| /* |
| * device quirks for PCI devices |
| * |
| * Copyright Red Hat, Inc. 2012-2015 |
| * |
| * Authors: |
| * Alex Williamson <alex.williamson@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include CONFIG_DEVICES |
| #include "exec/memop.h" |
| #include "qemu/units.h" |
| #include "qemu/log.h" |
| #include "qemu/error-report.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/module.h" |
| #include "qemu/range.h" |
| #include "qapi/error.h" |
| #include "qapi/visitor.h" |
| #include <sys/ioctl.h> |
| #include "hw/nvram/fw_cfg.h" |
| #include "hw/qdev-properties.h" |
| #include "pci.h" |
| #include "trace.h" |
| |
| /* |
| * List of device ids/vendor ids for which to disable |
| * option rom loading. This avoids the guest hangs during rom |
| * execution as noticed with the BCM 57810 card for lack of a |
| * more better way to handle such issues. |
| * The user can still override by specifying a romfile or |
| * rombar=1. |
| * Please see https://bugs.launchpad.net/qemu/+bug/1284874 |
| * for an analysis of the 57810 card hang. When adding |
| * a new vendor id/device id combination below, please also add |
| * your card/environment details and information that could |
| * help in debugging to the bug tracking this issue |
| */ |
| static const struct { |
| uint32_t vendor; |
| uint32_t device; |
| } rom_denylist[] = { |
| { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */ |
| }; |
| |
| bool vfio_opt_rom_in_denylist(VFIOPCIDevice *vdev) |
| { |
| int i; |
| |
| for (i = 0 ; i < ARRAY_SIZE(rom_denylist); i++) { |
| if (vfio_pci_is(vdev, rom_denylist[i].vendor, rom_denylist[i].device)) { |
| trace_vfio_quirk_rom_in_denylist(vdev->vbasedev.name, |
| rom_denylist[i].vendor, |
| rom_denylist[i].device); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* |
| * Device specific region quirks (mostly backdoors to PCI config space) |
| */ |
| |
| /* |
| * The generic window quirks operate on an address and data register, |
| * vfio_generic_window_address_quirk handles the address register and |
| * vfio_generic_window_data_quirk handles the data register. These ops |
| * pass reads and writes through to hardware until a value matching the |
| * stored address match/mask is written. When this occurs, the data |
| * register access emulated PCI config space for the device rather than |
| * passing through accesses. This enables devices where PCI config space |
| * is accessible behind a window register to maintain the virtualization |
| * provided through vfio. |
| */ |
| typedef struct VFIOConfigWindowMatch { |
| uint32_t match; |
| uint32_t mask; |
| } VFIOConfigWindowMatch; |
| |
| typedef struct VFIOConfigWindowQuirk { |
| struct VFIOPCIDevice *vdev; |
| |
| uint32_t address_val; |
| |
| uint32_t address_offset; |
| uint32_t data_offset; |
| |
| bool window_enabled; |
| uint8_t bar; |
| |
| MemoryRegion *addr_mem; |
| MemoryRegion *data_mem; |
| |
| uint32_t nr_matches; |
| VFIOConfigWindowMatch matches[]; |
| } VFIOConfigWindowQuirk; |
| |
| static uint64_t vfio_generic_window_quirk_address_read(void *opaque, |
| hwaddr addr, |
| unsigned size) |
| { |
| VFIOConfigWindowQuirk *window = opaque; |
| VFIOPCIDevice *vdev = window->vdev; |
| |
| return vfio_region_read(&vdev->bars[window->bar].region, |
| addr + window->address_offset, size); |
| } |
| |
| static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr, |
| uint64_t data, |
| unsigned size) |
| { |
| VFIOConfigWindowQuirk *window = opaque; |
| VFIOPCIDevice *vdev = window->vdev; |
| int i; |
| |
| window->window_enabled = false; |
| |
| vfio_region_write(&vdev->bars[window->bar].region, |
| addr + window->address_offset, data, size); |
| |
| for (i = 0; i < window->nr_matches; i++) { |
| if ((data & ~window->matches[i].mask) == window->matches[i].match) { |
| window->window_enabled = true; |
| window->address_val = data & window->matches[i].mask; |
| trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name, |
| memory_region_name(window->addr_mem), data); |
| break; |
| } |
| } |
| } |
| |
| static const MemoryRegionOps vfio_generic_window_address_quirk = { |
| .read = vfio_generic_window_quirk_address_read, |
| .write = vfio_generic_window_quirk_address_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t vfio_generic_window_quirk_data_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOConfigWindowQuirk *window = opaque; |
| VFIOPCIDevice *vdev = window->vdev; |
| uint64_t data; |
| |
| /* Always read data reg, discard if window enabled */ |
| data = vfio_region_read(&vdev->bars[window->bar].region, |
| addr + window->data_offset, size); |
| |
| if (window->window_enabled) { |
| data = vfio_pci_read_config(&vdev->pdev, window->address_val, size); |
| trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name, |
| memory_region_name(window->data_mem), data); |
| } |
| |
| return data; |
| } |
| |
| static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOConfigWindowQuirk *window = opaque; |
| VFIOPCIDevice *vdev = window->vdev; |
| |
| if (window->window_enabled) { |
| vfio_pci_write_config(&vdev->pdev, window->address_val, data, size); |
| trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name, |
| memory_region_name(window->data_mem), data); |
| return; |
| } |
| |
| vfio_region_write(&vdev->bars[window->bar].region, |
| addr + window->data_offset, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_generic_window_data_quirk = { |
| .read = vfio_generic_window_quirk_data_read, |
| .write = vfio_generic_window_quirk_data_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| /* |
| * The generic mirror quirk handles devices which expose PCI config space |
| * through a region within a BAR. When enabled, reads and writes are |
| * redirected through to emulated PCI config space. XXX if PCI config space |
| * used memory regions, this could just be an alias. |
| */ |
| typedef struct VFIOConfigMirrorQuirk { |
| struct VFIOPCIDevice *vdev; |
| uint32_t offset; |
| uint8_t bar; |
| MemoryRegion *mem; |
| uint8_t data[]; |
| } VFIOConfigMirrorQuirk; |
| |
| static uint64_t vfio_generic_quirk_mirror_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOConfigMirrorQuirk *mirror = opaque; |
| VFIOPCIDevice *vdev = mirror->vdev; |
| uint64_t data; |
| |
| /* Read and discard in case the hardware cares */ |
| (void)vfio_region_read(&vdev->bars[mirror->bar].region, |
| addr + mirror->offset, size); |
| |
| data = vfio_pci_read_config(&vdev->pdev, addr, size); |
| trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name, |
