|  | idx = hppvi_index(cs); | 
|  | trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx, | 
|  | cs->hppvlpi.irq, cs->hppvlpi.grp, | 
|  | cs->hppvlpi.prio); | 
|  | if (idx == HPPVI_INDEX_VLPI) { | 
|  | if (icv_hppvlpi_can_preempt(cs)) { | 
|  | if (cs->hppvlpi.grp == GICV3_G0) { | 
|  | fiqlevel = 1; | 
|  | } else { | 
|  | irqlevel = 1; | 
|  | } | 
|  | } | 
|  | } else if (idx >= 0) { | 
|  | uint64_t lr = cs->ich_lr_el2[idx]; | 
|  |  | 
|  | if (icv_hppi_can_preempt(cs, lr)) { | 
|  | /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ | 
|  | if (lr & ICH_LR_EL2_GROUP) { | 
|  | irqlevel = 1; | 
|  | } else { | 
|  | fiqlevel = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); | 
|  | qemu_set_irq(cs->parent_vfiq, fiqlevel); | 
|  | qemu_set_irq(cs->parent_virq, irqlevel); | 
|  | } | 
|  |  | 
|  | static void gicv3_cpuif_virt_update(GICv3CPUState *cs) | 
|  | { | 
|  | /* | 
|  | * Tell the CPU about any pending virtual interrupts or | 
|  | * maintenance interrupts, following a change to the state | 
|  | * of the CPU interface relevant to virtual interrupts. | 
|  | * | 
|  | * CAUTION: this function will call qemu_set_irq() on the | 
|  | * CPU maintenance IRQ line, which is typically wired up | 
|  | * to the GIC as a per-CPU interrupt. This means that it | 
|  | * will recursively call back into the GIC code via | 
|  | * gicv3_redist_set_irq() and thus into the CPU interface code's | 
|  | * gicv3_cpuif_update(). It is therefore important that this | 
|  | * function is only called as the final action of a CPU interface | 
|  | * register write implementation, after all the GIC state | 
|  | * fields have been updated. gicv3_cpuif_update() also must | 
|  | * not cause this function to be called, but that happens | 
|  | * naturally as a result of there being no architectural | 
|  | * linkage between the physical and virtual GIC logic. | 
|  | */ | 
|  | ARMCPU *cpu = ARM_CPU(cs->cpu); | 
|  | int maintlevel = 0; | 
|  |  | 
|  | gicv3_cpuif_virt_irq_fiq_update(cs); | 
|  |  | 
|  | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && | 
|  | maintenance_interrupt_state(cs) != 0) { | 
|  | maintlevel = 1; | 
|  | } | 
|  |  | 
|  | trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel); | 
|  | qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); | 
|  | } | 
|  |  | 
|  | static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int regno = ri->opc2 & 3; | 
|  | int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; | 
|  | uint64_t value = cs->ich_apr[grp][regno]; | 
|  |  | 
|  | trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int regno = ri->opc2 & 3; | 
|  | int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; | 
|  |  | 
|  | trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
|  |  | 
|  | cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; | 
|  |  | 
|  | gicv3_cpuif_virt_irq_fiq_update(cs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; | 
|  | uint64_t bpr; | 
|  | bool satinc = false; | 
|  |  | 
|  | if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { | 
|  | /* reads return bpr0 + 1 saturated to 7, writes ignored */ | 
|  | grp = GICV3_G0; | 
|  | satinc = true; | 
|  | } | 
|  |  | 
|  | bpr = read_vbpr(cs, grp); | 
|  |  | 
|  | if (satinc) { | 
|  | bpr++; | 
|  | bpr = MIN(bpr, 7); | 
|  | } | 
|  |  | 
|  | trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); | 
|  |  | 
|  | return bpr; | 
|  | } | 
|  |  | 
|  | static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; | 
|  |  | 
|  | trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, | 
|  | gicv3_redist_affid(cs), value); | 
|  |  | 
|  | if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { | 
|  | /* reads return bpr0 + 1 saturated to 7, writes ignored */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | write_vbpr(cs, grp, value); | 
|  |  | 
|  | gicv3_cpuif_virt_irq_fiq_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value; | 
|  |  | 
|  | value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | 
|  | ICH_VMCR_EL2_VPMR_LENGTH); | 
|  |  | 
|  | trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  |  | 
|  | trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | value &= icv_fullprio_mask(cs); | 
|  |  | 
|  | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | 
|  | ICH_VMCR_EL2_VPMR_LENGTH, value); | 
|  |  | 
|  | gicv3_cpuif_virt_irq_fiq_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int enbit; | 
|  | uint64_t value; | 
|  |  | 
|  | enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; | 
|  | value = extract64(cs->ich_vmcr_el2, enbit, 1); | 
|  |  | 
|  | trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, | 
|  | gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int enbit; | 
|  |  | 
|  | trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, | 
|  | gicv3_redist_affid(cs), value); | 
|  |  | 
|  | enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; | 
|  |  | 
|  | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); | 
|  | gicv3_cpuif_virt_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value; | 
|  |  | 
|  | /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) | 
|  | * should match the ones reported in ich_vtr_read(). | 
|  | */ | 
|  | value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | 
|  | ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); | 
|  |  | 
|  | if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { | 
|  | value |= ICC_CTLR_EL1_EOIMODE; | 
|  | } | 
|  |  | 
|  | if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { | 
|  | value |= ICC_CTLR_EL1_CBPR; | 
|  | } | 
|  |  | 
|  | trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  |  | 
|  | trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, | 
|  | 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); | 
|  | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, | 
|  | 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); | 
|  |  | 
|  | gicv3_cpuif_virt_irq_fiq_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int prio = ich_highest_active_virt_prio(cs); | 
|  |  | 
|  | trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); | 
|  | return prio; | 
|  | } | 
|  |  | 
|  | static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | 
|  | int idx = hppvi_index(cs); | 
|  | uint64_t value = INTID_SPURIOUS; | 
|  |  | 
|  | if (idx == HPPVI_INDEX_VLPI) { | 
|  | if (cs->hppvlpi.grp == grp) { | 
|  | value = cs->hppvlpi.irq; | 
|  | } | 
|  | } else if (idx >= 0) { | 
|  | uint64_t lr = cs->ich_lr_el2[idx]; | 
|  | int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | 
|  |  | 
|  | if (grp == thisgrp) { | 
|  | value = ich_lr_vintid(lr); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1, | 
|  | gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) | 
|  | { | 
|  | /* Activate the interrupt in the specified list register | 
|  | * by moving it from Pending to Active state, and update the | 
|  | * Active Priority Registers. | 
|  | */ | 
|  | uint32_t mask = icv_gprio_mask(cs, grp); | 
|  | int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; | 
|  | int aprbit = prio >> (8 - cs->vprebits); | 
|  | int regno = aprbit / 32; | 
|  | int regbit = aprbit % 32; | 
|  |  | 
|  | cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; | 
|  | cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; | 
|  | cs->ich_apr[grp][regno] |= (1 << regbit); | 
|  | } | 
|  |  | 
|  | static void icv_activate_vlpi(GICv3CPUState *cs) | 
|  | { | 
|  | uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp); | 
|  | int prio = cs->hppvlpi.prio & mask; | 
|  | int aprbit = prio >> (8 - cs->vprebits); | 
|  | int regno = aprbit / 32; | 
|  | int regbit = aprbit % 32; | 
|  |  | 
|  | cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit); | 
|  | gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0); | 
|  | } | 
|  |  | 
|  | static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | 
|  | int idx = hppvi_index(cs); | 
|  | uint64_t intid = INTID_SPURIOUS; | 
|  |  | 
|  | if (idx == HPPVI_INDEX_VLPI) { | 
|  | if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) { | 
|  | intid = cs->hppvlpi.irq; | 
|  | icv_activate_vlpi(cs); | 
|  | } | 
|  | } else if (idx >= 0) { | 
|  | uint64_t lr = cs->ich_lr_el2[idx]; | 
|  | int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | 
|  |  | 
|  | if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { | 
|  | intid = ich_lr_vintid(lr); | 
|  | if (!gicv3_intid_is_special(intid)) { | 
|  | icv_activate_irq(cs, idx, grp); | 
|  | } else { | 
|  | /* Interrupt goes from Pending to Invalid */ | 
|  | cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; | 
|  | /* We will now return the (bogus) ID from the list register, | 
