| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <glib.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <sys/wait.h> |
| |
| #include "libqtest.h" |
| #include "libqos/libqos.h" |
| #include "libqos/pci.h" |
| |
| /*** Test Setup & Teardown ***/ |
| |
| /** |
| * Launch QEMU with the given command line, |
| * and then set up interrupts and our guest malloc interface. |
| */ |
| QOSState *qtest_vboot(QOSOps *ops, const char *cmdline_fmt, va_list ap) |
| { |
| char *cmdline; |
| |
| struct QOSState *qs = g_malloc(sizeof(QOSState)); |
| |
| cmdline = g_strdup_vprintf(cmdline_fmt, ap); |
| qs->qts = qtest_start(cmdline); |
| qs->ops = ops; |
| qtest_irq_intercept_in(global_qtest, "ioapic"); |
| if (ops && ops->init_allocator) { |
| qs->alloc = ops->init_allocator(ALLOC_NO_FLAGS); |
| } |
| |
| g_free(cmdline); |
| return qs; |
| } |
| |
| /** |
| * Launch QEMU with the given command line, |
| * and then set up interrupts and our guest malloc interface. |
| */ |
| QOSState *qtest_boot(QOSOps *ops, const char *cmdline_fmt, ...) |
| { |
| QOSState *qs; |
| va_list ap; |
| |
| va_start(ap, cmdline_fmt); |
| qs = qtest_vboot(ops, cmdline_fmt, ap); |
| va_end(ap); |
| |
| return qs; |
| } |
| |
| /** |
| * Tear down the QEMU instance. |
| */ |
| void qtest_shutdown(QOSState *qs) |
| { |
| if (qs->alloc && qs->ops && qs->ops->uninit_allocator) { |
| qs->ops->uninit_allocator(qs->alloc); |
| qs->alloc = NULL; |
| } |
| qtest_quit(qs->qts); |
| g_free(qs); |
| } |
| |
| void set_context(QOSState *s) |
| { |
| global_qtest = s->qts; |
| } |
| |
| static QDict *qmp_execute(const char *command) |
| { |
| char *fmt; |
| QDict *rsp; |
| |
| fmt = g_strdup_printf("{ 'execute': '%s' }", command); |
| rsp = qmp(fmt); |
| g_free(fmt); |
| |
| return rsp; |
| } |
| |
| void migrate(QOSState *from, QOSState *to, const char *uri) |
| { |
| const char *st; |
| char *s; |
| QDict *rsp, *sub; |
| bool running; |
| |
| set_context(from); |
| |
| /* Is the machine currently running? */ |
| rsp = qmp_execute("query-status"); |
| g_assert(qdict_haskey(rsp, "return")); |
| sub = qdict_get_qdict(rsp, "return"); |
| g_assert(qdict_haskey(sub, "running")); |
| running = qdict_get_bool(sub, "running"); |
| QDECREF(rsp); |
| |
| /* Issue the migrate command. */ |
| s = g_strdup_printf("{ 'execute': 'migrate'," |
| "'arguments': { 'uri': '%s' } }", |
| uri); |
| rsp = qmp(s); |
| g_free(s); |
| g_assert(qdict_haskey(rsp, "return")); |
| QDECREF(rsp); |
| |
| /* Wait for STOP event, but only if we were running: */ |
| if (running) { |
| qmp_eventwait("STOP"); |
| } |
| |
| /* If we were running, we can wait for an event. */ |
| if (running) { |
| migrate_allocator(from->alloc, to->alloc); |
| set_context(to); |
| qmp_eventwait("RESUME"); |
| return; |
| } |
| |
| /* Otherwise, we need to wait: poll until migration is completed. */ |
| while (1) { |
| rsp = qmp_execute("query-migrate"); |
| g_assert(qdict_haskey(rsp, "return")); |
| sub = qdict_get_qdict(rsp, "return"); |
| g_assert(qdict_haskey(sub, "status")); |
| st = qdict_get_str(sub, "status"); |
| |
| /* "setup", "active", "completed", "failed", "cancelled" */ |
| if (strcmp(st, "completed") == 0) { |
| QDECREF(rsp); |
| break; |
| } |
| |