| memory_region_name(mirror->mem), |
| addr, data); |
| return data; |
| } |
| |
| static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOConfigMirrorQuirk *mirror = opaque; |
| VFIOPCIDevice *vdev = mirror->vdev; |
| |
| vfio_pci_write_config(&vdev->pdev, addr, data, size); |
| trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name, |
| memory_region_name(mirror->mem), |
| addr, data); |
| } |
| |
| static const MemoryRegionOps vfio_generic_mirror_quirk = { |
| .read = vfio_generic_quirk_mirror_read, |
| .write = vfio_generic_quirk_mirror_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| /* Is range1 fully contained within range2? */ |
| static bool vfio_range_contained(uint64_t first1, uint64_t len1, |
| uint64_t first2, uint64_t len2) { |
| return (first1 >= first2 && first1 + len1 <= first2 + len2); |
| } |
| |
| #define PCI_VENDOR_ID_ATI 0x1002 |
| |
| /* |
| * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR |
| * through VGA register 0x3c3. On newer cards, the I/O port BAR is always |
| * BAR4 (older cards like the X550 used BAR1, but we don't care to support |
| * those). Note that on bare metal, a read of 0x3c3 doesn't always return the |
| * I/O port BAR address. Originally this was coded to return the virtual BAR |
| * address only if the physical register read returns the actual BAR address, |
| * but users have reported greater success if we return the virtual address |
| * unconditionally. |
| */ |
| static uint64_t vfio_ati_3c3_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOPCIDevice *vdev = opaque; |
| uint64_t data = vfio_pci_read_config(&vdev->pdev, |
| PCI_BASE_ADDRESS_4 + 1, size); |
| |
| trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data); |
| |
| return data; |
| } |
| |
| static void vfio_ati_3c3_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__); |
| } |
| |
| static const MemoryRegionOps vfio_ati_3c3_quirk = { |
| .read = vfio_ati_3c3_quirk_read, |
| .write = vfio_ati_3c3_quirk_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| VFIOQuirk *vfio_quirk_alloc(int nr_mem) |
| { |
| VFIOQuirk *quirk = g_new0(VFIOQuirk, 1); |
| QLIST_INIT(&quirk->ioeventfds); |
| quirk->mem = g_new0(MemoryRegion, nr_mem); |
| quirk->nr_mem = nr_mem; |
| |
| return quirk; |
| } |
| |
| static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd) |
| { |
| QLIST_REMOVE(ioeventfd, next); |
| memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, |
| true, ioeventfd->data, &ioeventfd->e); |
| |
| if (ioeventfd->vfio) { |
| struct vfio_device_ioeventfd vfio_ioeventfd; |
| |
| vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); |
| vfio_ioeventfd.flags = ioeventfd->size; |
| vfio_ioeventfd.data = ioeventfd->data; |
| vfio_ioeventfd.offset = ioeventfd->region->fd_offset + |
| ioeventfd->region_addr; |
| vfio_ioeventfd.fd = -1; |
| |
| if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) { |
| error_report("Failed to remove vfio ioeventfd for %s+0x%" |
| HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)", |
| memory_region_name(ioeventfd->mr), ioeventfd->addr, |
| ioeventfd->size, ioeventfd->data); |
| } |
| } else { |
| qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), |
| NULL, NULL, NULL); |
| } |
| |
| event_notifier_cleanup(&ioeventfd->e); |
| trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr), |
| (uint64_t)ioeventfd->addr, ioeventfd->size, |
| ioeventfd->data); |
| g_free(ioeventfd); |
| } |
| |
| static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk) |
| { |
| VFIOIOEventFD *ioeventfd, *tmp; |
| |
| QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) { |
| if (ioeventfd->dynamic) { |
| vfio_ioeventfd_exit(vdev, ioeventfd); |
| } |
| } |
| } |
| |
| static void vfio_ioeventfd_handler(void *opaque) |
| { |
| VFIOIOEventFD *ioeventfd = opaque; |
| |
| if (event_notifier_test_and_clear(&ioeventfd->e)) { |
| vfio_region_write(ioeventfd->region, ioeventfd->region_addr, |
| ioeventfd->data, ioeventfd->size); |
| trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr), |
| (uint64_t)ioeventfd->addr, ioeventfd->size, |
| ioeventfd->data); |
| } |
| } |
| |
| static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev, |
| MemoryRegion *mr, hwaddr addr, |
| unsigned size, uint64_t data, |
| VFIORegion *region, |
| hwaddr region_addr, bool dynamic) |
| { |
| VFIOIOEventFD *ioeventfd; |
| |
| if (vdev->no_kvm_ioeventfd) { |
| return NULL; |
| } |
| |
| ioeventfd = g_malloc0(sizeof(*ioeventfd)); |
| |
| if (event_notifier_init(&ioeventfd->e, 0)) { |
| g_free(ioeventfd); |
| return NULL; |
| } |
| |
| /* |
| * MemoryRegion and relative offset, plus additional ioeventfd setup |
| * parameters for configuring and later tearing down KVM ioeventfd. |
| */ |
| ioeventfd->mr = mr; |
| ioeventfd->addr = addr; |
| ioeventfd->size = size; |
| ioeventfd->data = data; |
| ioeventfd->dynamic = dynamic; |
| /* |
| * VFIORegion and relative offset for implementing the userspace |
| * handler. data & size fields shared for both uses. |
| */ |
| ioeventfd->region = region; |
| ioeventfd->region_addr = region_addr; |
| |
| if (!vdev->no_vfio_ioeventfd) { |
| struct vfio_device_ioeventfd vfio_ioeventfd; |
| |
| vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); |
| vfio_ioeventfd.flags = ioeventfd->size; |
| vfio_ioeventfd.data = ioeventfd->data; |
| vfio_ioeventfd.offset = ioeventfd->region->fd_offset + |
| ioeventfd->region_addr; |
| vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e); |
| |
| ioeventfd->vfio = !ioctl(vdev->vbasedev.fd, |
| VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd); |
| } |
| |
| if (!ioeventfd->vfio) { |
| qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), |
| vfio_ioeventfd_handler, NULL, ioeventfd); |
| } |
| |
| memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, |
| true, ioeventfd->data, &ioeventfd->e); |
| trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr, |
| size, data, ioeventfd->vfio); |
| |
| return ioeventfd; |
| } |
| |
| static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) |
| { |
| VFIOQuirk *quirk; |
| |
| /* |
| * As long as the BAR is >= 256 bytes it will be aligned such that the |
| * lower byte is always zero. Filter out anything else, if it exists. |
| */ |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || |
| !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { |
| return; |
| } |
| |
| quirk = vfio_quirk_alloc(1); |
| |
| memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev, |
| "vfio-ati-3c3-quirk", 1); |
| memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, |
