| /* |
| * QEMU m68k Macintosh VIA device support |
| * |
| * Copyright (c) 2011-2018 Laurent Vivier |
| * Copyright (c) 2018 Mark Cave-Ayland |
| * |
| * Some parts from hw/misc/macio/cuda.c |
| * |
| * Copyright (c) 2004-2007 Fabrice Bellard |
| * Copyright (c) 2007 Jocelyn Mayer |
| * |
| * some parts from linux-2.6.29, arch/m68k/include/asm/mac_via.h |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "exec/address-spaces.h" |
| #include "migration/vmstate.h" |
| #include "hw/sysbus.h" |
| #include "hw/irq.h" |
| #include "qemu/timer.h" |
| #include "hw/misc/mac_via.h" |
| #include "hw/misc/mos6522.h" |
| #include "hw/input/adb.h" |
| #include "sysemu/runstate.h" |
| #include "qapi/error.h" |
| #include "qemu/cutils.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/qdev-properties-system.h" |
| #include "sysemu/block-backend.h" |
| #include "sysemu/rtc.h" |
| #include "trace.h" |
| #include "qemu/log.h" |
| |
| /* |
| * VIAs: There are two in every machine |
| */ |
| |
| /* |
| * Not all of these are true post MacII I think. |
| * CSA: probably the ones CHRP marks as 'unused' change purposes |
| * when the IWM becomes the SWIM. |
| * http://www.rs6000.ibm.com/resource/technology/chrpio/via5.mak.html |
| * ftp://ftp.austin.ibm.com/pub/technology/spec/chrp/inwork/CHRP_IORef_1.0.pdf |
| * |
| * also, http://developer.apple.com/technotes/hw/hw_09.html claims the |
| * following changes for IIfx: |
| * VIA1A_vSccWrReq not available and that VIA1A_vSync has moved to an IOP. |
| * Also, "All of the functionality of VIA2 has been moved to other chips". |
| */ |
| |
| #define VIA1A_vSccWrReq 0x80 /* |
| * SCC write. (input) |
| * [CHRP] SCC WREQ: Reflects the state of the |
| * Wait/Request pins from the SCC. |
| * [Macintosh Family Hardware] |
| * as CHRP on SE/30,II,IIx,IIcx,IIci. |
| * on IIfx, "0 means an active request" |
| */ |
| #define VIA1A_vRev8 0x40 /* |
| * Revision 8 board ??? |
| * [CHRP] En WaitReqB: Lets the WaitReq_L |
| * signal from port B of the SCC appear on |
| * the PA7 input pin. Output. |
| * [Macintosh Family] On the SE/30, this |
| * is the bit to flip screen buffers. |
| * 0=alternate, 1=main. |
| * on II,IIx,IIcx,IIci,IIfx this is a bit |
| * for Rev ID. 0=II,IIx, 1=IIcx,IIci,IIfx |
| */ |
| #define VIA1A_vHeadSel 0x20 /* |
| * Head select for IWM. |
| * [CHRP] unused. |
| * [Macintosh Family] "Floppy disk |
| * state-control line SEL" on all but IIfx |
| */ |
| #define VIA1A_vOverlay 0x10 /* |
| * [Macintosh Family] On SE/30,II,IIx,IIcx |
| * this bit enables the "Overlay" address |
| * map in the address decoders as it is on |
| * reset for mapping the ROM over the reset |
| * vector. 1=use overlay map. |
| * On the IIci,IIfx it is another bit of the |
| * CPU ID: 0=normal IIci, 1=IIci with parity |
| * feature or IIfx. |
| * [CHRP] En WaitReqA: Lets the WaitReq_L |
| * signal from port A of the SCC appear |
| * on the PA7 input pin (CHRP). Output. |
| * [MkLinux] "Drive Select" |
| * (with 0x20 being 'disk head select') |
| */ |
| #define VIA1A_vSync 0x08 /* |
| * [CHRP] Sync Modem: modem clock select: |
| * 1: select the external serial clock to |
| * drive the SCC's /RTxCA pin. |
| * 0: Select the 3.6864MHz clock to drive |
| * the SCC cell. |
| * [Macintosh Family] Correct on all but IIfx |
| */ |
| |
| /* |
| * Macintosh Family Hardware sez: bits 0-2 of VIA1A are volume control |
| * on Macs which had the PWM sound hardware. Reserved on newer models. |
| * On IIci,IIfx, bits 1-2 are the rest of the CPU ID: |
| * bit 2: 1=IIci, 0=IIfx |
| * bit 1: 1 on both IIci and IIfx. |
| * MkLinux sez bit 0 is 'burnin flag' in this case. |
| * CHRP sez: VIA1A bits 0-2 and 5 are 'unused': if programmed as |
| * inputs, these bits will read 0. |
| */ |
| #define VIA1A_vVolume 0x07 /* Audio volume mask for PWM */ |
| #define VIA1A_CPUID0 0x02 /* CPU id bit 0 on RBV, others */ |
| #define VIA1A_CPUID1 0x04 /* CPU id bit 0 on RBV, others */ |
| #define VIA1A_CPUID2 0x10 /* CPU id bit 0 on RBV, others */ |
| #define VIA1A_CPUID3 0x40 /* CPU id bit 0 on RBV, others */ |
| #define VIA1A_CPUID_MASK (VIA1A_CPUID0 | VIA1A_CPUID1 | \ |
| VIA1A_CPUID2 | VIA1A_CPUID3) |
| #define VIA1A_CPUID_Q800 (VIA1A_CPUID0 | VIA1A_CPUID2) |
| |
| /* |
| * Info on VIA1B is from Macintosh Family Hardware & MkLinux. |
| * CHRP offers no info. |
| */ |
| #define VIA1B_vSound 0x80 /* |
| * Sound enable (for compatibility with |
| * PWM hardware) 0=enabled. |
| * Also, on IIci w/parity, shows parity error |
| * 0=error, 1=OK. |
| */ |
| #define VIA1B_vMystery 0x40 /* |
| * On IIci, parity enable. 0=enabled,1=disabled |
| * On SE/30, vertical sync interrupt enable. |
| * 0=enabled. This vSync interrupt shows up |
| * as a slot $E interrupt. |
| * On Quadra 800 this bit toggles A/UX mode which |
| * configures the glue logic to deliver some IRQs |
| * at different levels compared to a classic |
| * Mac. |
| */ |
| #define VIA1B_vADBS2 0x20 /* ADB state input bit 1 (unused on IIfx) */ |
| #define VIA1B_vADBS1 0x10 /* ADB state input bit 0 (unused on IIfx) */ |
| #define VIA1B_vADBInt 0x08 /* ADB interrupt 0=interrupt (unused on IIfx)*/ |
| #define VIA1B_vRTCEnb 0x04 /* Enable Real time clock. 0=enabled. */ |
| #define VIA1B_vRTCClk 0x02 /* Real time clock serial-clock line. */ |
| #define VIA1B_vRTCData 0x01 /* Real time clock serial-data line. */ |
| |
| /* |
| * VIA2 A register is the interrupt lines raised off the nubus |
| * slots. |
| * The below info is from 'Macintosh Family Hardware.' |
| * MkLinux calls the 'IIci internal video IRQ' below the 'RBV slot 0 irq.' |