|  | * as per the pseudocode. | 
|  | */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, | 
|  | gicv3_redist_affid(cs), intid); | 
|  |  | 
|  | gicv3_cpuif_virt_update(cs); | 
|  |  | 
|  | return intid; | 
|  | } | 
|  |  | 
|  | static uint32_t icc_fullprio_mask(GICv3CPUState *cs) | 
|  | { | 
|  | /* | 
|  | * Return a mask word which clears the unimplemented priority bits | 
|  | * from a priority value for a physical interrupt. (Not to be confused | 
|  | * with the group priority, whose mask depends on the value of BPR | 
|  | * for the interrupt group.) | 
|  | */ | 
|  | return (~0U << (8 - cs->pribits)) & 0xff; | 
|  | } | 
|  |  | 
|  | static inline int icc_min_bpr(GICv3CPUState *cs) | 
|  | { | 
|  | /* The minimum BPR for the physical interface. */ | 
|  | return 7 - cs->prebits; | 
|  | } | 
|  |  | 
|  | static inline int icc_min_bpr_ns(GICv3CPUState *cs) | 
|  | { | 
|  | return icc_min_bpr(cs) + 1; | 
|  | } | 
|  |  | 
|  | static inline int icc_num_aprs(GICv3CPUState *cs) | 
|  | { | 
|  | /* Return the number of APR registers (1, 2, or 4) */ | 
|  | int aprmax = 1 << MAX(cs->prebits - 5, 0); | 
|  | assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0])); | 
|  | return aprmax; | 
|  | } | 
|  |  | 
|  | static int icc_highest_active_prio(GICv3CPUState *cs) | 
|  | { | 
|  | /* Calculate the current running priority based on the set bits | 
|  | * in the Active Priority Registers. | 
|  | */ | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < icc_num_aprs(cs); i++) { | 
|  | uint32_t apr = cs->icc_apr[GICV3_G0][i] | | 
|  | cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; | 
|  |  | 
|  | if (!apr) { | 
|  | continue; | 
|  | } | 
|  | return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1); | 
|  | } | 
|  | /* No current active interrupts: return idle priority */ | 
|  | return 0xff; | 
|  | } | 
|  |  | 
|  | static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) | 
|  | { | 
|  | /* Return a mask word which clears the subpriority bits from | 
|  | * a priority value for an interrupt in the specified group. | 
|  | * This depends on the BPR value. For CBPR0 (S or NS): | 
|  | *  a BPR of 0 means the group priority bits are [7:1]; | 
|  | *  a BPR of 1 means they are [7:2], and so on down to | 
|  | *  a BPR of 7 meaning no group priority bits at all. | 
|  | * For CBPR1 NS: | 
|  | *  a BPR of 0 is impossible (the minimum value is 1) | 
|  | *  a BPR of 1 means the group priority bits are [7:1]; | 
|  | *  a BPR of 2 means they are [7:2], and so on down to | 
|  | *  a BPR of 7 meaning the group priority is [7]. | 
|  | * | 
|  | * Which BPR to use depends on the group of the interrupt and | 
|  | * the current ICC_CTLR.CBPR settings. | 
|  | * | 
|  | * This corresponds to the GroupBits() pseudocode. | 
|  | */ | 
|  | int bpr; | 
|  |  | 
|  | if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || | 
|  | (group == GICV3_G1NS && | 
|  | cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | 
|  | group = GICV3_G0; | 
|  | } | 
|  |  | 
|  | bpr = cs->icc_bpr[group] & 7; | 
|  |  | 
|  | if (group == GICV3_G1NS) { | 
|  | assert(bpr > 0); | 
|  | bpr--; | 
|  | } | 
|  |  | 
|  | return ~0U << (bpr + 1); | 
|  | } | 
|  |  | 
|  | static bool icc_no_enabled_hppi(GICv3CPUState *cs) | 
|  | { | 
|  | /* Return true if there is no pending interrupt, or the | 
|  | * highest priority pending interrupt is in a group which has been | 
|  | * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. | 
|  | */ | 
|  | return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); | 
|  | } | 
|  |  | 
|  | static bool icc_hppi_can_preempt(GICv3CPUState *cs) | 
|  | { | 
|  | /* Return true if we have a pending interrupt of sufficient | 
|  | * priority to preempt. | 
|  | */ | 
|  | int rprio; | 
|  | uint32_t mask; | 
|  |  | 
|  | if (icc_no_enabled_hppi(cs)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (cs->hppi.prio >= cs->icc_pmr_el1) { | 
|  | /* Priority mask masks this interrupt */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | rprio = icc_highest_active_prio(cs); | 
|  | if (rprio == 0xff) { | 
|  | /* No currently running interrupt so we can preempt */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | mask = icc_gprio_mask(cs, cs->hppi.grp); | 
|  |  | 
|  | /* We only preempt a running interrupt if the pending interrupt's | 
|  | * group priority is sufficient (the subpriorities are not considered). | 
|  | */ | 
|  | if ((cs->hppi.prio & mask) < (rprio & mask)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void gicv3_cpuif_update(GICv3CPUState *cs) | 
|  | { | 
|  | /* Tell the CPU about its highest priority pending interrupt */ | 
|  | int irqlevel = 0; | 
|  | int fiqlevel = 0; | 
|  | ARMCPU *cpu = ARM_CPU(cs->cpu); | 
|  | CPUARMState *env = &cpu->env; | 
|  |  | 
|  | g_assert(bql_locked()); | 
|  |  | 
|  | trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, | 
|  | cs->hppi.grp, cs->hppi.prio); | 
|  |  | 
|  | if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { | 
|  | /* If a Security-enabled GIC sends a G1S interrupt to a | 
|  | * Security-disabled CPU, we must treat it as if it were G0. | 
|  | */ | 
|  | cs->hppi.grp = GICV3_G0; | 
|  | } | 
|  |  | 
|  | if (icc_hppi_can_preempt(cs)) { | 
|  | /* We have an interrupt: should we signal it as IRQ or FIQ? | 
|  | * This is described in the GICv3 spec section 4.6.2. | 
|  | */ | 
|  | bool isfiq; | 
|  |  | 
|  | switch (cs->hppi.grp) { | 
|  | case GICV3_G0: | 
|  | isfiq = true; | 
|  | break; | 
|  | case GICV3_G1: | 
|  | isfiq = (!arm_is_secure(env) || | 
|  | (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); | 
|  | break; | 
|  | case GICV3_G1NS: | 
|  | isfiq = arm_is_secure(env); | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | if (isfiq) { | 
|  | fiqlevel = 1; | 
|  | } else { | 
|  | irqlevel = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); | 
|  |  | 
|  | qemu_set_irq(cs->parent_fiq, fiqlevel); | 
|  | qemu_set_irq(cs->parent_irq, irqlevel); | 
|  | } | 
|  |  | 
|  | static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint32_t value = cs->icc_pmr_el1; | 
|  |  | 
|  | if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
|  | return icv_pmr_read(env, ri); | 
|  | } | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && | 
|  | (env->cp15.scr_el3 & SCR_FIQ)) { | 
|  | /* NS access and Group 0 is inaccessible to NS: return the | 
|  | * NS view of the current priority | 
|  | */ | 
|  | if ((value & 0x80) == 0) { | 
|  | /* Secure priorities not visible to NS */ | 
|  | value = 0; | 
|  | } else if (value != 0xff) { | 
|  | value = (value << 1) & 0xff; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  |  | 
|  | if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
|  | return icv_pmr_write(env, ri, value); | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && | 
|  | (env->cp15.scr_el3 & SCR_FIQ)) { | 
|  | /* NS access and Group 0 is inaccessible to NS: return the | 
|  | * NS view of the current priority | 
|  | */ | 
|  | if (!(cs->icc_pmr_el1 & 0x80)) { | 
|  | /* Current PMR in the secure range, don't allow NS to change it */ | 
|  | return; | 
|  | } | 
|  | value = (value >> 1) | 0x80; | 
|  | } | 
|  | value &= icc_fullprio_mask(cs); | 
|  | cs->icc_pmr_el1 = value; | 
|  | gicv3_cpuif_update(cs); | 
|  | } | 
|  |  | 
|  | static void icc_activate_irq(GICv3CPUState *cs, int irq) | 
|  | { | 
|  | /* Move the interrupt from the Pending state to Active, and update | 
|  | * the Active Priority Registers | 
|  | */ | 
|  | uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); | 
|  | int prio = cs->hppi.prio & mask; | 
|  | int aprbit = prio >> (8 - cs->prebits); | 
|  | int regno = aprbit / 32; | 
|  | int regbit = aprbit % 32; | 
|  |  | 
|  | cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); | 
|  |  | 
|  | if (irq < GIC_INTERNAL) { | 
|  | cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); | 
|  | cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); | 
|  | gicv3_redist_update(cs); | 
|  | } else if (irq < GICV3_LPI_INTID_START) { | 
|  | gicv3_gicd_active_set(cs->gic, irq); | 
|  | gicv3_gicd_pending_clear(cs->gic, irq); | 
|  | gicv3_update(cs->gic, irq, 1); | 
|  | } else { | 
|  | gicv3_redist_lpi_pending(cs, irq, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) | 
|  | { | 
|  | /* Return the highest priority pending interrupt register value | 
|  | * for group 0. | 
|  | */ | 
|  | bool irq_is_secure; | 
|  |  | 
|  | if (cs->hppi.prio == 0xff) { | 
|  | return INTID_SPURIOUS; | 
|  | } | 
|  |  | 
|  | /* Check whether we can return the interrupt or if we should return | 