| 3 /* offset 3 bytes from 0x3c0 */, quirk->mem); |
| |
| QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, |
| quirk, next); |
| |
| trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI |
| * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access |
| * the MMIO space directly, but a window to this space is provided through |
| * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the |
| * data register. When the address is programmed to a range of 0x4000-0x4fff |
| * PCI configuration space is available. Experimentation seems to indicate |
| * that read-only may be provided by hardware. |
| */ |
| static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOQuirk *quirk; |
| VFIOConfigWindowQuirk *window; |
| |
| /* This windows doesn't seem to be used except by legacy VGA code */ |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || |
| !vdev->vga || nr != 4) { |
| return; |
| } |
| |
| quirk = vfio_quirk_alloc(2); |
| window = quirk->data = g_malloc0(sizeof(*window) + |
| sizeof(VFIOConfigWindowMatch)); |
| window->vdev = vdev; |
| window->address_offset = 0; |
| window->data_offset = 4; |
| window->nr_matches = 1; |
| window->matches[0].match = 0x4000; |
| window->matches[0].mask = vdev->config_size - 1; |
| window->bar = nr; |
| window->addr_mem = &quirk->mem[0]; |
| window->data_mem = &quirk->mem[1]; |
| |
| memory_region_init_io(window->addr_mem, OBJECT(vdev), |
| &vfio_generic_window_address_quirk, window, |
| "vfio-ati-bar4-window-address-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| window->address_offset, |
| window->addr_mem, 1); |
| |
| memory_region_init_io(window->data_mem, OBJECT(vdev), |
| &vfio_generic_window_data_quirk, window, |
| "vfio-ati-bar4-window-data-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| window->data_offset, |
| window->data_mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * Trap the BAR2 MMIO mirror to config space as well. |
| */ |
| static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOQuirk *quirk; |
| VFIOConfigMirrorQuirk *mirror; |
| |
| /* Only enable on newer devices where BAR2 is 64bit */ |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || |
| !vdev->vga || nr != 2 || !vdev->bars[2].mem64) { |
| return; |
| } |
| |
| quirk = vfio_quirk_alloc(1); |
| mirror = quirk->data = g_malloc0(sizeof(*mirror)); |
| mirror->mem = quirk->mem; |
| mirror->vdev = vdev; |
| mirror->offset = 0x4000; |
| mirror->bar = nr; |
| |
| memory_region_init_io(mirror->mem, OBJECT(vdev), |
| &vfio_generic_mirror_quirk, mirror, |
| "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| mirror->offset, mirror->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * Older ATI/AMD cards like the X550 have a similar window to that above. |
| * I/O port BAR1 provides a window to a mirror of PCI config space located |
| * in BAR2 at offset 0xf00. We don't care to support such older cards, but |
| * note it for future reference. |
| */ |
| |
| /* |
| * Nvidia has several different methods to get to config space, the |
| * nouveu project has several of these documented here: |
| * https://github.com/pathscale/envytools/tree/master/hwdocs |
| * |
| * The first quirk is actually not documented in envytools and is found |
| * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an |
| * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access |
| * the mirror of PCI config space found at BAR0 offset 0x1800. The access |
| * sequence first writes 0x338 to I/O port 0x3d4. The target offset is |
| * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 |
| * is written for a write to 0x3d4. The BAR0 offset is then accessible |
| * through 0x3d0. This quirk doesn't seem to be necessary on newer cards |
| * that use the I/O port BAR5 window but it doesn't hurt to leave it. |
| */ |
| typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State; |
| static const char *nv3d0_states[] = { "NONE", "SELECT", |
| "WINDOW", "READ", "WRITE" }; |
| |
| typedef struct VFIONvidia3d0Quirk { |
| VFIOPCIDevice *vdev; |
| VFIONvidia3d0State state; |
| uint32_t offset; |
| } VFIONvidia3d0Quirk; |
| |
| static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIONvidia3d0Quirk *quirk = opaque; |
| VFIOPCIDevice *vdev = quirk->vdev; |
| |
| quirk->state = NONE; |
| |
| return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], |
| addr + 0x14, size); |
| } |
| |
| static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIONvidia3d0Quirk *quirk = opaque; |
| VFIOPCIDevice *vdev = quirk->vdev; |
| VFIONvidia3d0State old_state = quirk->state; |
| |
| quirk->state = NONE; |
| |
| switch (data) { |
| case 0x338: |
| if (old_state == NONE) { |
| quirk->state = SELECT; |
| trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, |
| nv3d0_states[quirk->state]); |
| } |
| break; |
| case 0x538: |
| if (old_state == WINDOW) { |
| quirk->state = READ; |
| trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, |
| nv3d0_states[quirk->state]); |
| } |
| break; |
| case 0x738: |
| if (old_state == WINDOW) { |
| quirk->state = WRITE; |
| trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, |
| nv3d0_states[quirk->state]); |
| } |
| break; |
| } |
| |
| vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], |
| addr + 0x14, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_3d4_quirk = { |
| .read = vfio_nvidia_3d4_quirk_read, |
| .write = vfio_nvidia_3d4_quirk_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIONvidia3d0Quirk *quirk = opaque; |
| VFIOPCIDevice *vdev = quirk->vdev; |
| VFIONvidia3d0State old_state = quirk->state; |
| uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], |
| addr + 0x10, size); |
| |
| quirk->state = NONE; |
| |
| if (old_state == READ && |
| (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { |
| uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); |
| |
| data = vfio_pci_read_config(&vdev->pdev, offset, size); |
| trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name, |
| offset, size, data); |
| } |
| |
| return data; |
| } |
| |
| static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIONvidia3d0Quirk *quirk = opaque; |
| VFIOPCIDevice *vdev = quirk->vdev; |
| VFIONvidia3d0State old_state = quirk->state; |
| |
| quirk->state = NONE; |
| |
| if (old_state == SELECT) { |
| quirk->offset = (uint32_t)data; |
| quirk->state = WINDOW; |
| trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, |
| nv3d0_states[quirk->state]); |
| } else if (old_state == WRITE) { |
| if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { |
| uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); |
| |
| vfio_pci_write_config(&vdev->pdev, offset, data, size); |
| trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name, |
| offset, data, size); |
| return; |
| } |
| } |
| |
| vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], |
| addr + 0x10, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_3d0_quirk = { |
| .read = vfio_nvidia_3d0_quirk_read, |
| .write = vfio_nvidia_3d0_quirk_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) |
| { |
| VFIOQuirk *quirk; |
| VFIONvidia3d0Quirk *data; |
| |
| if (vdev->no_geforce_quirks || |
| !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || |
| !vdev->bars[1].region.size) { |
| return; |
| } |
| |
| quirk = vfio_quirk_alloc(2); |
| quirk->data = data = g_malloc0(sizeof(*data)); |
| data->vdev = vdev; |
| |
| memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk, |
| data, "vfio-nvidia-3d4-quirk", 2); |
| memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, |
| 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]); |
| |
| memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk, |
| data, "vfio-nvidia-3d0-quirk", 2); |
| memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, |
| 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]); |
| |
| QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, |
| quirk, next); |
| |
| trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * The second quirk is documented in envytools. The I/O port BAR5 is just |
| * a set of address/data ports to the MMIO BARs. The BAR we care about is |
| * again BAR0. This backdoor is apparently a bit newer than the one above |
| * so we need to not only trap 256 bytes @0x1800, but all of PCI config |
| * space, including extended space is available at the 4k @0x88000. |
| */ |
| typedef struct VFIONvidiaBAR5Quirk { |
| uint32_t master; |
| uint32_t enable; |
| MemoryRegion *addr_mem; |
| MemoryRegion *data_mem; |
| bool enabled; |
| VFIOConfigWindowQuirk window; /* last for match data */ |
| } VFIONvidiaBAR5Quirk; |
| |
| static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5) |
| { |
| VFIOPCIDevice *vdev = bar5->window.vdev; |
| |
| if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) { |
| return; |
| } |
| |
| bar5->enabled = !bar5->enabled; |
| trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name, |
| bar5->enabled ? "Enable" : "Disable"); |
| memory_region_set_enabled(bar5->addr_mem, bar5->enabled); |
| memory_region_set_enabled(bar5->data_mem, bar5->enabled); |
| } |
| |
| static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIONvidiaBAR5Quirk *bar5 = opaque; |
| VFIOPCIDevice *vdev = bar5->window.vdev; |
| |
| return vfio_region_read(&vdev->bars[5].region, addr, size); |
| } |
| |
| static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIONvidiaBAR5Quirk *bar5 = opaque; |
| VFIOPCIDevice *vdev = bar5->window.vdev; |
| |
| vfio_region_write(&vdev->bars[5].region, addr, data, size); |
| |
| bar5->master = data; |
| vfio_nvidia_bar5_enable(bar5); |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = { |
| .read = vfio_nvidia_bar5_quirk_master_read, |
| .write = vfio_nvidia_bar5_quirk_master_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIONvidiaBAR5Quirk *bar5 = opaque; |
| VFIOPCIDevice *vdev = bar5->window.vdev; |
| |
| return vfio_region_read(&vdev->bars[5].region, addr + 4, size); |
| } |
| |
| static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIONvidiaBAR5Quirk *bar5 = opaque; |
| VFIOPCIDevice *vdev = bar5->window.vdev; |
| |
| vfio_region_write(&vdev->bars[5].region, addr + 4, data, size); |
| |
| bar5->enable = data; |
| vfio_nvidia_bar5_enable(bar5); |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = { |
| .read = vfio_nvidia_bar5_quirk_enable_read, |
| .write = vfio_nvidia_bar5_quirk_enable_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOQuirk *quirk; |
| VFIONvidiaBAR5Quirk *bar5; |
| VFIOConfigWindowQuirk *window; |
| |
| if (vdev->no_geforce_quirks || |
| !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || |
| !vdev->vga || nr != 5 || !vdev->bars[5].ioport) { |
| return; |
| } |
| |
| quirk = vfio_quirk_alloc(4); |
| bar5 = quirk->data = g_malloc0(sizeof(*bar5) + |
| (sizeof(VFIOConfigWindowMatch) * 2)); |
| window = &bar5->window; |
| |
| window->vdev = vdev; |
| window->address_offset = 0x8; |
| window->data_offset = 0xc; |
| window->nr_matches = 2; |
| window->matches[0].match = 0x1800; |
| window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1; |
| window->matches[1].match = 0x88000; |
| window->matches[1].mask = vdev->config_size - 1; |
| window->bar = nr; |
| window->addr_mem = bar5->addr_mem = &quirk->mem[0]; |
| window->data_mem = bar5->data_mem = &quirk->mem[1]; |
| |
| memory_region_init_io(window->addr_mem, OBJECT(vdev), |
| &vfio_generic_window_address_quirk, window, |
| "vfio-nvidia-bar5-window-address-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| window->address_offset, |
| window->addr_mem, 1); |
| memory_region_set_enabled(window->addr_mem, false); |
| |
| memory_region_init_io(window->data_mem, OBJECT(vdev), |
| &vfio_generic_window_data_quirk, window, |
| "vfio-nvidia-bar5-window-data-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| window->data_offset, |
| window->data_mem, 1); |
| memory_region_set_enabled(window->data_mem, false); |
| |
| memory_region_init_io(&quirk->mem[2], OBJECT(vdev), |
| &vfio_nvidia_bar5_quirk_master, bar5, |
| "vfio-nvidia-bar5-master-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| 0, &quirk->mem[2], 1); |
| |
| memory_region_init_io(&quirk->mem[3], OBJECT(vdev), |
| &vfio_nvidia_bar5_quirk_enable, bar5, |
| "vfio-nvidia-bar5-enable-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| 4, &quirk->mem[3], 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name); |
| } |
| |
| typedef struct LastDataSet { |
| VFIOQuirk *quirk; |
| hwaddr addr; |
| uint64_t data; |
| unsigned size; |
| int hits; |
| int added; |
| } LastDataSet; |
| |
| #define MAX_DYN_IOEVENTFD 10 |
| #define HITS_FOR_IOEVENTFD 10 |
| |
| /* |
| * Finally, BAR0 itself. We want to redirect any accesses to either |
| * 0x1800 or 0x88000 through the PCI config space access functions. |
| */ |
| static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOConfigMirrorQuirk *mirror = opaque; |
| VFIOPCIDevice *vdev = mirror->vdev; |
| PCIDevice *pdev = &vdev->pdev; |
| LastDataSet *last = (LastDataSet *)&mirror->data; |
| |
| vfio_generic_quirk_mirror_write(opaque, addr, data, size); |
| |
| /* |
| * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the |
| * MSI capability ID register. Both the ID and next register are |
| * read-only, so we allow writes covering either of those to real hw. |
| */ |
| if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && |
| vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { |
| vfio_region_write(&vdev->bars[mirror->bar].region, |
| addr + mirror->offset, data, size); |
| trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name); |
| } |
| |
| /* |
| * Automatically add an ioeventfd to handle any repeated write with the |
| * same data and size above the standard PCI config space header. This is |
| * primarily expected to accelerate the MSI-ACK behavior, such as noted |
| * above. Current hardware/drivers should trigger an ioeventfd at config |
| * offset 0x704 (region offset 0x88704), with data 0x0, size 4. |
| * |
| * The criteria of 10 successive hits is arbitrary but reliably adds the |
| * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd, |
| * the remaining ones have a greater chance of being seen successively. |
| * To avoid the pathological case of burning up all of QEMU's open file |
| * handles, arbitrarily limit this algorithm from adding no more than 10 |
| * ioeventfds, print an error if we would have added an 11th, and then |
| * stop counting. |
| */ |
| if (!vdev->no_kvm_ioeventfd && |
| addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) { |
| if (addr != last->addr || data != last->data || size != last->size) { |
| last->addr = addr; |
| last->data = data; |
| last->size = size; |
| last->hits = 1; |
| } else if (++last->hits >= HITS_FOR_IOEVENTFD) { |
| if (last->added < MAX_DYN_IOEVENTFD) { |
| VFIOIOEventFD *ioeventfd; |
| ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size, |
| data, &vdev->bars[mirror->bar].region, |
| mirror->offset + addr, true); |
| if (ioeventfd) { |
| VFIOQuirk *quirk = last->quirk; |
| |
| QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next); |
| last->added++; |
| } |
| } else { |
| last->added++; |
| warn_report("NVIDIA ioeventfd queue full for %s, unable to " |
| "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", " |
| "size %u", vdev->vbasedev.name, addr, data, size); |
| } |
| } |
| } |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_mirror_quirk = { |
| .read = vfio_generic_quirk_mirror_read, |
| .write = vfio_nvidia_quirk_mirror_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk) |
| { |
| VFIOConfigMirrorQuirk *mirror = quirk->data; |
| LastDataSet *last = (LastDataSet *)&mirror->data; |
| |
| last->addr = last->data = last->size = last->hits = last->added = 0; |
| |
| vfio_drop_dynamic_eventfds(vdev, quirk); |
| } |
| |
| static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOQuirk *quirk; |
| VFIOConfigMirrorQuirk *mirror; |
| LastDataSet *last; |
| |
| if (vdev->no_geforce_quirks || |
| !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || |
| !vfio_is_vga(vdev) || nr != 0) { |
| return; |
| } |
| |
| quirk = vfio_quirk_alloc(1); |
| quirk->reset = vfio_nvidia_bar0_quirk_reset; |
| mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); |
| mirror->mem = quirk->mem; |
| mirror->vdev = vdev; |
| mirror->offset = 0x88000; |
| mirror->bar = nr; |
| last = (LastDataSet *)&mirror->data; |
| last->quirk = quirk; |
| |
| memory_region_init_io(mirror->mem, OBJECT(vdev), |
| &vfio_nvidia_mirror_quirk, mirror, |
| "vfio-nvidia-bar0-88000-mirror-quirk", |
| vdev->config_size); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| mirror->offset, mirror->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| /* The 0x1800 offset mirror only seems to get used by legacy VGA */ |
| if (vdev->vga) { |
| quirk = vfio_quirk_alloc(1); |
| quirk->reset = vfio_nvidia_bar0_quirk_reset; |
| mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); |
| mirror->mem = quirk->mem; |
| mirror->vdev = vdev; |
| mirror->offset = 0x1800; |
| mirror->bar = nr; |
| last = (LastDataSet *)&mirror->data; |
| last->quirk = quirk; |
| |
| memory_region_init_io(mirror->mem, OBJECT(vdev), |
| &vfio_nvidia_mirror_quirk, mirror, |
| "vfio-nvidia-bar0-1800-mirror-quirk", |
| PCI_CONFIG_SPACE_SIZE); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| mirror->offset, mirror->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| } |
| |
| trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * TODO - Some Nvidia devices provide config access to their companion HDA |
| * device and even to their parent bridge via these config space mirrors. |
| * Add quirks for those regions. |
| */ |
| |
| #define PCI_VENDOR_ID_REALTEK 0x10ec |
| |
| /* |
| * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 |
| * offset 0x70 there is a dword data register, offset 0x74 is a dword address |
| * register. According to the Linux r8169 driver, the MSI-X table is addressed |
| * when the "type" portion of the address register is set to 0x1. This appears |
| * to be bits 16:30. Bit 31 is both a write indicator and some sort of |
| * "address latched" indicator. Bits 12:15 are a mask field, which we can |
| * ignore because the MSI-X table should always be accessed as a dword (full |
| * mask). Bits 0:11 is offset within the type. |
| * |
| * Example trace: |
| * |
| * Read from MSI-X table offset 0 |
| * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr |
| * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch |
| * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data |
| * |
| * Write 0xfee00000 to MSI-X table offset 0 |
| * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data |
| * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write |
| * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete |
| */ |
| typedef struct VFIOrtl8168Quirk { |
| VFIOPCIDevice *vdev; |
| uint32_t addr; |
| uint32_t data; |
| bool enabled; |
| } VFIOrtl8168Quirk; |
| |
| static uint64_t vfio_rtl8168_quirk_address_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOrtl8168Quirk *rtl = opaque; |
| VFIOPCIDevice *vdev = rtl->vdev; |
| uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size); |
| |
| if (rtl->enabled) { |
| data = rtl->addr ^ 0x80000000U; /* latch/complete */ |
| trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data); |
| } |
| |
| return data; |
| } |
| |
| static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOrtl8168Quirk *rtl = opaque; |
| VFIOPCIDevice *vdev = rtl->vdev; |
| |
| rtl->enabled = false; |
| |
| if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */ |
| rtl->enabled = true; |