| * It also notes that the slot $9 IRQ is the 'Ethernet IRQ' and |
| * defines the 'Video IRQ' as 0x40 for the 'EVR' VIA work-alike. |
| * Perhaps OSS uses vRAM1 and vRAM2 for ADB. |
| */ |
| |
| #define VIA2A_vRAM1 0x80 /* RAM size bit 1 (IIci: reserved) */ |
| #define VIA2A_vRAM0 0x40 /* RAM size bit 0 (IIci: internal video IRQ) */ |
| #define VIA2A_vIRQE 0x20 /* IRQ from slot $E */ |
| #define VIA2A_vIRQD 0x10 /* IRQ from slot $D */ |
| #define VIA2A_vIRQC 0x08 /* IRQ from slot $C */ |
| #define VIA2A_vIRQB 0x04 /* IRQ from slot $B */ |
| #define VIA2A_vIRQA 0x02 /* IRQ from slot $A */ |
| #define VIA2A_vIRQ9 0x01 /* IRQ from slot $9 */ |
| |
| /* |
| * RAM size bits decoded as follows: |
| * bit1 bit0 size of ICs in bank A |
| * 0 0 256 kbit |
| * 0 1 1 Mbit |
| * 1 0 4 Mbit |
| * 1 1 16 Mbit |
| */ |
| |
| /* |
| * Register B has the fun stuff in it |
| */ |
| |
| #define VIA2B_vVBL 0x80 /* |
| * VBL output to VIA1 (60.15Hz) driven by |
| * timer T1. |
| * on IIci, parity test: 0=test mode. |
| * [MkLinux] RBV_PARODD: 1=odd,0=even. |
| */ |
| #define VIA2B_vSndJck 0x40 /* |
| * External sound jack status. |
| * 0=plug is inserted. On SE/30, always 0 |
| */ |
| #define VIA2B_vTfr0 0x20 /* Transfer mode bit 0 ack from NuBus */ |
| #define VIA2B_vTfr1 0x10 /* Transfer mode bit 1 ack from NuBus */ |
| #define VIA2B_vMode32 0x08 /* |
| * 24/32bit switch - doubles as cache flush |
| * on II, AMU/PMMU control. |
| * if AMU, 0=24bit to 32bit translation |
| * if PMMU, 1=PMMU is accessing page table. |
| * on SE/30 tied low. |
| * on IIx,IIcx,IIfx, unused. |
| * on IIci/RBV, cache control. 0=flush cache. |
| */ |
| #define VIA2B_vPower 0x04 /* |
| * Power off, 0=shut off power. |
| * on SE/30 this signal sent to PDS card. |
| */ |
| #define VIA2B_vBusLk 0x02 /* |
| * Lock NuBus transactions, 0=locked. |
| * on SE/30 sent to PDS card. |
| */ |
| #define VIA2B_vCDis 0x01 /* |
| * Cache control. On IIci, 1=disable cache card |
| * on others, 0=disable processor's instruction |
| * and data caches. |
| */ |
| |
| /* interrupt flags */ |
| |
| #define IRQ_SET 0x80 |
| |
| /* common */ |
| |
| #define VIA_IRQ_TIMER1 0x40 |
| #define VIA_IRQ_TIMER2 0x20 |
| |
| /* |
| * Apple sez: http://developer.apple.com/technotes/ov/ov_04.html |
| * Another example of a valid function that has no ROM support is the use |
| * of the alternate video page for page-flipping animation. Since there |
| * is no ROM call to flip pages, it is necessary to go play with the |
| * right bit in the VIA chip (6522 Versatile Interface Adapter). |
| * [CSA: don't know which one this is, but it's one of 'em!] |
| */ |
| |
| /* |
| * 6522 registers - see databook. |
| * CSA: Assignments for VIA1 confirmed from CHRP spec. |
| */ |
| |
| /* partial address decode. 0xYYXX : XX part for RBV, YY part for VIA */ |
| /* Note: 15 VIA regs, 8 RBV regs */ |
| |
| #define vBufB 0x0000 /* [VIA/RBV] Register B */ |
| #define vBufAH 0x0200 /* [VIA only] Buffer A, with handshake. DON'T USE! */ |
| #define vDirB 0x0400 /* [VIA only] Data Direction Register B. */ |
| #define vDirA 0x0600 /* [VIA only] Data Direction Register A. */ |
| #define vT1CL 0x0800 /* [VIA only] Timer one counter low. */ |
| #define vT1CH 0x0a00 /* [VIA only] Timer one counter high. */ |
| #define vT1LL 0x0c00 /* [VIA only] Timer one latches low. */ |
| #define vT1LH 0x0e00 /* [VIA only] Timer one latches high. */ |
| #define vT2CL 0x1000 /* [VIA only] Timer two counter low. */ |
| #define vT2CH 0x1200 /* [VIA only] Timer two counter high. */ |
| #define vSR 0x1400 /* [VIA only] Shift register. */ |
| #define vACR 0x1600 /* [VIA only] Auxiliary control register. */ |
| #define vPCR 0x1800 /* [VIA only] Peripheral control register. */ |
| /* |
| * CHRP sez never ever to *write* this. |
| * Mac family says never to *change* this. |
| * In fact we need to initialize it once at start. |
| */ |
| #define vIFR 0x1a00 /* [VIA/RBV] Interrupt flag register. */ |
| #define vIER 0x1c00 /* [VIA/RBV] Interrupt enable register. */ |
| #define vBufA 0x1e00 /* [VIA/RBV] register A (no handshake) */ |
| |
| /* from linux 2.6 drivers/macintosh/via-macii.c */ |
| |
| /* Bits in ACR */ |
| |
| #define VIA1ACR_vShiftCtrl 0x1c /* Shift register control bits */ |
| #define VIA1ACR_vShiftExtClk 0x0c /* Shift on external clock */ |
| #define VIA1ACR_vShiftOut 0x10 /* Shift out if 1 */ |
| |
| /* |
| * Apple Macintosh Family Hardware Refenece |
| * Table 19-10 ADB transaction states |
| */ |
| |
| #define ADB_STATE_NEW 0 |
| #define ADB_STATE_EVEN 1 |
| #define ADB_STATE_ODD 2 |
| #define ADB_STATE_IDLE 3 |
| |
| #define VIA1B_vADB_StateMask (VIA1B_vADBS1 | VIA1B_vADBS2) |
| #define VIA1B_vADB_StateShift 4 |
| |
| #define VIA_TIMER_FREQ (783360) |
| #define VIA_ADB_POLL_FREQ 50 /* XXX: not real */ |
| |
| /* |
| * Guide to the Macintosh Family Hardware ch. 12 "Displays" p. 401 gives the |
| * precise 60Hz interrupt frequency as ~60.15Hz with a period of 16625.8 us |
| */ |
| #define VIA_60HZ_TIMER_PERIOD_NS 16625800 |
| |
| /* VIA returns time offset from Jan 1, 1904, not 1970 */ |
| #define RTC_OFFSET 2082844800 |
| |
| enum { |
| REG_0, |
| REG_1, |
| REG_2, |
| REG_3, |
| REG_TEST, |
| REG_WPROTECT, |
| REG_PRAM_ADDR, |
| REG_PRAM_ADDR_LAST = REG_PRAM_ADDR + 19, |
| REG_PRAM_SECT, |
| REG_PRAM_SECT_LAST = REG_PRAM_SECT + 7, |
| REG_INVALID, |
| REG_EMPTY = 0xff, |
| }; |
| |
| static void via1_sixty_hz_update(MOS6522Q800VIA1State *v1s) |
| { |
| /* 60 Hz irq */ |
| v1s->next_sixty_hz = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| VIA_60HZ_TIMER_PERIOD_NS) / |