|  | * a special identifier, as per the CheckGroup0ForSpecialIdentifiers | 
|  | * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM | 
|  | * is always zero.) | 
|  | */ | 
|  | irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | 
|  | (cs->hppi.grp != GICV3_G1NS)); | 
|  |  | 
|  | if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { | 
|  | return INTID_SPURIOUS; | 
|  | } | 
|  | if (irq_is_secure && !arm_is_secure(env)) { | 
|  | /* Secure interrupts not visible to Nonsecure */ | 
|  | return INTID_SPURIOUS; | 
|  | } | 
|  |  | 
|  | if (cs->hppi.grp != GICV3_G0) { | 
|  | /* Indicate to EL3 that there's a Group 1 interrupt for the other | 
|  | * state pending. | 
|  | */ | 
|  | return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; | 
|  | } | 
|  |  | 
|  | return cs->hppi.irq; | 
|  | } | 
|  |  | 
|  | static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) | 
|  | { | 
|  | /* Return the highest priority pending interrupt register value | 
|  | * for group 1. | 
|  | */ | 
|  | bool irq_is_secure; | 
|  |  | 
|  | if (cs->hppi.prio == 0xff) { | 
|  | return INTID_SPURIOUS; | 
|  | } | 
|  |  | 
|  | /* Check whether we can return the interrupt or if we should return | 
|  | * a special identifier, as per the CheckGroup1ForSpecialIdentifiers | 
|  | * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM | 
|  | * is always zero.) | 
|  | */ | 
|  | irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | 
|  | (cs->hppi.grp != GICV3_G1NS)); | 
|  |  | 
|  | if (cs->hppi.grp == GICV3_G0) { | 
|  | /* Group 0 interrupts not visible via HPPIR1 */ | 
|  | return INTID_SPURIOUS; | 
|  | } | 
|  | if (irq_is_secure) { | 
|  | if (!arm_is_secure(env)) { | 
|  | /* Secure interrupts not visible in Non-secure */ | 
|  | return INTID_SPURIOUS; | 
|  | } | 
|  | } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { | 
|  | /* Group 1 non-secure interrupts not visible in Secure EL1 */ | 
|  | return INTID_SPURIOUS; | 
|  | } | 
|  |  | 
|  | return cs->hppi.irq; | 
|  | } | 
|  |  | 
|  | static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t intid; | 
|  |  | 
|  | if (icv_access(env, HCR_FMO)) { | 
|  | return icv_iar_read(env, ri); | 
|  | } | 
|  |  | 
|  | if (!icc_hppi_can_preempt(cs)) { | 
|  | intid = INTID_SPURIOUS; | 
|  | } else { | 
|  | intid = icc_hppir0_value(cs, env); | 
|  | } | 
|  |  | 
|  | if (!gicv3_intid_is_special(intid)) { | 
|  | icc_activate_irq(cs, intid); | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); | 
|  | return intid; | 
|  | } | 
|  |  | 
|  | static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t intid; | 
|  |  | 
|  | if (icv_access(env, HCR_IMO)) { | 
|  | return icv_iar_read(env, ri); | 
|  | } | 
|  |  | 
|  | if (!icc_hppi_can_preempt(cs)) { | 
|  | intid = INTID_SPURIOUS; | 
|  | } else { | 
|  | intid = icc_hppir1_value(cs, env); | 
|  | } | 
|  |  | 
|  | if (!gicv3_intid_is_special(intid)) { | 
|  | icc_activate_irq(cs, intid); | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); | 
|  | return intid; | 
|  | } | 
|  |  | 
|  | static void icc_drop_prio(GICv3CPUState *cs, int grp) | 
|  | { | 
|  | /* Drop the priority of the currently active interrupt in | 
|  | * the specified group. | 
|  | * | 
|  | * Note that we can guarantee (because of the requirement to nest | 
|  | * ICC_IAR reads [which activate an interrupt and raise priority] | 
|  | * with ICC_EOIR writes [which drop the priority for the interrupt]) | 
|  | * that the interrupt we're being called for is the highest priority | 
|  | * active interrupt, meaning that it has the lowest set bit in the | 
|  | * APR registers. | 
|  | * | 
|  | * If the guest does not honour the ordering constraints then the | 
|  | * behaviour of the GIC is UNPREDICTABLE, which for us means that | 
|  | * the values of the APR registers might become incorrect and the | 
|  | * running priority will be wrong, so interrupts that should preempt | 
|  | * might not do so, and interrupts that should not preempt might do so. | 
|  | */ | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < icc_num_aprs(cs); i++) { | 
|  | uint64_t *papr = &cs->icc_apr[grp][i]; | 
|  |  | 
|  | if (!*papr) { | 
|  | continue; | 
|  | } | 
|  | /* Clear the lowest set bit */ | 
|  | *papr &= *papr - 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* running priority change means we need an update for this cpu i/f */ | 
|  | gicv3_cpuif_update(cs); | 
|  | } | 
|  |  | 
|  | static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) | 
|  | { | 
|  | /* Return true if we should split priority drop and interrupt | 
|  | * deactivation, ie whether the relevant EOIMode bit is set. | 
|  | */ | 
|  | if (arm_is_el3_or_mon(env)) { | 
|  | return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; | 
|  | } | 
|  | if (arm_is_secure_below_el3(env)) { | 
|  | return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; | 
|  | } else { | 
|  | return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int icc_highest_active_group(GICv3CPUState *cs) | 
|  | { | 
|  | /* Return the group with the highest priority active interrupt. | 
|  | * We can do this by just comparing the APRs to see which one | 
|  | * has the lowest set bit. | 
|  | * (If more than one group is active at the same priority then | 
|  | * we're in UNPREDICTABLE territory.) | 
|  | */ | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { | 
|  | int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); | 
|  | int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); | 
|  | int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); | 
|  |  | 
|  | if (g1nsctz < g0ctz && g1nsctz < g1ctz) { | 
|  | return GICV3_G1NS; | 
|  | } | 
|  | if (g1ctz < g0ctz) { | 
|  | return GICV3_G1; | 
|  | } | 
|  | if (g0ctz < 32) { | 
|  | return GICV3_G0; | 
|  | } | 
|  | } | 
|  | /* No set active bits? UNPREDICTABLE; return -1 so the caller | 
|  | * ignores the spurious EOI attempt. | 
|  | */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void icc_deactivate_irq(GICv3CPUState *cs, int irq) | 
|  | { | 
|  | if (irq < GIC_INTERNAL) { | 
|  | cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); | 
|  | gicv3_redist_update(cs); | 
|  | } else { | 
|  | gicv3_gicd_active_clear(cs->gic, irq); | 
|  | gicv3_update(cs->gic, irq, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) | 
|  | { | 
|  | /* Return true if we should split priority drop and interrupt | 
|  | * deactivation, ie whether the virtual EOIMode bit is set. | 
|  | */ | 
|  | return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; | 
|  | } | 
|  |  | 
|  | static int icv_find_active(GICv3CPUState *cs, int irq) | 
|  | { | 
|  | /* Given an interrupt number for an active interrupt, return the index | 
|  | * of the corresponding list register, or -1 if there is no match. | 
|  | * Corresponds to FindActiveVirtualInterrupt pseudocode. | 
|  | */ | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cs->num_list_regs; i++) { | 
|  | uint64_t lr = cs->ich_lr_el2[i]; | 
|  |  | 
|  | if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void icv_deactivate_irq(GICv3CPUState *cs, int idx) | 
|  | { | 
|  | /* Deactivate the interrupt in the specified list register index */ | 
|  | uint64_t lr = cs->ich_lr_el2[idx]; | 
|  |  | 
|  | if (lr & ICH_LR_EL2_HW) { | 
|  | /* Deactivate the associated physical interrupt */ | 
|  | int pirq = ich_lr_pintid(lr); | 
|  |  | 
|  | if (pirq < INTID_SECURE) { | 
|  | icc_deactivate_irq(cs, pirq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Clear the 'active' part of the state, so ActivePending->Pending | 
|  | * and Active->Invalid. | 
|  | */ | 
|  | lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; | 
|  | cs->ich_lr_el2[idx] = lr; | 
|  | } | 
|  |  | 
|  | static void icv_increment_eoicount(GICv3CPUState *cs) | 
|  | { | 
|  | /* Increment the EOICOUNT field in ICH_HCR_EL2 */ | 
|  | int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, | 
|  | ICH_HCR_EL2_EOICOUNT_LENGTH); | 
|  |  | 
|  | cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, | 
|  | ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); | 
|  | } | 
|  |  | 
|  | static int icv_drop_prio(GICv3CPUState *cs) | 
|  | { | 
|  | /* Drop the priority of the currently active virtual interrupt | 
|  | * (favouring group 0 if there is a set active bit at | 
|  | * the same priority for both group 0 and group 1). | 
|  | * Return the priority value for the bit we just cleared, | 
|  | * or 0xff if no bits were set in the AP registers at all. | 
|  | * Note that though the ich_apr[] are uint64_t only the low | 
|  | * 32 bits are actually relevant. | 
|  | */ | 
|  | int i; | 
|  | int aprmax = ich_num_aprs(cs); | 
|  |  | 
|  | for (i = 0; i < aprmax; i++) { | 