| rtl->addr = (uint32_t)data; |
| |
| if (data & 0x80000000U) { /* Do write */ |
| if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { |
| hwaddr offset = data & 0xfff; |
| uint64_t val = rtl->data; |
| |
| trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name, |
| (uint16_t)offset, val); |
| |
| /* Write to the proper guest MSI-X table instead */ |
| memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, |
| offset, val, |
| size_memop(size) | MO_LE, |
| MEMTXATTRS_UNSPECIFIED); |
| } |
| return; /* Do not write guest MSI-X data to hardware */ |
| } |
| } |
| |
| vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_rtl_address_quirk = { |
| .read = vfio_rtl8168_quirk_address_read, |
| .write = vfio_rtl8168_quirk_address_write, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| .unaligned = false, |
| }, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t vfio_rtl8168_quirk_data_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOrtl8168Quirk *rtl = opaque; |
| VFIOPCIDevice *vdev = rtl->vdev; |
| uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size); |
| |
| if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { |
| hwaddr offset = rtl->addr & 0xfff; |
| memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset, |
| &data, size_memop(size) | MO_LE, |
| MEMTXATTRS_UNSPECIFIED); |
| trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data); |
| } |
| |
| return data; |
| } |
| |
| static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOrtl8168Quirk *rtl = opaque; |
| VFIOPCIDevice *vdev = rtl->vdev; |
| |
| rtl->data = (uint32_t)data; |
| |
| vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_rtl_data_quirk = { |
| .read = vfio_rtl8168_quirk_data_read, |
| .write = vfio_rtl8168_quirk_data_write, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| .unaligned = false, |
| }, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOQuirk *quirk; |
| VFIOrtl8168Quirk *rtl; |
| |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) { |
| return; |
| } |
| |
| quirk = vfio_quirk_alloc(2); |
| quirk->data = rtl = g_malloc0(sizeof(*rtl)); |
| rtl->vdev = vdev; |
| |
| memory_region_init_io(&quirk->mem[0], OBJECT(vdev), |
| &vfio_rtl_address_quirk, rtl, |
| "vfio-rtl8168-window-address-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| 0x74, &quirk->mem[0], 1); |
| |
| memory_region_init_io(&quirk->mem[1], OBJECT(vdev), |
| &vfio_rtl_data_quirk, rtl, |
| "vfio-rtl8168-window-data-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| 0x70, &quirk->mem[1], 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name); |
| } |
| |
| #define IGD_ASLS 0xfc /* ASL Storage Register */ |
| |
| /* |
| * The OpRegion includes the Video BIOS Table, which seems important for |
| * telling the driver what sort of outputs it has. Without this, the device |
| * may work in the guest, but we may not get output. This also requires BIOS |
| * support to reserve and populate a section of guest memory sufficient for |
| * the table and to write the base address of that memory to the ASLS register |
| * of the IGD device. |
| */ |
| int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev, |
| struct vfio_region_info *info, Error **errp) |
| { |
| int ret; |
| |
| vdev->igd_opregion = g_malloc0(info->size); |
| ret = pread(vdev->vbasedev.fd, vdev->igd_opregion, |
| info->size, info->offset); |
| if (ret != info->size) { |
| error_setg(errp, "failed to read IGD OpRegion"); |
| g_free(vdev->igd_opregion); |
| vdev->igd_opregion = NULL; |
| return -EINVAL; |
| } |
| |
| /* |
| * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to |
| * allocate 32bit reserved memory for, copy these contents into, and write |
| * the reserved memory base address to the device ASLS register at 0xFC. |
| * Alignment of this reserved region seems flexible, but using a 4k page |
| * alignment seems to work well. This interface assumes a single IGD |
| * device, which may be at VM address 00:02.0 in legacy mode or another |
| * address in UPT mode. |
| * |
| * NB, there may be future use cases discovered where the VM should have |
| * direct interaction with the host OpRegion, in which case the write to |
| * the ASLS register would trigger MemoryRegion setup to enable that. |
| */ |
| fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion", |
| vdev->igd_opregion, info->size); |
| |
| trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name); |
| |
| pci_set_long(vdev->pdev.config + IGD_ASLS, 0); |
| pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0); |
| pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0); |
| |
| return 0; |
| } |
| |
| /* |
| * Common quirk probe entry points. |
| */ |
| void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) |
| { |
| vfio_vga_probe_ati_3c3_quirk(vdev); |
| vfio_vga_probe_nvidia_3d0_quirk(vdev); |
| } |
| |
| void vfio_vga_quirk_exit(VFIOPCIDevice *vdev) |
| { |
| VFIOQuirk *quirk; |
| int i, j; |
| |
| for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { |
| QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) { |
| for (j = 0; j < quirk->nr_mem; j++) { |
| memory_region_del_subregion(&vdev->vga->region[i].mem, |
| &quirk->mem[j]); |
| } |
| } |
| } |
| } |
| |
| void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev) |
| { |
| int i, j; |
| |
| for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { |
| while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) { |
| VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks); |
| QLIST_REMOVE(quirk, next); |
| for (j = 0; j < quirk->nr_mem; j++) { |
| object_unparent(OBJECT(&quirk->mem[j])); |
| } |
| g_free(quirk->mem); |
| g_free(quirk->data); |
| g_free(quirk); |
| } |
| } |
| } |
| |
| void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) |
| { |
| vfio_probe_ati_bar4_quirk(vdev, nr); |
| vfio_probe_ati_bar2_quirk(vdev, nr); |
| vfio_probe_nvidia_bar5_quirk(vdev, nr); |
| vfio_probe_nvidia_bar0_quirk(vdev, nr); |
| vfio_probe_rtl8168_bar2_quirk(vdev, nr); |
| #ifdef CONFIG_VFIO_IGD |
| vfio_probe_igd_bar4_quirk(vdev, nr); |
| #endif |
| } |
| |
| void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOBAR *bar = &vdev->bars[nr]; |
| VFIOQuirk *quirk; |
| int i; |
| |
| QLIST_FOREACH(quirk, &bar->quirks, next) { |
| while (!QLIST_EMPTY(&quirk->ioeventfds)) { |
| vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds)); |
| } |
| |
| for (i = 0; i < quirk->nr_mem; i++) { |
| memory_region_del_subregion(bar->region.mem, &quirk->mem[i]); |
| } |
| } |
| } |
| |
| void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOBAR *bar = &vdev->bars[nr]; |