| VIA_60HZ_TIMER_PERIOD_NS * VIA_60HZ_TIMER_PERIOD_NS; |
| timer_mod(v1s->sixty_hz_timer, v1s->next_sixty_hz); |
| } |
| |
| static void via1_one_second_update(MOS6522Q800VIA1State *v1s) |
| { |
| v1s->next_second = (qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000) / |
| 1000 * 1000; |
| timer_mod(v1s->one_second_timer, v1s->next_second); |
| } |
| |
| static void via1_sixty_hz(void *opaque) |
| { |
| MOS6522Q800VIA1State *v1s = opaque; |
| MOS6522State *s = MOS6522(v1s); |
| qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA1_IRQ_60HZ_BIT); |
| |
| /* Negative edge trigger */ |
| qemu_irq_lower(irq); |
| qemu_irq_raise(irq); |
| |
| via1_sixty_hz_update(v1s); |
| } |
| |
| static void via1_one_second(void *opaque) |
| { |
| MOS6522Q800VIA1State *v1s = opaque; |
| MOS6522State *s = MOS6522(v1s); |
| qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA1_IRQ_ONE_SECOND_BIT); |
| |
| /* Negative edge trigger */ |
| qemu_irq_lower(irq); |
| qemu_irq_raise(irq); |
| |
| via1_one_second_update(v1s); |
| } |
| |
| |
| static void pram_update(MOS6522Q800VIA1State *v1s) |
| { |
| if (v1s->blk) { |
| if (blk_pwrite(v1s->blk, 0, sizeof(v1s->PRAM), v1s->PRAM, 0) < 0) { |
| qemu_log("pram_update: cannot write to file\n"); |
| } |
| } |
| } |
| |
| /* |
| * RTC Commands |
| * |
| * Command byte Register addressed by the command |
| * |
| * z00x0001 Seconds register 0 (lowest-order byte) |
| * z00x0101 Seconds register 1 |
| * z00x1001 Seconds register 2 |
| * z00x1101 Seconds register 3 (highest-order byte) |
| * 00110001 Test register (write-only) |
| * 00110101 Write-Protect Register (write-only) |
| * z010aa01 RAM address 100aa ($10-$13) (first 20 bytes only) |
| * z1aaaa01 RAM address 0aaaa ($00-$0F) (first 20 bytes only) |
| * z0111aaa Extended memory designator and sector number |
| * |
| * For a read request, z=1, for a write z=0 |
| * The letter x indicates don't care |
| * The letter a indicates bits whose value depend on what parameter |
| * RAM byte you want to address |
| */ |
| static int via1_rtc_compact_cmd(uint8_t value) |
| { |
| uint8_t read = value & 0x80; |
| |
| value &= 0x7f; |
| |
| /* the last 2 bits of a command byte must always be 0b01 ... */ |
| if ((value & 0x78) == 0x38) { |
| /* except for the extended memory designator */ |
| return read | (REG_PRAM_SECT + (value & 0x07)); |
| } |
| if ((value & 0x03) == 0x01) { |
| value >>= 2; |
| if ((value & 0x18) == 0) { |
| /* seconds registers */ |
| return read | (REG_0 + (value & 0x03)); |
| } else if ((value == 0x0c) && !read) { |
| return REG_TEST; |
| } else if ((value == 0x0d) && !read) { |
| return REG_WPROTECT; |
| } else if ((value & 0x1c) == 0x08) { |
| /* RAM address 0x10 to 0x13 */ |
| return read | (REG_PRAM_ADDR + 0x10 + (value & 0x03)); |
| } else if ((value & 0x10) == 0x10) { |
| /* RAM address 0x00 to 0x0f */ |
| return read | (REG_PRAM_ADDR + (value & 0x0f)); |
| } |
| } |
| return REG_INVALID; |
| } |
| |
| static void via1_rtc_update(MOS6522Q800VIA1State *v1s) |
| { |
| MOS6522State *s = MOS6522(v1s); |
| int cmd, sector, addr; |
| uint32_t time; |
| |
| if (s->b & VIA1B_vRTCEnb) { |
| return; |
| } |
| |
| if (s->dirb & VIA1B_vRTCData) { |
| /* send bits to the RTC */ |
| if (!(v1s->last_b & VIA1B_vRTCClk) && (s->b & VIA1B_vRTCClk)) { |
| v1s->data_out <<= 1; |
| v1s->data_out |= s->b & VIA1B_vRTCData; |
| v1s->data_out_cnt++; |
| } |
| trace_via1_rtc_update_data_out(v1s->data_out_cnt, v1s->data_out); |
| } else { |
| trace_via1_rtc_update_data_in(v1s->data_in_cnt, v1s->data_in); |
| /* receive bits from the RTC */ |
| if ((v1s->last_b & VIA1B_vRTCClk) && |
| !(s->b & VIA1B_vRTCClk) && |
| v1s->data_in_cnt) { |
| s->b = (s->b & ~VIA1B_vRTCData) | |
| ((v1s->data_in >> 7) & VIA1B_vRTCData); |
| v1s->data_in <<= 1; |
| v1s->data_in_cnt--; |
| } |
| return; |
| } |
| |
| if (v1s->data_out_cnt != 8) { |
| return; |
| } |
| |
| v1s->data_out_cnt = 0; |
| |
| trace_via1_rtc_internal_status(v1s->cmd, v1s->alt, v1s->data_out); |
| /* first byte: it's a command */ |
| if (v1s->cmd == REG_EMPTY) { |
| |
| cmd = via1_rtc_compact_cmd(v1s->data_out); |
| trace_via1_rtc_internal_cmd(cmd); |
| |
| if (cmd == REG_INVALID) { |
| trace_via1_rtc_cmd_invalid(v1s->data_out); |
| return; |
| } |
| |
| if (cmd & 0x80) { /* this is a read command */ |
| switch (cmd & 0x7f) { |
| case REG_0...REG_3: /* seconds registers */ |
| /* |
| * register 0 is lowest-order byte |
| * register 3 is highest-order byte |
| */ |
| |
| time = v1s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) |
| / NANOSECONDS_PER_SECOND); |
| trace_via1_rtc_internal_time(time); |
| v1s->data_in = (time >> ((cmd & 0x03) << 3)) & 0xff; |
| v1s->data_in_cnt = 8; |
| trace_via1_rtc_cmd_seconds_read((cmd & 0x7f) - REG_0, |
| v1s->data_in); |
| break; |
| case REG_PRAM_ADDR...REG_PRAM_ADDR_LAST: |
| /* PRAM address 0x00 -> 0x13 */ |
| v1s->data_in = v1s->PRAM[(cmd & 0x7f) - REG_PRAM_ADDR]; |
| v1s->data_in_cnt = 8; |
| trace_via1_rtc_cmd_pram_read((cmd & 0x7f) - REG_PRAM_ADDR, |
| v1s->data_in); |
| break; |
| case REG_PRAM_SECT...REG_PRAM_SECT_LAST: |
| /* |
| * extended memory designator and sector number |
| * the only two-byte read command |
| */ |
| trace_via1_rtc_internal_set_cmd(cmd); |
| v1s->cmd = cmd; |
| break; |
| default: |
| g_assert_not_reached(); |
| break; |
| } |
| return; |
| } |
| |
| /* this is a write command, needs a parameter */ |
| if (cmd == REG_WPROTECT || !v1s->wprotect) { |
| trace_via1_rtc_internal_set_cmd(cmd); |
| v1s->cmd = cmd; |
| } else { |
| trace_via1_rtc_internal_ignore_cmd(cmd); |