|  | uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; | 
|  | uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; | 
|  | int apr0count, apr1count; | 
|  |  | 
|  | if (!*papr0 && !*papr1) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* We can't just use the bit-twiddling hack icc_drop_prio() does | 
|  | * because we need to return the bit number we cleared so | 
|  | * it can be compared against the list register's priority field. | 
|  | */ | 
|  | apr0count = ctz32(*papr0); | 
|  | apr1count = ctz32(*papr1); | 
|  |  | 
|  | if (apr0count <= apr1count) { | 
|  | *papr0 &= *papr0 - 1; | 
|  | return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); | 
|  | } else { | 
|  | *papr1 &= *papr1 - 1; | 
|  | return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); | 
|  | } | 
|  | } | 
|  | return 0xff; | 
|  | } | 
|  |  | 
|  | static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Deactivate interrupt */ | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int idx; | 
|  | int irq = value & 0xffffff; | 
|  |  | 
|  | trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | if (irq >= GICV3_MAXIRQ) { | 
|  | /* Also catches special interrupt numbers and LPIs */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!icv_eoi_split(env, cs)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | idx = icv_find_active(cs, irq); | 
|  |  | 
|  | if (idx < 0) { | 
|  | /* No list register matching this, so increment the EOI count | 
|  | * (might trigger a maintenance interrupt) | 
|  | */ | 
|  | icv_increment_eoicount(cs); | 
|  | } else { | 
|  | icv_deactivate_irq(cs, idx); | 
|  | } | 
|  |  | 
|  | gicv3_cpuif_virt_update(cs); | 
|  | } | 
|  |  | 
|  | static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* End of Interrupt */ | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int irq = value & 0xffffff; | 
|  | int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | 
|  | int idx, dropprio; | 
|  |  | 
|  | trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, | 
|  | gicv3_redist_affid(cs), value); | 
|  |  | 
|  | if (gicv3_intid_is_special(irq)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We implement the IMPDEF choice of "drop priority before doing | 
|  | * error checks" (because that lets us avoid scanning the AP | 
|  | * registers twice). | 
|  | */ | 
|  | dropprio = icv_drop_prio(cs); | 
|  | if (dropprio == 0xff) { | 
|  | /* No active interrupt. It is CONSTRAINED UNPREDICTABLE | 
|  | * whether the list registers are checked in this | 
|  | * situation; we choose not to. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | idx = icv_find_active(cs, irq); | 
|  |  | 
|  | if (idx < 0) { | 
|  | /* | 
|  | * No valid list register corresponding to EOI ID; if this is a vLPI | 
|  | * not in the list regs then do nothing; otherwise increment EOI count | 
|  | */ | 
|  | if (irq < GICV3_LPI_INTID_START) { | 
|  | icv_increment_eoicount(cs); | 
|  | } | 
|  | } else { | 
|  | uint64_t lr = cs->ich_lr_el2[idx]; | 
|  | int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | 
|  | int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); | 
|  |  | 
|  | if (thisgrp == grp && lr_gprio == dropprio) { | 
|  | if (!icv_eoi_split(env, cs) || irq >= GICV3_LPI_INTID_START) { | 
|  | /* | 
|  | * Priority drop and deactivate not split: deactivate irq now. | 
|  | * LPIs always get their active state cleared immediately | 
|  | * because no separate deactivate is expected. | 
|  | */ | 
|  | icv_deactivate_irq(cs, idx); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | gicv3_cpuif_virt_update(cs); | 
|  | } | 
|  |  | 
|  | static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* End of Interrupt */ | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int irq = value & 0xffffff; | 
|  | int grp; | 
|  | bool is_eoir0 = ri->crm == 8; | 
|  |  | 
|  | if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { | 
|  | icv_eoir_write(env, ri, value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, | 
|  | gicv3_redist_affid(cs), value); | 
|  |  | 
|  | if ((irq >= cs->gic->num_irq) && | 
|  | !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { | 
|  | /* This handles two cases: | 
|  | * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] | 
|  | * to the GICC_EOIR, the GIC ignores that write. | 
|  | * 2. If software writes the number of a non-existent interrupt | 
|  | * this must be a subcase of "value written does not match the last | 
|  | * valid interrupt value read from the Interrupt Acknowledge | 
|  | * register" and so this is UNPREDICTABLE. We choose to ignore it. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | grp = icc_highest_active_group(cs); | 
|  | switch (grp) { | 
|  | case GICV3_G0: | 
|  | if (!is_eoir0) { | 
|  | return; | 
|  | } | 
|  | if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) | 
|  | && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case GICV3_G1: | 
|  | if (is_eoir0) { | 
|  | return; | 
|  | } | 
|  | if (!arm_is_secure(env)) { | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case GICV3_G1NS: | 
|  | if (is_eoir0) { | 
|  | return; | 
|  | } | 
|  | if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { | 
|  | return; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "%s: IRQ %d isn't active\n", __func__, irq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | icc_drop_prio(cs, grp); | 
|  |  | 
|  | if (!icc_eoi_split(env, cs)) { | 
|  | /* Priority drop and deactivate not split: deactivate irq now */ | 
|  | icc_deactivate_irq(cs, irq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value; | 
|  |  | 
|  | if (icv_access(env, HCR_FMO)) { | 
|  | return icv_hppir_read(env, ri); | 
|  | } | 
|  |  | 
|  | value = icc_hppir0_value(cs, env); | 
|  | trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value; | 
|  |  | 
|  | if (icv_access(env, HCR_IMO)) { | 
|  | return icv_hppir_read(env, ri); | 
|  | } | 
|  |  | 
|  | value = icc_hppir1_value(cs, env); | 
|  | trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; | 
|  | bool satinc = false; | 
|  | uint64_t bpr; | 
|  |  | 
|  | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
|  | return icv_bpr_read(env, ri); | 
|  | } | 
|  |  | 
|  | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
|  | grp = GICV3_G1NS; | 
|  | } | 
|  |  | 
|  | if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && | 
|  | (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { | 
|  | /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses | 
|  | * modify BPR0 | 
|  | */ | 
|  | grp = GICV3_G0; | 
|  | } | 
|  |  | 
|  | if (grp == GICV3_G1NS && arm_current_el(env) < 3 && | 
|  | (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | 
|  | /* reads return bpr0 + 1 sat to 7, writes ignored */ | 
|  | grp = GICV3_G0; | 
|  | satinc = true; | 
|  | } | 
|  |  | 
|  | bpr = cs->icc_bpr[grp]; | 
|  | if (satinc) { | 
|  | bpr++; | 
|  | bpr = MIN(bpr, 7); | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); | 
|  |  | 
|  | return bpr; | 
|  | } | 
|  |  | 
|  | static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; | 
|  | uint64_t minval; | 
|  |  | 
|  | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
|  | icv_bpr_write(env, ri, value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, | 
|  | gicv3_redist_affid(cs), value); | 
|  |  | 
|  | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
|  | grp = GICV3_G1NS; | 
|  | } | 
|  |  | 
|  | if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && | 
|  | (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { | 
|  | /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses | 
|  | * modify BPR0 | 
|  | */ | 
|  | grp = GICV3_G0; | 
|  | } | 
|  |  | 
|  | if (grp == GICV3_G1NS && arm_current_el(env) < 3 && | 
|  | (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | 
|  | /* reads return bpr0 + 1 sat to 7, writes ignored */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs); | 
|  | if (value < minval) { | 
|  | value = minval; | 
|  | } | 
|  |  | 
|  | cs->icc_bpr[grp] = value & 7; | 
|  | gicv3_cpuif_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value; | 
|  |  | 
|  | int regno = ri->opc2 & 3; | 
|  | int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; | 
|  |  | 
|  | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
|  | return icv_ap_read(env, ri); | 
|  | } | 
|  |  | 
|  | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
|  | grp = GICV3_G1NS; | 
|  | } | 
|  |  | 
|  | value = cs->icc_apr[grp][regno]; | 
|  |  | 
|  | trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  |  | 
|  | int regno = ri->opc2 & 3; | 
|  | int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; | 
|  |  | 
