| /* |
| * QEMU Floppy disk emulator (Intel 82078) |
| * |
| * Copyright (c) 2003, 2007 Jocelyn Mayer |
| * Copyright (c) 2008 Hervé Poussineau |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| /* |
| * The controller is used in Sun4m systems in a slightly different |
| * way. There are changes in DOR register and DMA is not available. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/block/fdc.h" |
| #include "qapi/error.h" |
| #include "qemu/error-report.h" |
| #include "qemu/timer.h" |
| #include "qemu/memalign.h" |
| #include "hw/irq.h" |
| #include "hw/isa/isa.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/qdev-properties-system.h" |
| #include "migration/vmstate.h" |
| #include "hw/block/block.h" |
| #include "sysemu/block-backend.h" |
| #include "sysemu/blockdev.h" |
| #include "sysemu/sysemu.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/module.h" |
| #include "trace.h" |
| #include "qom/object.h" |
| #include "fdc-internal.h" |
| |
| /********************************************************/ |
| /* debug Floppy devices */ |
| |
| #define DEBUG_FLOPPY 0 |
| |
| #define FLOPPY_DPRINTF(fmt, ...) \ |
| do { \ |
| if (DEBUG_FLOPPY) { \ |
| fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \ |
| } \ |
| } while (0) |
| |
| |
| /* Anonymous BlockBackend for empty drive */ |
| static BlockBackend *blk_create_empty_drive(void) |
| { |
| return blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL); |
| } |
| |
| /********************************************************/ |
| /* qdev floppy bus */ |
| |
| #define TYPE_FLOPPY_BUS "floppy-bus" |
| OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS) |
| |
| static FDrive *get_drv(FDCtrl *fdctrl, int unit); |
| |
| static const TypeInfo floppy_bus_info = { |
| .name = TYPE_FLOPPY_BUS, |
| .parent = TYPE_BUS, |
| .instance_size = sizeof(FloppyBus), |
| }; |
| |
| static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev) |
| { |
| qbus_init(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL); |
| bus->fdc = fdc; |
| } |
| |
| |
| /********************************************************/ |
| /* Floppy drive emulation */ |
| |
| /* In many cases, the total sector size of a format is enough to uniquely |
| * identify it. However, there are some total sector collisions between |
| * formats of different physical size, and these are noted below by |
| * highlighting the total sector size for entries with collisions. */ |
| const FDFormat fd_formats[] = { |
| /* First entry is default format */ |
| /* 1.44 MB 3"1/2 floppy disks */ |
| { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */ |
| { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */ |
| { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, }, |
| { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, }, |
| { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, }, |
| { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, }, |
| { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, }, |
| { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, }, |
| /* 2.88 MB 3"1/2 floppy disks */ |
| { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, }, |
| { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, }, |
| { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, }, |
| { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, }, |
| { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, }, |
| /* 720 kB 3"1/2 floppy disks */ |
| { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */ |
| { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, }, |
| { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, }, |
| { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, }, |
| { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, }, |
| { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, }, |
| /* 1.2 MB 5"1/4 floppy disks */ |
| { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, }, |
| { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */ |
| { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, }, |
| { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, }, |
| { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */ |
| /* 720 kB 5"1/4 floppy disks */ |
| { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */ |
| { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, }, |
| /* 360 kB 5"1/4 floppy disks */ |
| { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */ |
| { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, }, |
| { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, }, |
| { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, }, |
| /* 320 kB 5"1/4 floppy disks */ |
| { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, }, |
| { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, }, |
| /* 360 kB must match 5"1/4 better than 3"1/2... */ |
| { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */ |
| /* end */ |
| { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, }, |
| }; |
| |
| static FDriveSize drive_size(FloppyDriveType drive) |
| { |
| switch (drive) { |
| case FLOPPY_DRIVE_TYPE_120: |
| return FDRIVE_SIZE_525; |
| case FLOPPY_DRIVE_TYPE_144: |
| case FLOPPY_DRIVE_TYPE_288: |