| int i; |
| |
| while (!QLIST_EMPTY(&bar->quirks)) { |
| VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); |
| QLIST_REMOVE(quirk, next); |
| for (i = 0; i < quirk->nr_mem; i++) { |
| object_unparent(OBJECT(&quirk->mem[i])); |
| } |
| g_free(quirk->mem); |
| g_free(quirk->data); |
| g_free(quirk); |
| } |
| } |
| |
| /* |
| * Reset quirks |
| */ |
| void vfio_quirk_reset(VFIOPCIDevice *vdev) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_ROM_SLOT; i++) { |
| VFIOQuirk *quirk; |
| VFIOBAR *bar = &vdev->bars[i]; |
| |
| QLIST_FOREACH(quirk, &bar->quirks, next) { |
| if (quirk->reset) { |
| quirk->reset(vdev, quirk); |
| } |
| } |
| } |
| } |
| |
| /* |
| * AMD Radeon PCI config reset, based on Linux: |
| * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() |
| * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset |
| * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() |
| * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() |
| * IDs: include/drm/drm_pciids.h |
| * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 |
| * |
| * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the |
| * hardware that should be fixed on future ASICs. The symptom of this is that |
| * once the accerlated driver loads, Windows guests will bsod on subsequent |
| * attmpts to load the driver, such as after VM reset or shutdown/restart. To |
| * work around this, we do an AMD specific PCI config reset, followed by an SMC |
| * reset. The PCI config reset only works if SMC firmware is running, so we |
| * have a dependency on the state of the device as to whether this reset will |
| * be effective. There are still cases where we won't be able to kick the |
| * device into working, but this greatly improves the usability overall. The |
| * config reset magic is relatively common on AMD GPUs, but the setup and SMC |
| * poking is largely ASIC specific. |
| */ |
| static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) |
| { |
| uint32_t clk, pc_c; |
| |
| /* |
| * Registers 200h and 204h are index and data registers for accessing |
| * indirect configuration registers within the device. |
| */ |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); |
| clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); |
| pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| |
| return (!(clk & 1) && (0x20100 <= pc_c)); |
| } |
| |
| /* |
| * The scope of a config reset is controlled by a mode bit in the misc register |
| * and a fuse, exposed as a bit in another register. The fuse is the default |
| * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the formula |
| * scope = !(misc ^ fuse), where the resulting scope is defined the same as |
| * the fuse. A truth table therefore tells us that if misc == fuse, we need |
| * to flip the value of the bit in the misc register. |
| */ |
| static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) |
| { |
| uint32_t misc, fuse; |
| bool a, b; |
| |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); |
| fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| b = fuse & 64; |
| |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); |
| misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| a = misc & 2; |
| |
| if (a == b) { |
| vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); |
| vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ |
| } |
| } |
| |
| static int vfio_radeon_reset(VFIOPCIDevice *vdev) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| int i, ret = 0; |
| uint32_t data; |
| |
| /* Defer to a kernel implemented reset */ |
| if (vdev->vbasedev.reset_works) { |
| trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name); |
| return -ENODEV; |
| } |
| |
| /* Enable only memory BAR access */ |
| vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); |
| |
| /* Reset only works if SMC firmware is loaded and running */ |
| if (!vfio_radeon_smc_is_running(vdev)) { |
| ret = -EINVAL; |
| trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name); |
| goto out; |
| } |
| |
| /* Make sure only the GFX function is reset */ |
| vfio_radeon_set_gfx_only_reset(vdev); |
| |
| /* AMD PCI config reset */ |
| vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); |
| usleep(100); |
| |
| /* Read back the memory size to make sure we're out of reset */ |
| for (i = 0; i < 100000; i++) { |
| if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { |
| goto reset_smc; |
| } |
| usleep(1); |
| } |
| |
| trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name); |
| |
| reset_smc: |
| /* Reset SMC */ |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); |
| data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| data |= 1; |
| vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); |
| |
| /* Disable SMC clock */ |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); |
| data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| data |= 1; |
| vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); |
| |
| trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name); |
| |
| out: |
| /* Restore PCI command register */ |
| vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); |
| |
| return ret; |
| } |
| |
| void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev) |
| { |
| switch (vdev->vendor_id) { |
| case 0x1002: |
| switch (vdev->device_id) { |
| /* Bonaire */ |
| case 0x6649: /* Bonaire [FirePro W5100] */ |
| case 0x6650: |
| case 0x6651: |
| case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ |
| case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ |
| case 0x665d: /* Bonaire [Radeon R7 200 Series] */ |
| /* Hawaii */ |
| case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ |
| case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ |
| case 0x67A2: |
| case 0x67A8: |
| case 0x67A9: |
| case 0x67AA: |
| case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ |
| case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ |
| case 0x67B8: |
| case 0x67B9: |
| case 0x67BA: |
| case 0x67BE: |
| vdev->resetfn = vfio_radeon_reset; |
| trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name); |
| break; |
| } |
| break; |
| } |
| } |
| |
| /* |
| * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify |
| * devices as a member of a clique. Devices within the same clique ID |
| * are capable of direct P2P. It's the user's responsibility that this |
| * is correct. The spec says that this may reside at any unused config |
| * offset, but reserves and recommends hypervisors place this at C8h. |