|  | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
|  | icv_ap_write(env, ri, value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
|  |  | 
|  | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
|  | grp = GICV3_G1NS; | 
|  | } | 
|  |  | 
|  | /* It's not possible to claim that a Non-secure interrupt is active | 
|  | * at a priority outside the Non-secure range (128..255), since this | 
|  | * would otherwise allow malicious NS code to block delivery of S interrupts | 
|  | * by writing a bad value to these registers. | 
|  | */ | 
|  | if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; | 
|  | gicv3_cpuif_update(cs); | 
|  | } | 
|  |  | 
|  | static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Deactivate interrupt */ | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int irq = value & 0xffffff; | 
|  | bool irq_is_secure, single_sec_state, irq_is_grp0; | 
|  | bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; | 
|  |  | 
|  | if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
|  | icv_dir_write(env, ri, value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | if (irq >= cs->gic->num_irq) { | 
|  | /* Also catches special interrupt numbers and LPIs */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!icc_eoi_split(env, cs)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int grp = gicv3_irq_group(cs->gic, cs, irq); | 
|  |  | 
|  | single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; | 
|  | irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); | 
|  | irq_is_grp0 = grp == GICV3_G0; | 
|  |  | 
|  | /* Check whether we're allowed to deactivate this interrupt based | 
|  | * on its group and the current CPU state. | 
|  | * These checks are laid out to correspond to the spec's pseudocode. | 
|  | */ | 
|  | route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; | 
|  | route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; | 
|  | /* No need to include !IsSecure in route_*_to_el2 as it's only | 
|  | * tested in cases where we know !IsSecure is true. | 
|  | */ | 
|  | uint64_t hcr_el2 = arm_hcr_el2_eff(env); | 
|  | route_fiq_to_el2 = hcr_el2 & HCR_FMO; | 
|  | route_irq_to_el2 = hcr_el2 & HCR_IMO; | 
|  |  | 
|  | switch (arm_current_el(env)) { | 
|  | case 3: | 
|  | break; | 
|  | case 2: | 
|  | if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { | 
|  | break; | 
|  | } | 
|  | if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { | 
|  | break; | 
|  | } | 
|  | return; | 
|  | case 1: | 
|  | if (!arm_is_secure_below_el3(env)) { | 
|  | if (single_sec_state && irq_is_grp0 && | 
|  | !route_fiq_to_el3 && !route_fiq_to_el2) { | 
|  | break; | 
|  | } | 
|  | if (!irq_is_secure && !irq_is_grp0 && | 
|  | !route_irq_to_el3 && !route_irq_to_el2) { | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (irq_is_grp0 && !route_fiq_to_el3) { | 
|  | break; | 
|  | } | 
|  | if (!irq_is_grp0 && | 
|  | (!irq_is_secure || !single_sec_state) && | 
|  | !route_irq_to_el3) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | icc_deactivate_irq(cs, irq); | 
|  | } | 
|  |  | 
|  | static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int prio; | 
|  |  | 
|  | if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
|  | return icv_rpr_read(env, ri); | 
|  | } | 
|  |  | 
|  | prio = icc_highest_active_prio(cs); | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_EL3) && | 
|  | !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { | 
|  | /* NS GIC access and Group 0 is inaccessible to NS */ | 
|  | if ((prio & 0x80) == 0) { | 
|  | /* NS mustn't see priorities in the Secure half of the range */ | 
|  | prio = 0; | 
|  | } else if (prio != 0xff) { | 
|  | /* Non-idle priority: show the Non-secure view of it */ | 
|  | prio = (prio << 1) & 0xff; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); | 
|  | return prio; | 
|  | } | 
|  |  | 
|  | static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, | 
|  | uint64_t value, int grp, bool ns) | 
|  | { | 
|  | GICv3State *s = cs->gic; | 
|  |  | 
|  | /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ | 
|  | uint64_t aff = extract64(value, 48, 8) << 16 | | 
|  | extract64(value, 32, 8) << 8 | | 
|  | extract64(value, 16, 8); | 
|  | uint32_t targetlist = extract64(value, 0, 16); | 
|  | uint32_t irq = extract64(value, 24, 4); | 
|  | bool irm = extract64(value, 40, 1); | 
|  | int i; | 
|  |  | 
|  | if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { | 
|  | /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 | 
|  | * interrupts as Group 0 interrupts and must send Secure Group 0 | 
|  | * interrupts to the target CPUs. | 
|  | */ | 
|  | grp = GICV3_G0; | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, | 
|  | aff, targetlist); | 
|  |  | 
|  | for (i = 0; i < s->num_cpu; i++) { | 
|  | GICv3CPUState *ocs = &s->cpu[i]; | 
|  |  | 
|  | if (irm) { | 
|  | /* IRM == 1 : route to all CPUs except self */ | 
|  | if (cs == ocs) { | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] | 
|  | * where the corresponding bit is set in targetlist | 
|  | */ | 
|  | int aff0; | 
|  |  | 
|  | if (ocs->gicr_typer >> 40 != aff) { | 
|  | continue; | 
|  | } | 
|  | aff0 = extract64(ocs->gicr_typer, 32, 8); | 
|  | if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The redistributor will check against its own GICR_NSACR as needed */ | 
|  | gicv3_redist_send_sgi(ocs, grp, irq, ns); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Generate Secure Group 0 SGI. */ | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | bool ns = !arm_is_secure(env); | 
|  |  | 
|  | icc_generate_sgi(env, cs, value, GICV3_G0, ns); | 
|  | } | 
|  |  | 
|  | static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Generate Group 1 SGI for the current Security state */ | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int grp; | 
|  | bool ns = !arm_is_secure(env); | 
|  |  | 
|  | grp = ns ? GICV3_G1NS : GICV3_G1; | 
|  | icc_generate_sgi(env, cs, value, grp, ns); | 
|  | } | 
|  |  | 
|  | static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Generate Group 1 SGI for the Security state that is not | 
|  | * the current state | 
|  | */ | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int grp; | 
|  | bool ns = !arm_is_secure(env); | 
|  |  | 
|  | grp = ns ? GICV3_G1 : GICV3_G1NS; | 
|  | icc_generate_sgi(env, cs, value, grp, ns); | 
|  | } | 
|  |  | 
|  | static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; | 
|  | uint64_t value; | 
|  |  | 
|  | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
|  | return icv_igrpen_read(env, ri); | 
|  | } | 
|  |  | 
|  | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
|  | grp = GICV3_G1NS; | 
|  | } | 
|  |  | 
|  | value = cs->icc_igrpen[grp]; | 
|  | trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, | 
|  | gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; | 
|  |  | 
|  | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
|  | icv_igrpen_write(env, ri, value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, | 
|  | gicv3_redist_affid(cs), value); | 
|  |  | 
|  | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
|  | grp = GICV3_G1NS; | 
|  | } | 
|  |  | 
|  | cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; | 
|  | gicv3_cpuif_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value; | 
|  |  | 
|  | /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ | 
|  | value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); | 
|  | trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  |  | 
|  | trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ | 
|  | cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); | 
|  | cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); | 
|  | gicv3_cpuif_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; | 
|  | uint64_t value; | 
|  |  | 
|  | if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
|  | return icv_ctlr_read(env, ri); | 
|  | } | 
|  |  | 
|  | value = cs->icc_ctlr_el1[bank]; | 
|  | trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; | 
|  | uint64_t mask; | 
|  |  | 
|  | if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
|  | icv_ctlr_write(env, ri, value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | /* Only CBPR and EOIMODE can be RW; | 
|  | * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or | 
|  | * the asseciated priority-based routing of them); | 
|  | * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. | 
|  | */ | 
|  | if (arm_feature(env, ARM_FEATURE_EL3) && | 
|  | ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { | 
|  | mask = ICC_CTLR_EL1_EOIMODE; | 
|  | } else { | 
|  | mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; | 
|  | } | 