| return FDRIVE_SIZE_350; |
| default: |
| return FDRIVE_SIZE_UNKNOWN; |
| } |
| } |
| |
| #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv) |
| #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive)) |
| |
| /* Will always be a fixed parameter for us */ |
| #define FD_SECTOR_LEN 512 |
| #define FD_SECTOR_SC 2 /* Sector size code */ |
| #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */ |
| |
| |
| static FloppyDriveType get_fallback_drive_type(FDrive *drv); |
| |
| /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU |
| * currently goes through some pains to keep seeks within the bounds |
| * established by last_sect and max_track. Correcting this is difficult, |
| * as refactoring FDC code tends to expose nasty bugs in the Linux kernel. |
| * |
| * For now: allow empty drives to have large bounds so we can seek around, |
| * with the understanding that when a diskette is inserted, the bounds will |
| * properly tighten to match the geometry of that inserted medium. |
| */ |
| static void fd_empty_seek_hack(FDrive *drv) |
| { |
| drv->last_sect = 0xFF; |
| drv->max_track = 0xFF; |
| } |
| |
| static void fd_init(FDrive *drv) |
| { |
| /* Drive */ |
| drv->perpendicular = 0; |
| /* Disk */ |
| drv->disk = FLOPPY_DRIVE_TYPE_NONE; |
| drv->last_sect = 0; |
| drv->max_track = 0; |
| drv->ro = true; |
| drv->media_changed = 1; |
| } |
| |
| #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1) |
| |
| static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect, |
| uint8_t last_sect, uint8_t num_sides) |
| { |
| return (((track * num_sides) + head) * last_sect) + sect - 1; |
| } |
| |
| /* Returns current position, in sectors, for given drive */ |
| static int fd_sector(FDrive *drv) |
| { |
| return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect, |
| NUM_SIDES(drv)); |
| } |
| |
| /* Returns current position, in bytes, for given drive */ |
| static int fd_offset(FDrive *drv) |
| { |
| g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS); |
| return fd_sector(drv) << BDRV_SECTOR_BITS; |
| } |
| |
| /* Seek to a new position: |
| * returns 0 if already on right track |
| * returns 1 if track changed |
| * returns 2 if track is invalid |
| * returns 3 if sector is invalid |
| * returns 4 if seek is disabled |
| */ |
| static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect, |
| int enable_seek) |
| { |
| uint32_t sector; |
| int ret; |
| |
| if (track > drv->max_track || |
| (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) { |
| FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", |
| head, track, sect, 1, |
| (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, |
| drv->max_track, drv->last_sect); |
| return 2; |
| } |
| if (sect > drv->last_sect) { |
| FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", |
| head, track, sect, 1, |
| (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, |
| drv->max_track, drv->last_sect); |
| return 3; |
| } |
| sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv)); |
| ret = 0; |
| if (sector != fd_sector(drv)) { |
| #if 0 |
| if (!enable_seek) { |
| FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x" |
| " (max=%d %02x %02x)\n", |
| head, track, sect, 1, drv->max_track, |
| drv->last_sect); |
| return 4; |
| } |
| #endif |
| drv->head = head; |
| if (drv->track != track) { |
| if (drv->blk != NULL && blk_is_inserted(drv->blk)) { |
| drv->media_changed = 0; |
| } |
| ret = 1; |
| } |
| drv->track = track; |
| drv->sect = sect; |
| } |
| |
| if (drv->blk == NULL || !blk_is_inserted(drv->blk)) { |
| ret = 2; |
| } |
| |
| return ret; |
| } |
| |
| /* Set drive back to track 0 */ |
| static void fd_recalibrate(FDrive *drv) |
| { |
| FLOPPY_DPRINTF("recalibrate\n"); |
| fd_seek(drv, 0, 0, 1, 1); |
| } |
| |
| /** |
| * Determine geometry based on inserted diskette. |
| * Will not operate on an empty drive. |
| * |
| * @return: 0 on success, -1 if the drive is empty. |
| */ |
| static int pick_geometry(FDrive *drv) |
| { |
| BlockBackend *blk = drv->blk; |
| const FDFormat *parse; |
| uint64_t nb_sectors, size; |
| int i; |
| int match, size_match, type_match; |
| bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO; |
| |
| /* We can only pick a geometry if we have a diskette. */ |
| if (!drv->blk || !blk_is_inserted(drv->blk) || |
| drv->drive == FLOPPY_DRIVE_TYPE_NONE) |
| { |
| return -1; |
| } |
| |
| /* We need to determine the likely geometry of the inserted medium. |
| * In order of preference, we look for: |
| * (1) The same drive type and number of sectors, |
| * (2) The same diskette size and number of sectors, |
| * (3) The same drive type. |
| * |
| * In all cases, matches that occur higher in the drive table will take |
| * precedence over matches that occur later in the table. |
| */ |
| blk_get_geometry(blk, &nb_sectors); |
| match = size_match = type_match = -1; |
| for (i = 0; ; i++) { |
| parse = &fd_formats[i]; |
| if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) { |
| break; |
| } |
| size = (parse->max_head + 1) * parse->max_track * parse->last_sect; |
| if (nb_sectors == size) { |
| if (magic || parse->drive == drv->drive) { |
| /* (1) perfect match -- nb_sectors and drive type */ |