| } |
| return; |
| } |
| |
| /* second byte: it's a parameter */ |
| if (v1s->alt == REG_EMPTY) { |
| switch (v1s->cmd & 0x7f) { |
| case REG_0...REG_3: /* seconds register */ |
| /* FIXME */ |
| trace_via1_rtc_cmd_seconds_write(v1s->cmd - REG_0, v1s->data_out); |
| v1s->cmd = REG_EMPTY; |
| break; |
| case REG_TEST: |
| /* device control: nothing to do */ |
| trace_via1_rtc_cmd_test_write(v1s->data_out); |
| v1s->cmd = REG_EMPTY; |
| break; |
| case REG_WPROTECT: |
| /* Write Protect register */ |
| trace_via1_rtc_cmd_wprotect_write(v1s->data_out); |
| v1s->wprotect = !!(v1s->data_out & 0x80); |
| v1s->cmd = REG_EMPTY; |
| break; |
| case REG_PRAM_ADDR...REG_PRAM_ADDR_LAST: |
| /* PRAM address 0x00 -> 0x13 */ |
| trace_via1_rtc_cmd_pram_write(v1s->cmd - REG_PRAM_ADDR, |
| v1s->data_out); |
| v1s->PRAM[v1s->cmd - REG_PRAM_ADDR] = v1s->data_out; |
| pram_update(v1s); |
| v1s->cmd = REG_EMPTY; |
| break; |
| case REG_PRAM_SECT...REG_PRAM_SECT_LAST: |
| addr = (v1s->data_out >> 2) & 0x1f; |
| sector = (v1s->cmd & 0x7f) - REG_PRAM_SECT; |
| if (v1s->cmd & 0x80) { |
| /* it's a read */ |
| v1s->data_in = v1s->PRAM[sector * 32 + addr]; |
| v1s->data_in_cnt = 8; |
| trace_via1_rtc_cmd_pram_sect_read(sector, addr, |
| sector * 32 + addr, |
| v1s->data_in); |
| v1s->cmd = REG_EMPTY; |
| } else { |
| /* it's a write, we need one more parameter */ |
| trace_via1_rtc_internal_set_alt(addr, sector, addr); |
| v1s->alt = addr; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| break; |
| } |
| return; |
| } |
| |
| /* third byte: it's the data of a REG_PRAM_SECT write */ |
| g_assert(REG_PRAM_SECT <= v1s->cmd && v1s->cmd <= REG_PRAM_SECT_LAST); |
| sector = v1s->cmd - REG_PRAM_SECT; |
| v1s->PRAM[sector * 32 + v1s->alt] = v1s->data_out; |
| pram_update(v1s); |
| trace_via1_rtc_cmd_pram_sect_write(sector, v1s->alt, sector * 32 + v1s->alt, |
| v1s->data_out); |
| v1s->alt = REG_EMPTY; |
| v1s->cmd = REG_EMPTY; |
| } |
| |
| static void adb_via_poll(void *opaque) |
| { |
| MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); |
| MOS6522State *s = MOS6522(v1s); |
| ADBBusState *adb_bus = &v1s->adb_bus; |
| uint8_t obuf[9]; |
| uint8_t *data = &s->sr; |
| int olen; |
| |
| /* |
| * Setting vADBInt below indicates that an autopoll reply has been |
| * received, however we must block autopoll until the point where |
| * the entire reply has been read back to the host |
| */ |
| adb_autopoll_block(adb_bus); |
| |
| if (v1s->adb_data_in_size > 0 && v1s->adb_data_in_index == 0) { |
| /* |
| * For older Linux kernels that switch to IDLE mode after sending the |
| * ADB command, detect if there is an existing response and return that |
| * as a "fake" autopoll reply or bus timeout accordingly |
| */ |
| *data = v1s->adb_data_out[0]; |
| olen = v1s->adb_data_in_size; |
| |
| s->b &= ~VIA1B_vADBInt; |
| qemu_irq_raise(v1s->adb_data_ready); |
| } else { |
| /* |
| * Otherwise poll as normal |
| */ |
| v1s->adb_data_in_index = 0; |
| v1s->adb_data_out_index = 0; |
| olen = adb_poll(adb_bus, obuf, adb_bus->autopoll_mask); |
| |
| if (olen > 0) { |
| /* Autopoll response */ |
| *data = obuf[0]; |
| olen--; |
| memcpy(v1s->adb_data_in, &obuf[1], olen); |
| v1s->adb_data_in_size = olen; |
| |
| s->b &= ~VIA1B_vADBInt; |
| qemu_irq_raise(v1s->adb_data_ready); |
| } else { |
| *data = v1s->adb_autopoll_cmd; |
| obuf[0] = 0xff; |
| obuf[1] = 0xff; |
| olen = 2; |
| |
| memcpy(v1s->adb_data_in, obuf, olen); |
| v1s->adb_data_in_size = olen; |
| |
| s->b &= ~VIA1B_vADBInt; |
| qemu_irq_raise(v1s->adb_data_ready); |
| } |
| } |
| |
| trace_via1_adb_poll(*data, (s->b & VIA1B_vADBInt) ? "+" : "-", |
| adb_bus->status, v1s->adb_data_in_index, olen); |
| } |
| |
| static int adb_via_send_len(uint8_t data) |
| { |
| /* Determine the send length from the given ADB command */ |
| uint8_t cmd = data & 0xc; |
| uint8_t reg = data & 0x3; |
| |
| switch (cmd) { |
| case 0x8: |
| /* Listen command */ |
| switch (reg) { |
| case 2: |
| /* Register 2 is only used for the keyboard */ |
| return 3; |
| case 3: |
| /* |
| * Fortunately our devices only implement writes |
| * to register 3 which is fixed at 2 bytes |
| */ |
| return 3; |
| default: |
| qemu_log_mask(LOG_UNIMP, "ADB unknown length for register %d\n", |
| reg); |
| return 1; |
| } |
| default: |
| /* Talk, BusReset */ |
| return 1; |
| } |
| } |
| |
| static void adb_via_send(MOS6522Q800VIA1State *v1s, int state, uint8_t data) |
| { |
| MOS6522State *ms = MOS6522(v1s); |
| ADBBusState *adb_bus = &v1s->adb_bus; |
| uint16_t autopoll_mask; |
| |
| switch (state) { |
| case ADB_STATE_NEW: |
| /* |
| * Command byte: vADBInt tells host autopoll data already present |
| * in VIA shift register and ADB transceiver |
| */ |
| adb_autopoll_block(adb_bus); |
| |
| if (adb_bus->status & ADB_STATUS_POLLREPLY) { |
| /* Tell the host the existing data is from autopoll */ |
| ms->b &= ~VIA1B_vADBInt; |
| } else { |
| ms->b |= VIA1B_vADBInt; |
| v1s->adb_data_out_index = 0; |
| v1s->adb_data_out[v1s->adb_data_out_index++] = data; |
| } |
| |
| trace_via1_adb_send(" NEW", data, (ms->b & VIA1B_vADBInt) ? "+" : "-"); |
| qemu_irq_raise(v1s->adb_data_ready); |
| break; |
| |
| case ADB_STATE_EVEN: |
| case ADB_STATE_ODD: |
| ms->b |= VIA1B_vADBInt; |
| v1s->adb_data_out[v1s->adb_data_out_index++] = data; |
| |
| trace_via1_adb_send(state == ADB_STATE_EVEN ? "EVEN" : " ODD", |
| data, (ms->b & VIA1B_vADBInt) ? "+" : "-"); |
| qemu_irq_raise(v1s->adb_data_ready); |
| break; |
| |
| case ADB_STATE_IDLE: |
| ms->b |= VIA1B_vADBInt; |
| adb_autopoll_unblock(adb_bus); |