| * The spec also states that the hypervisor should place this capability |
| * at the end of the capability list, thus next is defined as 0h. |
| * |
| * +----------------+----------------+----------------+----------------+ |
| * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) | |
| * +----------------+----------------+----------------+----------------+ |
| * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') | |
| * +---------------------------------+---------------------------------+ |
| * |
| * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf |
| * |
| * Specification for Turning and later GPU architectures: |
| * https://lists.gnu.org/archive/html/qemu-devel/2023-06/pdf142OR4O4c2.pdf |
| */ |
| static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| Property *prop = opaque; |
| uint8_t *ptr = object_field_prop_ptr(obj, prop); |
| |
| visit_type_uint8(v, name, ptr, errp); |
| } |
| |
| static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| Property *prop = opaque; |
| uint8_t value, *ptr = object_field_prop_ptr(obj, prop); |
| |
| if (!visit_type_uint8(v, name, &value, errp)) { |
| return; |
| } |
| |
| if (value & ~0xF) { |
| error_setg(errp, "Property %s: valid range 0-15", name); |
| return; |
| } |
| |
| *ptr = value; |
| } |
| |
| const PropertyInfo qdev_prop_nv_gpudirect_clique = { |
| .name = "uint4", |
| .description = "NVIDIA GPUDirect Clique ID (0 - 15)", |
| .get = get_nv_gpudirect_clique_id, |
| .set = set_nv_gpudirect_clique_id, |
| }; |
| |
| static bool is_valid_std_cap_offset(uint8_t pos) |
| { |
| return (pos >= PCI_STD_HEADER_SIZEOF && |
| pos <= (PCI_CFG_SPACE_SIZE - PCI_CAP_SIZEOF)); |
| } |
| |
| static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp) |
| { |
| ERRP_GUARD(); |
| PCIDevice *pdev = &vdev->pdev; |
| int ret, pos; |
| bool c8_conflict = false, d4_conflict = false; |
| uint8_t tmp; |
| |
| if (vdev->nv_gpudirect_clique == 0xFF) { |
| return 0; |
| } |
| |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) { |
| error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor"); |
| return -EINVAL; |
| } |
| |
| if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) != |
| PCI_BASE_CLASS_DISPLAY) { |
| error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Per the updated specification above, it's recommended to use offset |
| * D4h for Turing and later GPU architectures due to a conflict of the |
| * MSI-X capability at C8h. We don't know how to determine the GPU |
| * architecture, instead we walk the capability chain to mark conflicts |
| * and choose one or error based on the result. |
| * |
| * NB. Cap list head in pdev->config is already cleared, read from device. |
| */ |
| ret = pread(vdev->vbasedev.fd, &tmp, 1, |
| vdev->config_offset + PCI_CAPABILITY_LIST); |
| if (ret != 1 || !is_valid_std_cap_offset(tmp)) { |
| error_setg(errp, "NVIDIA GPUDirect Clique ID: error getting cap list"); |
| return -EINVAL; |
| } |
| |
| do { |
| if (tmp == 0xC8) { |
| c8_conflict = true; |
| } else if (tmp == 0xD4) { |
| d4_conflict = true; |
| } |
| tmp = pdev->config[tmp + PCI_CAP_LIST_NEXT]; |
| } while (is_valid_std_cap_offset(tmp)); |
| |
| if (!c8_conflict) { |
| pos = 0xC8; |
| } else if (!d4_conflict) { |
| pos = 0xD4; |
| } else { |
| error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid config space"); |
| return -EINVAL; |
| } |
| |
| ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp); |
| if (ret < 0) { |
| error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: "); |
| return ret; |
| } |
| |
| memset(vdev->emulated_config_bits + pos, 0xFF, 8); |
| pos += PCI_CAP_FLAGS; |
| pci_set_byte(pdev->config + pos++, 8); |
| pci_set_byte(pdev->config + pos++, 'P'); |
| pci_set_byte(pdev->config + pos++, '2'); |
| pci_set_byte(pdev->config + pos++, 'P'); |
| pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3); |
| pci_set_byte(pdev->config + pos, 0); |
| |
| return 0; |
| } |
| |
| /* |
| * The VMD endpoint provides a real PCIe domain to the guest and the guest |
| * kernel performs enumeration of the VMD sub-device domain. Guest transactions |
| * to VMD sub-devices go through MMU translation from guest addresses to |
| * physical addresses. When MMIO goes to an endpoint after being translated to |
| * physical addresses, the bridge rejects the transaction because the window |
| * has been programmed with guest addresses. |
| * |
| * VMD can use the Host Physical Address in order to correctly program the |
| * bridge windows in its PCIe domain. VMD device 28C0 has HPA shadow registers |
| * located at offset 0x2000 in MEMBAR2 (BAR 4). This quirk provides the HPA |
| * shadow registers in a vendor-specific capability register for devices |
| * without native support. The position of 0xE8-0xFF is in the reserved range |
| * of the VMD device capability space following the Power Management |
| * Capability. |
| */ |
| #define VMD_SHADOW_CAP_VER 1 |
| #define VMD_SHADOW_CAP_LEN 24 |
| static int vfio_add_vmd_shadow_cap(VFIOPCIDevice *vdev, Error **errp) |
| { |
| ERRP_GUARD(); |
| uint8_t membar_phys[16]; |
| int ret, pos = 0xE8; |
| |
| if (!(vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x201D) || |
| vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x467F) || |
| vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x4C3D) || |
| vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x9A0B))) { |
| return 0; |
| } |
| |
| ret = pread(vdev->vbasedev.fd, membar_phys, 16, |
| vdev->config_offset + PCI_BASE_ADDRESS_2); |
| if (ret != 16) { |
| error_report("VMD %s cannot read MEMBARs (%d)", |
| vdev->vbasedev.name, ret); |
| return -EFAULT; |
| } |
| |
| ret = pci_add_capability(&vdev->pdev, PCI_CAP_ID_VNDR, pos, |
| VMD_SHADOW_CAP_LEN, errp); |
| if (ret < 0) { |
| error_prepend(errp, "Failed to add VMD MEMBAR Shadow cap: "); |
| return ret; |
| } |
| |
| memset(vdev->emulated_config_bits + pos, 0xFF, VMD_SHADOW_CAP_LEN); |
| pos += PCI_CAP_FLAGS; |
| pci_set_byte(vdev->pdev.config + pos++, VMD_SHADOW_CAP_LEN); |
| pci_set_byte(vdev->pdev.config + pos++, VMD_SHADOW_CAP_VER); |
| pci_set_long(vdev->pdev.config + pos, 0x53484457); /* SHDW */ |
| memcpy(vdev->pdev.config + pos + 4, membar_phys, 16); |
| |
| return 0; |
| } |
| |
| int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp) |
| { |
| int ret; |
| |
| ret = vfio_add_nv_gpudirect_cap(vdev, errp); |
| if (ret) { |
| return ret; |
| } |
| |
| ret = vfio_add_vmd_shadow_cap(vdev, errp); |
| if (ret) { |
| return ret; |
| } |
| |
| return 0; |
| } |