|  |  | 
|  | cs->icc_ctlr_el1[bank] &= ~mask; | 
|  | cs->icc_ctlr_el1[bank] |= (value & mask); | 
|  | gicv3_cpuif_update(cs); | 
|  | } | 
|  |  | 
|  |  | 
|  | static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value; | 
|  |  | 
|  | value = cs->icc_ctlr_el3; | 
|  | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { | 
|  | value |= ICC_CTLR_EL3_EOIMODE_EL1NS; | 
|  | } | 
|  | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { | 
|  | value |= ICC_CTLR_EL3_CBPR_EL1NS; | 
|  | } | 
|  | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { | 
|  | value |= ICC_CTLR_EL3_EOIMODE_EL1S; | 
|  | } | 
|  | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { | 
|  | value |= ICC_CTLR_EL3_CBPR_EL1S; | 
|  | } | 
|  |  | 
|  | trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t mask; | 
|  |  | 
|  | trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ | 
|  | cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); | 
|  | if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { | 
|  | cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; | 
|  | } | 
|  | if (value & ICC_CTLR_EL3_CBPR_EL1NS) { | 
|  | cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; | 
|  | } | 
|  |  | 
|  | cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); | 
|  | if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { | 
|  | cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; | 
|  | } | 
|  | if (value & ICC_CTLR_EL3_CBPR_EL1S) { | 
|  | cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; | 
|  | } | 
|  |  | 
|  | /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */ | 
|  | mask = ICC_CTLR_EL3_EOIMODE_EL3; | 
|  |  | 
|  | cs->icc_ctlr_el3 &= ~mask; | 
|  | cs->icc_ctlr_el3 |= (value & mask); | 
|  | gicv3_cpuif_update(cs); | 
|  | } | 
|  |  | 
|  | static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri, bool isread) | 
|  | { | 
|  | CPAccessResult r = CP_ACCESS_OK; | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int el = arm_current_el(env); | 
|  |  | 
|  | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && | 
|  | el == 1 && !arm_is_secure_below_el3(env)) { | 
|  | /* Takes priority over a possible EL3 trap */ | 
|  | return CP_ACCESS_TRAP_EL2; | 
|  | } | 
|  |  | 
|  | if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { | 
|  | switch (el) { | 
|  | case 1: | 
|  | /* Note that arm_hcr_el2_eff takes secure state into account.  */ | 
|  | if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { | 
|  | r = CP_ACCESS_TRAP_EL3; | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | r = CP_ACCESS_TRAP_EL3; | 
|  | break; | 
|  | case 3: | 
|  | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | 
|  | r = CP_ACCESS_TRAP_EL3; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | 
|  | r = CP_ACCESS_TRAP; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static CPAccessResult gicv3_dir_access(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri, bool isread) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  |  | 
|  | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && | 
|  | arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { | 
|  | /* Takes priority over a possible EL3 trap */ | 
|  | return CP_ACCESS_TRAP_EL2; | 
|  | } | 
|  |  | 
|  | return gicv3_irqfiq_access(env, ri, isread); | 
|  | } | 
|  |  | 
|  | static CPAccessResult gicv3_sgi_access(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri, bool isread) | 
|  | { | 
|  | if (arm_current_el(env) == 1 && | 
|  | (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { | 
|  | /* Takes priority over a possible EL3 trap */ | 
|  | return CP_ACCESS_TRAP_EL2; | 
|  | } | 
|  |  | 
|  | return gicv3_irqfiq_access(env, ri, isread); | 
|  | } | 
|  |  | 
|  | static CPAccessResult gicv3_fiq_access(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri, bool isread) | 
|  | { | 
|  | CPAccessResult r = CP_ACCESS_OK; | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int el = arm_current_el(env); | 
|  |  | 
|  | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && | 
|  | el == 1 && !arm_is_secure_below_el3(env)) { | 
|  | /* Takes priority over a possible EL3 trap */ | 
|  | return CP_ACCESS_TRAP_EL2; | 
|  | } | 
|  |  | 
|  | if (env->cp15.scr_el3 & SCR_FIQ) { | 
|  | switch (el) { | 
|  | case 1: | 
|  | if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { | 
|  | r = CP_ACCESS_TRAP_EL3; | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | r = CP_ACCESS_TRAP_EL3; | 
|  | break; | 
|  | case 3: | 
|  | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | 
|  | r = CP_ACCESS_TRAP_EL3; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | 
|  | r = CP_ACCESS_TRAP; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static CPAccessResult gicv3_irq_access(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri, bool isread) | 
|  | { | 
|  | CPAccessResult r = CP_ACCESS_OK; | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int el = arm_current_el(env); | 
|  |  | 
|  | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && | 
|  | el == 1 && !arm_is_secure_below_el3(env)) { | 
|  | /* Takes priority over a possible EL3 trap */ | 
|  | return CP_ACCESS_TRAP_EL2; | 
|  | } | 
|  |  | 
|  | if (env->cp15.scr_el3 & SCR_IRQ) { | 
|  | switch (el) { | 
|  | case 1: | 
|  | if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { | 
|  | r = CP_ACCESS_TRAP_EL3; | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | r = CP_ACCESS_TRAP_EL3; | 
|  | break; | 
|  | case 3: | 
|  | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | 
|  | r = CP_ACCESS_TRAP_EL3; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | 
|  | r = CP_ACCESS_TRAP; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  |  | 
|  | cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | | 
|  | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | 
|  | ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); | 
|  | cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | | 
|  | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | 
|  | ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); | 
|  | cs->icc_pmr_el1 = 0; | 
|  | cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs); | 
|  | cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs); | 
|  | cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs); | 
|  | memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); | 
|  | memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); | 
|  | cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | | 
|  | (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | | 
|  | ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT); | 
|  |  | 
|  | memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); | 
|  | cs->ich_hcr_el2 = 0; | 
|  | memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); | 
|  | cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | | 
|  | ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | | 
|  | (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { | 
|  | { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_irqfiq_access, | 
|  | .readfn = icc_pmr_read, | 
|  | .writefn = icc_pmr_write, | 
|  | /* We hang the whole cpu interface reset routine off here | 
|  | * rather than parcelling it out into one little function | 
|  | * per register | 
|  | */ | 
|  | .resetfn = icc_reset, | 
|  | }, | 
|  | { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_R, .accessfn = gicv3_fiq_access, | 
|  | .readfn = icc_iar0_read, | 
|  | }, | 
|  | { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_W, .accessfn = gicv3_fiq_access, | 
|  | .writefn = icc_eoir_write, | 
|  | }, | 
|  | { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_R, .accessfn = gicv3_fiq_access, | 
|  | .readfn = icc_hppir0_read, | 
|  | }, | 
|  | { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
|  | .readfn = icc_bpr_read, | 
|  | .writefn = icc_bpr_write, | 
|  | }, | 
|  | { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
|  | .readfn = icc_ap_read, | 
|  | .writefn = icc_ap_write, | 
|  | }, | 
|  | /* All the ICC_AP1R*_EL1 registers are banked */ | 
|  | { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_irq_access, | 
|  | .readfn = icc_ap_read, | 
|  | .writefn = icc_ap_write, | 
|  | }, | 
|  | { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_W, .accessfn = gicv3_dir_access, | 
|  | .writefn = icc_dir_write, | 
|  | }, | 
|  | { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_R, .accessfn = gicv3_irqfiq_access, | 
|  | .readfn = icc_rpr_read, | 
|  | }, | 
|  | { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_W, .accessfn = gicv3_sgi_access, | 
|  | .writefn = icc_sgi1r_write, | 
|  | }, | 
|  | { .name = "ICC_SGI1R", | 