| |
| trace_via1_adb_send("IDLE", data, |
| (ms->b & VIA1B_vADBInt) ? "+" : "-"); |
| |
| return; |
| } |
| |
| /* If the command is complete, execute it */ |
| if (v1s->adb_data_out_index == adb_via_send_len(v1s->adb_data_out[0])) { |
| v1s->adb_data_in_size = adb_request(adb_bus, v1s->adb_data_in, |
| v1s->adb_data_out, |
| v1s->adb_data_out_index); |
| v1s->adb_data_in_index = 0; |
| |
| if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) { |
| /* |
| * Bus timeout (but allow first EVEN and ODD byte to indicate |
| * timeout via vADBInt and SRQ status) |
| */ |
| v1s->adb_data_in[0] = 0xff; |
| v1s->adb_data_in[1] = 0xff; |
| v1s->adb_data_in_size = 2; |
| } |
| |
| /* |
| * If last command is TALK, store it for use by autopoll and adjust |
| * the autopoll mask accordingly |
| */ |
| if ((v1s->adb_data_out[0] & 0xc) == 0xc) { |
| v1s->adb_autopoll_cmd = v1s->adb_data_out[0]; |
| |
| autopoll_mask = 1 << (v1s->adb_autopoll_cmd >> 4); |
| adb_set_autopoll_mask(adb_bus, autopoll_mask); |
| } |
| } |
| } |
| |
| static void adb_via_receive(MOS6522Q800VIA1State *v1s, int state, uint8_t *data) |
| { |
| MOS6522State *ms = MOS6522(v1s); |
| ADBBusState *adb_bus = &v1s->adb_bus; |
| uint16_t pending; |
| |
| switch (state) { |
| case ADB_STATE_NEW: |
| ms->b |= VIA1B_vADBInt; |
| return; |
| |
| case ADB_STATE_IDLE: |
| ms->b |= VIA1B_vADBInt; |
| adb_autopoll_unblock(adb_bus); |
| |
| trace_via1_adb_receive("IDLE", *data, |
| (ms->b & VIA1B_vADBInt) ? "+" : "-", adb_bus->status, |
| v1s->adb_data_in_index, v1s->adb_data_in_size); |
| |
| break; |
| |
| case ADB_STATE_EVEN: |
| case ADB_STATE_ODD: |
| switch (v1s->adb_data_in_index) { |
| case 0: |
| /* First EVEN byte: vADBInt indicates bus timeout */ |
| *data = v1s->adb_data_in[v1s->adb_data_in_index]; |
| if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) { |
| ms->b &= ~VIA1B_vADBInt; |
| } else { |
| ms->b |= VIA1B_vADBInt; |
| } |
| |
| trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD", |
| *data, (ms->b & VIA1B_vADBInt) ? "+" : "-", |
| adb_bus->status, v1s->adb_data_in_index, |
| v1s->adb_data_in_size); |
| |
| v1s->adb_data_in_index++; |
| break; |
| |
| case 1: |
| /* First ODD byte: vADBInt indicates SRQ */ |
| *data = v1s->adb_data_in[v1s->adb_data_in_index]; |
| pending = adb_bus->pending & ~(1 << (v1s->adb_autopoll_cmd >> 4)); |
| if (pending) { |
| ms->b &= ~VIA1B_vADBInt; |
| } else { |
| ms->b |= VIA1B_vADBInt; |
| } |
| |
| trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD", |
| *data, (ms->b & VIA1B_vADBInt) ? "+" : "-", |
| adb_bus->status, v1s->adb_data_in_index, |
| v1s->adb_data_in_size); |
| |
| v1s->adb_data_in_index++; |
| break; |
| |
| default: |
| /* |
| * Otherwise vADBInt indicates end of data. Note that Linux |
| * specifically checks for the sequence 0x0 0xff to confirm the |
| * end of the poll reply, so provide these extra bytes below to |
| * keep it happy |
| */ |
| if (v1s->adb_data_in_index < v1s->adb_data_in_size) { |
| /* Next data byte */ |
| *data = v1s->adb_data_in[v1s->adb_data_in_index]; |
| ms->b |= VIA1B_vADBInt; |
| } else if (v1s->adb_data_in_index == v1s->adb_data_in_size) { |
| if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) { |
| /* Bus timeout (no more data) */ |
| *data = 0xff; |
| } else { |
| /* Return 0x0 after reply */ |
| *data = 0; |
| } |
| ms->b &= ~VIA1B_vADBInt; |
| } else { |
| /* Bus timeout (no more data) */ |
| *data = 0xff; |
| ms->b &= ~VIA1B_vADBInt; |
| adb_bus->status = 0; |
| adb_autopoll_unblock(adb_bus); |
| } |
| |
| trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD", |
| *data, (ms->b & VIA1B_vADBInt) ? "+" : "-", |
| adb_bus->status, v1s->adb_data_in_index, |
| v1s->adb_data_in_size); |
| |
| if (v1s->adb_data_in_index <= v1s->adb_data_in_size) { |
| v1s->adb_data_in_index++; |
| } |
| break; |
| } |
| |
| qemu_irq_raise(v1s->adb_data_ready); |
| break; |
| } |
| } |
| |
| static void via1_adb_update(MOS6522Q800VIA1State *v1s) |
| { |
| MOS6522State *s = MOS6522(v1s); |
| int oldstate, state; |
| |
| oldstate = (v1s->last_b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift; |
| state = (s->b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift; |
| |
| if (state != oldstate) { |
| if (s->acr & VIA1ACR_vShiftOut) { |
| /* output mode */ |
| adb_via_send(v1s, state, s->sr); |
| } else { |
| /* input mode */ |
| adb_via_receive(v1s, state, &s->sr); |
| } |
| } |
| } |
| |
| static void via1_auxmode_update(MOS6522Q800VIA1State *v1s) |
| { |
| MOS6522State *s = MOS6522(v1s); |
| int oldirq, irq; |
| |
| oldirq = (v1s->last_b & VIA1B_vMystery) ? 1 : 0; |
| irq = (s->b & VIA1B_vMystery) ? 1 : 0; |
| |
| /* Check to see if the A/UX mode bit has changed */ |
| if (irq != oldirq) { |
| trace_via1_auxmode(irq); |
| qemu_set_irq(v1s->auxmode_irq, irq); |
| |
| /* |
| * Clear the ADB interrupt. MacOS can leave VIA1B_vADBInt asserted |
| * (low) if a poll sequence doesn't complete before NetBSD disables |
| * interrupts upon boot. Fortunately NetBSD switches to the so-called |
| * "A/UX" interrupt mode after it initialises, so we can use this as |
| * a convenient place to clear the ADB interrupt for now. |
| */ |
| s->b |= VIA1B_vADBInt; |
| } |
| } |
| |
| /* |
| * Addresses and real values for TimeDBRA/TimeSCCB to allow timer calibration |
| * to succeed (NOTE: both values have been multiplied by 3 to cope with the |
| * speed of QEMU execution on a modern host |
| */ |
| #define MACOS_TIMEDBRA 0xd00 |
| #define MACOS_TIMESCCB 0xd02 |
| |
| #define MACOS_TIMEDBRA_VALUE (0x2a00 * 3) |