| if ((strcmp(st, "setup") == 0) || (strcmp(st, "active") == 0)) { |
| QDECREF(rsp); |
| g_usleep(5000); |
| continue; |
| } |
| |
| fprintf(stderr, "Migration did not complete, status: %s\n", st); |
| g_assert_not_reached(); |
| } |
| |
| migrate_allocator(from->alloc, to->alloc); |
| set_context(to); |
| } |
| |
| bool have_qemu_img(void) |
| { |
| char *rpath; |
| const char *path = getenv("QTEST_QEMU_IMG"); |
| if (!path) { |
| return false; |
| } |
| |
| rpath = realpath(path, NULL); |
| if (!rpath) { |
| return false; |
| } else { |
| free(rpath); |
| return true; |
| } |
| } |
| |
| void mkimg(const char *file, const char *fmt, unsigned size_mb) |
| { |
| gchar *cli; |
| bool ret; |
| int rc; |
| GError *err = NULL; |
| char *qemu_img_path; |
| gchar *out, *out2; |
| char *qemu_img_abs_path; |
| |
| qemu_img_path = getenv("QTEST_QEMU_IMG"); |
| g_assert(qemu_img_path); |
| qemu_img_abs_path = realpath(qemu_img_path, NULL); |
| g_assert(qemu_img_abs_path); |
| |
| cli = g_strdup_printf("%s create -f %s %s %uM", qemu_img_abs_path, |
| fmt, file, size_mb); |
| ret = g_spawn_command_line_sync(cli, &out, &out2, &rc, &err); |
| if (err) { |
| fprintf(stderr, "%s\n", err->message); |
| g_error_free(err); |
| } |
| g_assert(ret && !err); |
| |
| /* In glib 2.34, we have g_spawn_check_exit_status. in 2.12, we don't. |
| * glib 2.43.91 implementation assumes that any non-zero is an error for |
| * windows, but uses extra precautions for Linux. However, |
| * 0 is only possible if the program exited normally, so that should be |
| * sufficient for our purposes on all platforms, here. */ |
| if (rc) { |
| fprintf(stderr, "qemu-img returned status code %d\n", rc); |
| } |
| g_assert(!rc); |
| |
| g_free(out); |
| g_free(out2); |
| g_free(cli); |
| free(qemu_img_abs_path); |
| } |
| |
| void mkqcow2(const char *file, unsigned size_mb) |
| { |
| return mkimg(file, "qcow2", size_mb); |
| } |
| |
| void prepare_blkdebug_script(const char *debug_fn, const char *event) |
| { |
| FILE *debug_file = fopen(debug_fn, "w"); |
| int ret; |
| |
| fprintf(debug_file, "[inject-error]\n"); |
| fprintf(debug_file, "event = \"%s\"\n", event); |
| fprintf(debug_file, "errno = \"5\"\n"); |
| fprintf(debug_file, "state = \"1\"\n"); |
| fprintf(debug_file, "immediately = \"off\"\n"); |
| fprintf(debug_file, "once = \"on\"\n"); |
| |
| fprintf(debug_file, "[set-state]\n"); |
| fprintf(debug_file, "event = \"%s\"\n", event); |
| fprintf(debug_file, "new_state = \"2\"\n"); |
| fflush(debug_file); |
| g_assert(!ferror(debug_file)); |
| |
| ret = fclose(debug_file); |
| g_assert(ret == 0); |
| } |
| |
| void generate_pattern(void *buffer, size_t len, size_t cycle_len) |
| { |
| int i, j; |
| unsigned char *tx = (unsigned char *)buffer; |
| unsigned char p; |
| size_t *sx; |
| |
| /* Write an indicative pattern that varies and is unique per-cycle */ |
| p = rand() % 256; |
| for (i = 0; i < len; i++) { |
| tx[i] = p++ % 256; |
| if (i % cycle_len == 0) { |
| p = rand() % 256; |
| } |
| } |
| |
| /* force uniqueness by writing an id per-cycle */ |
| for (i = 0; i < len / cycle_len; i++) { |
| j = i * cycle_len; |
| if (j + sizeof(*sx) <= len) { |
| sx = (size_t *)&tx[j]; |
| *sx = i; |
| } |
| } |
| } |