|  | .cp = 15, .opc1 = 0, .crm = 12, | 
|  | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_W, .accessfn = gicv3_sgi_access, | 
|  | .writefn = icc_sgi1r_write, | 
|  | }, | 
|  | { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_W, .accessfn = gicv3_sgi_access, | 
|  | .writefn = icc_asgi1r_write, | 
|  | }, | 
|  | { .name = "ICC_ASGI1R", | 
|  | .cp = 15, .opc1 = 1, .crm = 12, | 
|  | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_W, .accessfn = gicv3_sgi_access, | 
|  | .writefn = icc_asgi1r_write, | 
|  | }, | 
|  | { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_W, .accessfn = gicv3_sgi_access, | 
|  | .writefn = icc_sgi0r_write, | 
|  | }, | 
|  | { .name = "ICC_SGI0R", | 
|  | .cp = 15, .opc1 = 2, .crm = 12, | 
|  | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_W, .accessfn = gicv3_sgi_access, | 
|  | .writefn = icc_sgi0r_write, | 
|  | }, | 
|  | { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_R, .accessfn = gicv3_irq_access, | 
|  | .readfn = icc_iar1_read, | 
|  | }, | 
|  | { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_W, .accessfn = gicv3_irq_access, | 
|  | .writefn = icc_eoir_write, | 
|  | }, | 
|  | { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_R, .accessfn = gicv3_irq_access, | 
|  | .readfn = icc_hppir1_read, | 
|  | }, | 
|  | /* This register is banked */ | 
|  | { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_irq_access, | 
|  | .readfn = icc_bpr_read, | 
|  | .writefn = icc_bpr_write, | 
|  | }, | 
|  | /* This register is banked */ | 
|  | { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_irqfiq_access, | 
|  | .readfn = icc_ctlr_el1_read, | 
|  | .writefn = icc_ctlr_el1_write, | 
|  | }, | 
|  | { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, | 
|  | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | 
|  | .access = PL1_RW, | 
|  | /* We don't support IRQ/FIQ bypass and system registers are | 
|  | * always enabled, so all our bits are RAZ/WI or RAO/WI. | 
|  | * This register is banked but since it's constant we don't | 
|  | * need to do anything special. | 
|  | */ | 
|  | .resetvalue = 0x7, | 
|  | }, | 
|  | { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
|  | .fgt = FGT_ICC_IGRPENN_EL1, | 
|  | .readfn = icc_igrpen_read, | 
|  | .writefn = icc_igrpen_write, | 
|  | }, | 
|  | /* This register is banked */ | 
|  | { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_irq_access, | 
|  | .fgt = FGT_ICC_IGRPENN_EL1, | 
|  | .readfn = icc_igrpen_read, | 
|  | .writefn = icc_igrpen_write, | 
|  | }, | 
|  | { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, | 
|  | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | 
|  | .access = PL2_RW, | 
|  | /* We don't support IRQ/FIQ bypass and system registers are | 
|  | * always enabled, so all our bits are RAZ/WI or RAO/WI. | 
|  | */ | 
|  | .resetvalue = 0xf, | 
|  | }, | 
|  | { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL3_RW, | 
|  | .readfn = icc_ctlr_el3_read, | 
|  | .writefn = icc_ctlr_el3_write, | 
|  | }, | 
|  | { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, | 
|  | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | 
|  | .access = PL3_RW, | 
|  | /* We don't support IRQ/FIQ bypass and system registers are | 
|  | * always enabled, so all our bits are RAZ/WI or RAO/WI. | 
|  | */ | 
|  | .resetvalue = 0xf, | 
|  | }, | 
|  | { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL3_RW, | 
|  | .readfn = icc_igrpen1_el3_read, | 
|  | .writefn = icc_igrpen1_el3_write, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = { | 
|  | { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
|  | .readfn = icc_ap_read, | 
|  | .writefn = icc_ap_write, | 
|  | }, | 
|  | { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_irq_access, | 
|  | .readfn = icc_ap_read, | 
|  | .writefn = icc_ap_write, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { | 
|  | { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
|  | .readfn = icc_ap_read, | 
|  | .writefn = icc_ap_write, | 
|  | }, | 
|  | { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
|  | .readfn = icc_ap_read, | 
|  | .writefn = icc_ap_write, | 
|  | }, | 
|  | { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_irq_access, | 
|  | .readfn = icc_ap_read, | 
|  | .writefn = icc_ap_write, | 
|  | }, | 
|  | { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .accessfn = gicv3_irq_access, | 
|  | .readfn = icc_ap_read, | 
|  | .writefn = icc_ap_write, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int regno = ri->opc2 & 3; | 
|  | int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; | 
|  | uint64_t value; | 
|  |  | 
|  | value = cs->ich_apr[grp][regno]; | 
|  | trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int regno = ri->opc2 & 3; | 
|  | int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; | 
|  |  | 
|  | trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
|  |  | 
|  | cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; | 
|  | gicv3_cpuif_virt_irq_fiq_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value = cs->ich_hcr_el2; | 
|  |  | 
|  | trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  |  | 
|  | trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | | 
|  | ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | | 
|  | ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | | 
|  | ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | | 
|  | ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; | 
|  |  | 
|  | cs->ich_hcr_el2 = value; | 
|  | gicv3_cpuif_virt_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value = cs->ich_vmcr_el2; | 
|  |  | 
|  | trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  |  | 
|  | trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); | 
|  |  | 
|  | value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | | 
|  | ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | | 
|  | ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; | 
|  | value |= ICH_VMCR_EL2_VFIQEN; | 
|  |  | 
|  | cs->ich_vmcr_el2 = value; | 
|  | /* Enforce "writing BPRs to less than minimum sets them to the minimum" | 
|  | * by reading and writing back the fields. | 
|  | */ | 
|  | write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); | 
|  | write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); | 
|  |  | 
|  | gicv3_cpuif_virt_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int regno = ri->opc2 | ((ri->crm & 1) << 3); | 
|  | uint64_t value; | 
|  |  | 
|  | /* This read function handles all of: | 
|  | * 64-bit reads of the whole LR | 
|  | * 32-bit reads of the low half of the LR | 
|  | * 32-bit reads of the high half of the LR | 
|  | */ | 
|  | if (ri->state == ARM_CP_STATE_AA32) { | 
|  | if (ri->crm >= 14) { | 
|  | value = extract64(cs->ich_lr_el2[regno], 32, 32); | 
|  | trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); | 
|  | } else { | 
|  | value = extract64(cs->ich_lr_el2[regno], 0, 32); | 
|  | trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); | 
|  | } | 
|  | } else { | 
|  | value = cs->ich_lr_el2[regno]; | 
|  | trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); | 
|  | } | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | int regno = ri->opc2 | ((ri->crm & 1) << 3); | 
|  |  | 
|  | /* This write function handles all of: | 
|  | * 64-bit writes to the whole LR | 
|  | * 32-bit writes to the low half of the LR | 
|  | * 32-bit writes to the high half of the LR | 
|  | */ | 
|  | if (ri->state == ARM_CP_STATE_AA32) { | 
|  | if (ri->crm >= 14) { | 
|  | trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); | 
|  | value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); | 
|  | } else { | 
|  | trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); | 
|  | value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); | 
|  | } | 
|  | } else { | 
|  | trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); | 
|  | } | 
|  |  | 
|  | /* Enforce RES0 bits in priority field */ | 
|  | if (cs->vpribits < 8) { | 
|  | value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, | 
|  | 8 - cs->vpribits, 0); | 
|  | } | 
|  |  | 
|  | cs->ich_lr_el2[regno] = value; | 
|  | gicv3_cpuif_virt_update(cs); | 
|  | } | 
|  |  | 
|  | static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value; | 
|  |  | 
|  | value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) | 
|  | | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V | 
|  | | (1 << ICH_VTR_EL2_IDBITS_SHIFT) | 
|  | | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) | 
|  | | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); | 
|  |  | 
|  | if (cs->gic->revision < 4) { | 
|  | value |= ICH_VTR_EL2_NV4; | 
|  | } | 
|  |  | 