| #define MACOS_TIMESCCB_VALUE (0x079d * 3) |
| |
| static bool via1_is_toolbox_timer_calibrated(void) |
| { |
| /* |
| * Indicate whether the MacOS toolbox has been calibrated by checking |
| * for the value of our magic constants |
| */ |
| uint16_t timedbra = lduw_be_phys(&address_space_memory, MACOS_TIMEDBRA); |
| uint16_t timesccdb = lduw_be_phys(&address_space_memory, MACOS_TIMESCCB); |
| |
| return (timedbra == MACOS_TIMEDBRA_VALUE && |
| timesccdb == MACOS_TIMESCCB_VALUE); |
| } |
| |
| static void via1_timer_calibration_hack(MOS6522Q800VIA1State *v1s, int addr, |
| uint64_t val, int size) |
| { |
| /* |
| * Work around timer calibration to ensure we that we have non-zero and |
| * known good values for TIMEDRBA and TIMESCCDB. |
| * |
| * This works by attempting to detect the reset and calibration sequence |
| * of writes to VIA1 |
| */ |
| int old_timer_hack_state = v1s->timer_hack_state; |
| |
| switch (v1s->timer_hack_state) { |
| case 0: |
| if (addr == VIA_REG_PCR && val == 0x22) { |
| /* VIA_REG_PCR: configure VIA1 edge triggering */ |
| v1s->timer_hack_state = 1; |
| } |
| break; |
| case 1: |
| if (addr == VIA_REG_T2CL && val == 0xc) { |
| /* VIA_REG_T2CL: low byte of 1ms counter */ |
| if (!via1_is_toolbox_timer_calibrated()) { |
| v1s->timer_hack_state = 2; |
| } else { |
| v1s->timer_hack_state = 0; |
| } |
| } |
| break; |
| case 2: |
| if (addr == VIA_REG_T2CH && val == 0x3) { |
| /* |
| * VIA_REG_T2CH: high byte of 1ms counter (very likely at the |
| * start of SETUPTIMEK) |
| */ |
| if (!via1_is_toolbox_timer_calibrated()) { |
| v1s->timer_hack_state = 3; |
| } else { |
| v1s->timer_hack_state = 0; |
| } |
| } |
| break; |
| case 3: |
| if (addr == VIA_REG_IER && val == 0x20) { |
| /* |
| * VIA_REG_IER: update at end of SETUPTIMEK |
| * |
| * Timer calibration has finished: unfortunately the values in |
| * TIMEDBRA (0xd00) and TIMESCCDB (0xd02) are so far out they |
| * cause divide by zero errors. |
| * |
| * Update them with values obtained from a real Q800 but with |
| * a x3 scaling factor which seems to work well |
| */ |
| stw_be_phys(&address_space_memory, MACOS_TIMEDBRA, |
| MACOS_TIMEDBRA_VALUE); |
| stw_be_phys(&address_space_memory, MACOS_TIMESCCB, |
| MACOS_TIMESCCB_VALUE); |
| |
| v1s->timer_hack_state = 4; |
| } |
| break; |
| case 4: |
| /* |
| * This is the normal post-calibration timer state: we should |
| * generally remain here unless we detect the A/UX calibration |
| * loop, or a write to VIA_REG_PCR suggesting a reset |
| */ |
| if (addr == VIA_REG_PCR && val == 0x22) { |
| /* Looks like there has been a reset? */ |
| v1s->timer_hack_state = 1; |
| } |
| |
| if (addr == VIA_REG_T2CL && val == 0xf0) { |
| /* VIA_REG_T2CL: low byte of counter (A/UX) */ |
| v1s->timer_hack_state = 5; |
| } |
| break; |
| case 5: |
| if (addr == VIA_REG_T2CH && val == 0x3c) { |
| /* |
| * VIA_REG_T2CH: high byte of counter (A/UX). We are now extremely |
| * likely to be in the A/UX timer calibration routine, so move to |
| * the next state where we enable the calibration hack. |
| */ |
| v1s->timer_hack_state = 6; |
| } else if ((addr == VIA_REG_IER && val == 0x20) || |
| addr == VIA_REG_T2CH) { |
| /* We're doing something else with the timer, not calibration */ |
| v1s->timer_hack_state = 0; |
| } |
| break; |
| case 6: |
| if ((addr == VIA_REG_IER && val == 0x20) || addr == VIA_REG_T2CH) { |
| /* End of A/UX timer calibration routine, or another write */ |
| v1s->timer_hack_state = 7; |
| } else { |
| v1s->timer_hack_state = 0; |
| } |
| break; |
| case 7: |
| /* |
| * This is the normal post-calibration timer state once both the |
| * MacOS toolbox and A/UX have been calibrated, until we see a write |
| * to VIA_REG_PCR to suggest a reset |
| */ |
| if (addr == VIA_REG_PCR && val == 0x22) { |
| /* Looks like there has been a reset? */ |
| v1s->timer_hack_state = 1; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (old_timer_hack_state != v1s->timer_hack_state) { |
| trace_via1_timer_hack_state(v1s->timer_hack_state); |
| } |
| } |
| |
| static uint64_t mos6522_q800_via1_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| MOS6522Q800VIA1State *s = MOS6522_Q800_VIA1(opaque); |
| MOS6522State *ms = MOS6522(s); |
| uint64_t ret; |
| int64_t now; |
| |
| addr = (addr >> 9) & 0xf; |
| ret = mos6522_read(ms, addr, size); |
| switch (addr) { |
| case VIA_REG_A: |
| case VIA_REG_ANH: |
| /* Quadra 800 Id */ |
| ret = (ret & ~VIA1A_CPUID_MASK) | VIA1A_CPUID_Q800; |
| break; |
| case VIA_REG_T2CH: |
| if (s->timer_hack_state == 6) { |
| /* |
| * The A/UX timer calibration loop runs continuously until 2 |
| * consecutive iterations differ by at least 0x492 timer ticks. |
| * Modern hosts execute the timer calibration loop so fast that |
| * this situation never occurs causing a hang on boot. Use a |
| * similar method to Shoebill which is to randomly add 0x500 to |
| * the T2 counter value during calibration to enable it to |
| * eventually succeed. |
| */ |
| now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| if (now & 1) { |
| ret += 0x5; |
| } |
| } |
| break; |
| } |
| return ret; |
| } |
| |
| static void mos6522_q800_via1_write(void *opaque, hwaddr addr, uint64_t val, |
| unsigned size) |
| { |
| MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); |
| MOS6522State *ms = MOS6522(v1s); |
| int oldstate, state; |
| int oldsr = ms->sr; |
| |
| addr = (addr >> 9) & 0xf; |
| |
| via1_timer_calibration_hack(v1s, addr, val, size); |
| |
| mos6522_write(ms, addr, val, size); |
| |
| switch (addr) { |
| case VIA_REG_B: |