|  | trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value = maintenance_interrupt_state(cs); | 
|  |  | 
|  | trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); | 
|  |  | 
|  | trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | GICv3CPUState *cs = icc_cs_from_env(env); | 
|  | uint64_t value = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cs->num_list_regs; i++) { | 
|  | uint64_t lr = cs->ich_lr_el2[i]; | 
|  |  | 
|  | if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && | 
|  | ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { | 
|  | value |= (1 << i); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { | 
|  | { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x480, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_ap_read, | 
|  | .writefn = ich_ap_write, | 
|  | }, | 
|  | { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x4a0, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_ap_read, | 
|  | .writefn = ich_ap_write, | 
|  | }, | 
|  | { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x4c0, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_hcr_read, | 
|  | .writefn = ich_hcr_write, | 
|  | }, | 
|  | { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL2_R, | 
|  | .readfn = ich_vtr_read, | 
|  | }, | 
|  | { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL2_R, | 
|  | .readfn = ich_misr_read, | 
|  | }, | 
|  | { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL2_R, | 
|  | .readfn = ich_eisr_read, | 
|  | }, | 
|  | { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL2_R, | 
|  | .readfn = ich_elrsr_read, | 
|  | }, | 
|  | { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x4c8, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_vmcr_read, | 
|  | .writefn = ich_vmcr_write, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { | 
|  | { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x488, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_ap_read, | 
|  | .writefn = ich_ap_write, | 
|  | }, | 
|  | { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x4a8, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_ap_read, | 
|  | .writefn = ich_ap_write, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { | 
|  | { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x490, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_ap_read, | 
|  | .writefn = ich_ap_write, | 
|  | }, | 
|  | { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x498, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_ap_read, | 
|  | .writefn = ich_ap_write, | 
|  | }, | 
|  | { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x4b0, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_ap_read, | 
|  | .writefn = ich_ap_write, | 
|  | }, | 
|  | { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x4b8, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_ap_read, | 
|  | .writefn = ich_ap_write, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) | 
|  | { | 
|  | GICv3CPUState *cs = opaque; | 
|  |  | 
|  | gicv3_cpuif_update(cs); | 
|  | /* | 
|  | * Because vLPIs are only pending in NonSecure state, | 
|  | * an EL change can change the VIRQ/VFIQ status (but | 
|  | * cannot affect the maintenance interrupt state) | 
|  | */ | 
|  | gicv3_cpuif_virt_irq_fiq_update(cs); | 
|  | } | 
|  |  | 
|  | void gicv3_init_cpuif(GICv3State *s) | 
|  | { | 
|  | /* Called from the GICv3 realize function; register our system | 
|  | * registers with the CPU | 
|  | */ | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < s->num_cpu; i++) { | 
|  | ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); | 
|  | GICv3CPUState *cs = &s->cpu[i]; | 
|  |  | 
|  | /* | 
|  | * If the CPU doesn't define a GICv3 configuration, probably because | 
|  | * in real hardware it doesn't have one, then we use default values | 
|  | * matching the one used by most Arm CPUs. This applies to: | 
|  | *  cpu->gic_num_lrs | 
|  | *  cpu->gic_vpribits | 
|  | *  cpu->gic_vprebits | 
|  | *  cpu->gic_pribits | 
|  | */ | 
|  |  | 
|  | /* Note that we can't just use the GICv3CPUState as an opaque pointer | 
|  | * in define_arm_cp_regs_with_opaque(), because when we're called back | 
|  | * it might be with code translated by CPU 0 but run by CPU 1, in | 
|  | * which case we'd get the wrong value. | 
|  | * So instead we define the regs with no ri->opaque info, and | 
|  | * get back to the GICv3CPUState from the CPUARMState. | 
|  | * | 
|  | * These CP regs callbacks can be called from either TCG or HVF code. | 
|  | */ | 
|  | define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); | 
|  |  | 
|  | /* | 
|  | * The CPU implementation specifies the number of supported | 
|  | * bits of physical priority. For backwards compatibility | 
|  | * of migration, we have a compat property that forces use | 
|  | * of 8 priority bits regardless of what the CPU really has. | 
|  | */ | 
|  | if (s->force_8bit_prio) { | 
|  | cs->pribits = 8; | 
|  | } else { | 
|  | cs->pribits = cpu->gic_pribits ?: 5; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The GICv3 has separate ID register fields for virtual priority | 
|  | * and preemption bit values, but only a single ID register field | 
|  | * for the physical priority bits. The preemption bit count is | 
|  | * always the same as the priority bit count, except that 8 bits | 
|  | * of priority means 7 preemption bits. We precalculate the | 
|  | * preemption bits because it simplifies the code and makes the | 
|  | * parallels between the virtual and physical bits of the GIC | 
|  | * a bit clearer. | 
|  | */ | 
|  | cs->prebits = cs->pribits; | 
|  | if (cs->prebits == 8) { | 
|  | cs->prebits--; | 
|  | } | 
|  | /* | 
|  | * Check that CPU code defining pribits didn't violate | 
|  | * architectural constraints our implementation relies on. | 
|  | */ | 
|  | g_assert(cs->pribits >= 4 && cs->pribits <= 8); | 
|  |  | 
|  | /* | 
|  | * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions | 
|  | * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. | 
|  | */ | 
|  | if (cs->prebits >= 6) { | 
|  | define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); | 
|  | } | 
|  | if (cs->prebits == 7) { | 
|  | define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); | 
|  | } | 
|  |  | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { | 
|  | int j; | 
|  |  | 
|  | cs->num_list_regs = cpu->gic_num_lrs ?: 4; | 
|  | cs->vpribits = cpu->gic_vpribits ?: 5; | 
|  | cs->vprebits = cpu->gic_vprebits ?: 5; | 
|  |  | 
|  | /* Check against architectural constraints: getting these | 
|  | * wrong would be a bug in the CPU code defining these, | 
|  | * and the implementation relies on them holding. | 
|  | */ | 
|  | g_assert(cs->vprebits <= cs->vpribits); | 
|  | g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); | 
|  | g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); | 
|  |  | 
|  | define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); | 
|  |  | 
|  | for (j = 0; j < cs->num_list_regs; j++) { | 
|  | /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs | 
|  | * are split into two cp15 regs, LR (the low part, with the | 
|  | * same encoding as the AArch64 LR) and LRC (the high part). | 
|  | */ | 
|  | ARMCPRegInfo lr_regset[] = { | 
|  | { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, | 
|  | .crm = 12 + (j >> 3), .opc2 = j & 7, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .nv2_redirect_offset = 0x400 + 8 * j, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_lr_read, | 
|  | .writefn = ich_lr_write, | 
|  | }, | 
|  | { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, | 
|  | .cp = 15, .opc1 = 4, .crn = 12, | 
|  | .crm = 14 + (j >> 3), .opc2 = j & 7, | 
|  | .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
|  | .access = PL2_RW, | 
|  | .readfn = ich_lr_read, | 
|  | .writefn = ich_lr_write, | 
|  | }, | 
|  | }; | 
|  | define_arm_cp_regs(cpu, lr_regset); | 
|  | } | 
|  | if (cs->vprebits >= 6) { | 
|  | define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); | 
|  | } | 
|  | if (cs->vprebits == 7) { | 
|  | define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); | 
|  | } | 
|  | } | 
|  | if (tcg_enabled() || qtest_enabled()) { | 
|  | /* | 
|  | * We can only trap EL changes with TCG. However the GIC interrupt | 
|  | * state only changes on EL changes involving EL2 or EL3, so for | 
|  | * the non-TCG case this is OK, as EL2 and EL3 can't exist. | 
|  | */ | 
|  | arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); | 
|  | } else { | 
|  | assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); | 
|  | assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); | 
|  | } | 
|  | } | 
|  | } |