| via1_rtc_update(v1s); |
| via1_adb_update(v1s); |
| via1_auxmode_update(v1s); |
| |
| v1s->last_b = ms->b; |
| break; |
| |
| case VIA_REG_SR: |
| { |
| /* |
| * NetBSD assumes it can send its first ADB command after sending |
| * the ADB_BUSRESET command in ADB_STATE_NEW without changing the |
| * state back to ADB_STATE_IDLE first as detailed in the ADB |
| * protocol. |
| * |
| * Add a workaround to detect this condition at the start of ADB |
| * enumeration and send the next command written to SR after a |
| * ADB_BUSRESET onto the bus regardless, even if we don't detect a |
| * state transition to ADB_STATE_NEW. |
| * |
| * Note that in my tests the NetBSD state machine takes one ADB |
| * operation to recover which means the probe for an ADB device at |
| * address 1 always fails. However since the first device is at |
| * address 2 then this will work fine, without having to come up |
| * with a more complicated and invasive solution. |
| */ |
| oldstate = (v1s->last_b & VIA1B_vADB_StateMask) >> |
| VIA1B_vADB_StateShift; |
| state = (ms->b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift; |
| |
| if (oldstate == ADB_STATE_NEW && state == ADB_STATE_NEW && |
| (ms->acr & VIA1ACR_vShiftOut) && |
| oldsr == 0 /* ADB_BUSRESET */) { |
| trace_via1_adb_netbsd_enum_hack(); |
| adb_via_send(v1s, state, ms->sr); |
| } |
| } |
| break; |
| } |
| } |
| |
| static const MemoryRegionOps mos6522_q800_via1_ops = { |
| .read = mos6522_q800_via1_read, |
| .write = mos6522_q800_via1_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 4, |
| }, |
| }; |
| |
| static uint64_t mos6522_q800_via2_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| MOS6522Q800VIA2State *s = MOS6522_Q800_VIA2(opaque); |
| MOS6522State *ms = MOS6522(s); |
| uint64_t val; |
| |
| addr = (addr >> 9) & 0xf; |
| val = mos6522_read(ms, addr, size); |
| |
| switch (addr) { |
| case VIA_REG_IFR: |
| /* |
| * On a Q800 an emulated VIA2 is integrated into the onboard logic. The |
| * expectation of most OSs is that the DRQ bit is live, rather than |
| * latched as it would be on a real VIA so do the same here. |
| * |
| * Note: DRQ is negative edge triggered |
| */ |
| val &= ~VIA2_IRQ_SCSI_DATA; |
| val |= (~ms->last_irq_levels & VIA2_IRQ_SCSI_DATA); |
| break; |
| } |
| |
| return val; |
| } |
| |
| static void mos6522_q800_via2_write(void *opaque, hwaddr addr, uint64_t val, |
| unsigned size) |
| { |
| MOS6522Q800VIA2State *s = MOS6522_Q800_VIA2(opaque); |
| MOS6522State *ms = MOS6522(s); |
| |
| addr = (addr >> 9) & 0xf; |
| mos6522_write(ms, addr, val, size); |
| } |
| |
| static const MemoryRegionOps mos6522_q800_via2_ops = { |
| .read = mos6522_q800_via2_read, |
| .write = mos6522_q800_via2_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 4, |
| }, |
| }; |
| |
| static void via1_postload_update_cb(void *opaque, bool running, RunState state) |
| { |
| MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); |
| |
| qemu_del_vm_change_state_handler(v1s->vmstate); |
| v1s->vmstate = NULL; |
| |
| pram_update(v1s); |
| } |
| |
| static int via1_post_load(void *opaque, int version_id) |
| { |
| MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); |
| |
| if (v1s->blk) { |
| v1s->vmstate = qemu_add_vm_change_state_handler( |
| via1_postload_update_cb, v1s); |
| } |
| |
| return 0; |
| } |
| |
| /* VIA 1 */ |
| static void mos6522_q800_via1_reset_hold(Object *obj, ResetType type) |
| { |
| MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(obj); |
| MOS6522State *ms = MOS6522(v1s); |
| MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(ms); |
| ADBBusState *adb_bus = &v1s->adb_bus; |
| |
| if (mdc->parent_phases.hold) { |
| mdc->parent_phases.hold(obj, type); |
| } |
| |
| ms->timers[0].frequency = VIA_TIMER_FREQ; |
| ms->timers[1].frequency = VIA_TIMER_FREQ; |
| |
| ms->b = VIA1B_vADB_StateMask | VIA1B_vADBInt | VIA1B_vRTCEnb; |
| |
| /* ADB/RTC */ |
| adb_set_autopoll_enabled(adb_bus, true); |
| v1s->cmd = REG_EMPTY; |
| v1s->alt = REG_EMPTY; |
| |
| /* Timer calibration hack */ |
| v1s->timer_hack_state = 0; |
| } |
| |
| static void mos6522_q800_via1_realize(DeviceState *dev, Error **errp) |
| { |
| MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(dev); |
| ADBBusState *adb_bus = &v1s->adb_bus; |
| struct tm tm; |
| int ret; |
| |
| v1s->one_second_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, via1_one_second, |
| v1s); |
| via1_one_second_update(v1s); |
| v1s->sixty_hz_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, via1_sixty_hz, |
| v1s); |
| via1_sixty_hz_update(v1s); |
| |
| qemu_get_timedate(&tm, 0); |
| v1s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET; |
| |
| adb_register_autopoll_callback(adb_bus, adb_via_poll, v1s); |
| v1s->adb_data_ready = qdev_get_gpio_in(dev, VIA1_IRQ_ADB_READY_BIT); |
| |
| if (v1s->blk) { |
| int64_t len = blk_getlength(v1s->blk); |
| if (len < 0) { |
| error_setg_errno(errp, -len, |
| "could not get length of backing image"); |
| return; |
| } |
| ret = blk_set_perm(v1s->blk, |
| BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE, |
| BLK_PERM_ALL, errp); |
| if (ret < 0) { |
| return; |
| } |
| |
| ret = blk_pread(v1s->blk, 0, sizeof(v1s->PRAM), v1s->PRAM, 0); |
| if (ret < 0) { |
| error_setg(errp, "can't read PRAM contents"); |
| return; |
| } |
| } |
| } |
| |
| static void mos6522_q800_via1_init(Object *obj) |
| { |
| MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(obj); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(v1s); |
| |
| memory_region_init_io(&v1s->via_mem, obj, &mos6522_q800_via1_ops, v1s, |
| "via1", VIA_SIZE); |
| sysbus_init_mmio(sbd, &v1s->via_mem); |
| |
| /* ADB */ |
| qbus_init((BusState *)&v1s->adb_bus, sizeof(v1s->adb_bus), |
| TYPE_ADB_BUS, DEVICE(v1s), "adb.0"); |
| |
| /* A/UX mode */ |
| qdev_init_gpio_out(DEVICE(obj), &v1s->auxmode_irq, 1); |
| } |
| |
| static const VMStateDescription vmstate_q800_via1 = { |
| .name = "q800-via1", |
| .version_id = 0, |
| .minimum_version_id = 0, |
| .post_load = via1_post_load, |
| .fields = (const VMStateField[]) { |
| VMSTATE_STRUCT(parent_obj, MOS6522Q800VIA1State, 0, vmstate_mos6522, |
| MOS6522State), |
| VMSTATE_UINT8(last_b, MOS6522Q800VIA1State), |
| /* RTC */ |
| VMSTATE_BUFFER(PRAM, MOS6522Q800VIA1State), |
| VMSTATE_UINT32(tick_offset, MOS6522Q800VIA1State), |
| VMSTATE_UINT8(data_out, MOS6522Q800VIA1State), |
| VMSTATE_INT32(data_out_cnt, MOS6522Q800VIA1State), |
| VMSTATE_UINT8(data_in, MOS6522Q800VIA1State), |
| VMSTATE_UINT8(data_in_cnt, MOS6522Q800VIA1State), |
| VMSTATE_UINT8(cmd, MOS6522Q800VIA1State), |
| VMSTATE_INT32(wprotect, MOS6522Q800VIA1State), |
| VMSTATE_INT32(alt, MOS6522Q800VIA1State), |
| /* ADB */ |
| VMSTATE_INT32(adb_data_in_size, MOS6522Q800VIA1State), |
| VMSTATE_INT32(adb_data_in_index, MOS6522Q800VIA1State), |
| VMSTATE_INT32(adb_data_out_index, MOS6522Q800VIA1State), |
| VMSTATE_BUFFER(adb_data_in, MOS6522Q800VIA1State), |
| VMSTATE_BUFFER(adb_data_out, MOS6522Q800VIA1State), |
| VMSTATE_UINT8(adb_autopoll_cmd, MOS6522Q800VIA1State), |
| /* Timers */ |
| VMSTATE_TIMER_PTR(one_second_timer, MOS6522Q800VIA1State), |
| VMSTATE_INT64(next_second, MOS6522Q800VIA1State), |
| VMSTATE_TIMER_PTR(sixty_hz_timer, MOS6522Q800VIA1State), |
| VMSTATE_INT64(next_sixty_hz, MOS6522Q800VIA1State), |
| /* Timer hack */ |
| VMSTATE_INT32(timer_hack_state, MOS6522Q800VIA1State), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static Property mos6522_q800_via1_properties[] = { |
| DEFINE_PROP_DRIVE("drive", MOS6522Q800VIA1State, blk), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void mos6522_q800_via1_class_init(ObjectClass *oc, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(oc); |
| ResettableClass *rc = RESETTABLE_CLASS(oc); |
| MOS6522DeviceClass *mdc = MOS6522_CLASS(oc); |
| |
| dc->realize = mos6522_q800_via1_realize; |
| resettable_class_set_parent_phases(rc, NULL, mos6522_q800_via1_reset_hold, |
| NULL, &mdc->parent_phases); |
| dc->vmsd = &vmstate_q800_via1; |
| device_class_set_props(dc, mos6522_q800_via1_properties); |
| } |
| |
| static const TypeInfo mos6522_q800_via1_type_info = { |
| .name = TYPE_MOS6522_Q800_VIA1, |
| .parent = TYPE_MOS6522, |
| .instance_size = sizeof(MOS6522Q800VIA1State), |
| .instance_init = mos6522_q800_via1_init, |
| .class_init = mos6522_q800_via1_class_init, |
| }; |
| |
| /* VIA 2 */ |
| static void mos6522_q800_via2_portB_write(MOS6522State *s) |
| { |
| if (s->dirb & VIA2B_vPower && (s->b & VIA2B_vPower) == 0) { |
| /* shutdown */ |
| qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); |
| } |
| } |
| |
| static void mos6522_q800_via2_reset_hold(Object *obj, ResetType type) |
| { |
| MOS6522State *ms = MOS6522(obj); |
| MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(ms); |
| |
| if (mdc->parent_phases.hold) { |
| mdc->parent_phases.hold(obj, type); |
| } |
| |
| ms->timers[0].frequency = VIA_TIMER_FREQ; |
| ms->timers[1].frequency = VIA_TIMER_FREQ; |
| |
| ms->dirb = 0; |
| ms->b = 0; |
| ms->dira = 0; |
| ms->a = 0x7f; |
| } |
| |
| static void via2_nubus_irq_request(void *opaque, int n, int level) |
| { |
| MOS6522Q800VIA2State *v2s = opaque; |
| MOS6522State *s = MOS6522(v2s); |
| qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA2_IRQ_NUBUS_BIT); |
| |
| if (level) { |
| /* Port A nubus IRQ inputs are active LOW */ |
| s->a &= ~(1 << n); |
| } else { |
| s->a |= (1 << n); |
| } |
| |
| /* Negative edge trigger */ |
| qemu_set_irq(irq, !level); |
| } |
| |
| static void mos6522_q800_via2_init(Object *obj) |
| { |
| MOS6522Q800VIA2State *v2s = MOS6522_Q800_VIA2(obj); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(v2s); |
| |
| memory_region_init_io(&v2s->via_mem, obj, &mos6522_q800_via2_ops, v2s, |
| "via2", VIA_SIZE); |
| sysbus_init_mmio(sbd, &v2s->via_mem); |
| |
| qdev_init_gpio_in_named(DEVICE(obj), via2_nubus_irq_request, "nubus-irq", |
| VIA2_NUBUS_IRQ_NB); |
| } |
| |
| static const VMStateDescription vmstate_q800_via2 = { |
| .name = "q800-via2", |
| .version_id = 0, |
| .minimum_version_id = 0, |
| .fields = (const VMStateField[]) { |
| VMSTATE_STRUCT(parent_obj, MOS6522Q800VIA2State, 0, vmstate_mos6522, |
| MOS6522State), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void mos6522_q800_via2_class_init(ObjectClass *oc, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(oc); |
| ResettableClass *rc = RESETTABLE_CLASS(oc); |
| MOS6522DeviceClass *mdc = MOS6522_CLASS(oc); |
| |
| resettable_class_set_parent_phases(rc, NULL, mos6522_q800_via2_reset_hold, |
| NULL, &mdc->parent_phases); |
| dc->vmsd = &vmstate_q800_via2; |
| mdc->portB_write = mos6522_q800_via2_portB_write; |
| } |
| |
| static const TypeInfo mos6522_q800_via2_type_info = { |
| .name = TYPE_MOS6522_Q800_VIA2, |
| .parent = TYPE_MOS6522, |
| .instance_size = sizeof(MOS6522Q800VIA2State), |
| .instance_init = mos6522_q800_via2_init, |
| .class_init = mos6522_q800_via2_class_init, |
| }; |
| |
| static void mac_via_register_types(void) |
| { |
| type_register_static(&mos6522_q800_via1_type_info); |
| type_register_static(&mos6522_q800_via2_type_info); |
| } |
| |
| type_init(mac_via_register_types); |