| goto out; |
| } else if (drive_size(parse->drive) == drive_size(drv->drive)) { |
| /* (2) size match -- nb_sectors and physical medium size */ |
| match = (match == -1) ? i : match; |
| } else { |
| /* This is suspicious -- Did the user misconfigure? */ |
| size_match = (size_match == -1) ? i : size_match; |
| } |
| } else if (type_match == -1) { |
| if ((parse->drive == drv->drive) || |
| (magic && (parse->drive == get_fallback_drive_type(drv)))) { |
| /* (3) type match -- nb_sectors mismatch, but matches the type |
| * specified explicitly by the user, or matches the fallback |
| * default type when using the drive autodetect mechanism */ |
| type_match = i; |
| } |
| } |
| } |
| |
| /* No exact match found */ |
| if (match == -1) { |
| if (size_match != -1) { |
| parse = &fd_formats[size_match]; |
| FLOPPY_DPRINTF("User requested floppy drive type '%s', " |
| "but inserted medium appears to be a " |
| "%"PRId64" sector '%s' type\n", |
| FloppyDriveType_str(drv->drive), |
| nb_sectors, |
| FloppyDriveType_str(parse->drive)); |
| } |
| assert(type_match != -1 && "misconfigured fd_format"); |
| match = type_match; |
| } |
| parse = &(fd_formats[match]); |
| |
| out: |
| if (parse->max_head == 0) { |
| drv->flags &= ~FDISK_DBL_SIDES; |
| } else { |
| drv->flags |= FDISK_DBL_SIDES; |
| } |
| drv->max_track = parse->max_track; |
| drv->last_sect = parse->last_sect; |
| drv->disk = parse->drive; |
| drv->media_rate = parse->rate; |
| return 0; |
| } |
| |
| static void pick_drive_type(FDrive *drv) |
| { |
| if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) { |
| return; |
| } |
| |
| if (pick_geometry(drv) == 0) { |
| drv->drive = drv->disk; |
| } else { |
| drv->drive = get_fallback_drive_type(drv); |
| } |
| |
| g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO); |
| } |
| |
| /* Revalidate a disk drive after a disk change */ |
| static void fd_revalidate(FDrive *drv) |
| { |
| int rc; |
| |
| FLOPPY_DPRINTF("revalidate\n"); |
| if (drv->blk != NULL) { |
| drv->ro = !blk_is_writable(drv->blk); |
| if (!blk_is_inserted(drv->blk)) { |
| FLOPPY_DPRINTF("No disk in drive\n"); |
| drv->disk = FLOPPY_DRIVE_TYPE_NONE; |
| fd_empty_seek_hack(drv); |
| } else if (!drv->media_validated) { |
| rc = pick_geometry(drv); |
| if (rc) { |
| FLOPPY_DPRINTF("Could not validate floppy drive media"); |
| } else { |
| drv->media_validated = true; |
| FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n", |
| (drv->flags & FDISK_DBL_SIDES) ? 2 : 1, |
| drv->max_track, drv->last_sect, |
| drv->ro ? "ro" : "rw"); |
| } |
| } |
| } else { |
| FLOPPY_DPRINTF("No drive connected\n"); |
| drv->last_sect = 0; |
| drv->max_track = 0; |
| drv->flags &= ~FDISK_DBL_SIDES; |
| drv->drive = FLOPPY_DRIVE_TYPE_NONE; |
| drv->disk = FLOPPY_DRIVE_TYPE_NONE; |
| } |
| } |
| |
| static void fd_change_cb(void *opaque, bool load, Error **errp) |
| { |
| FDrive *drive = opaque; |
| |
| if (!load) { |
| blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort); |
| } else { |
| if (!blkconf_apply_backend_options(drive->conf, |
| !blk_supports_write_perm(drive->blk), |
| false, errp)) { |
| return; |
| } |
| } |
| |
| drive->media_changed = 1; |
| drive->media_validated = false; |
| fd_revalidate(drive); |
| } |
| |
| static const BlockDevOps fd_block_ops = { |
| .change_media_cb = fd_change_cb, |
| }; |
| |
| |
| #define TYPE_FLOPPY_DRIVE "floppy" |
| OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE) |
| |
| struct FloppyDrive { |
| DeviceState qdev; |
| uint32_t unit; |
| BlockConf conf; |
| FloppyDriveType type; |
| }; |
| |
| static Property floppy_drive_properties[] = { |
| DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1), |
| DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf), |
| DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type, |
| FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, |
| FloppyDriveType), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void floppy_drive_realize(DeviceState *qdev, Error **errp) |
| { |
| FloppyDrive *dev = FLOPPY_DRIVE(qdev); |
| FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus); |
| FDrive *drive; |
| bool read_only; |
| int ret; |
| |
| if (dev->unit == -1) { |
| for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) { |
| drive = get_drv(bus->fdc, dev->unit); |
| if (!drive->blk) { |
| break; |
| } |
| } |
| } |
| |
| if (dev->unit >= MAX_FD) { |
| error_setg(errp, "Can't create floppy unit %d, bus supports " |
| "only %d units", dev->unit, MAX_FD); |
| return; |
| } |
| |
| drive = get_drv(bus->fdc, dev->unit); |
| if (drive->blk) { |
| error_setg(errp, "Floppy unit %d is in use", dev->unit); |
| return; |
| } |
| |
| if (!dev->conf.blk) { |
| dev->conf.blk = blk_create_empty_drive(); |
| ret = blk_attach_dev(dev->conf.blk, qdev); |
| assert(ret == 0); |
| |
| /* Don't take write permissions on an empty drive to allow attaching a |
| * read-only node later */ |
| read_only = true; |
| } else { |
| read_only = !blk_bs(dev->conf.blk) || |
| !blk_supports_write_perm(dev->conf.blk); |
| } |
| |
| if (!blkconf_blocksizes(&dev->conf, errp)) { |
| return; |
| } |
| |
| if (dev->conf.logical_block_size != 512 || |
| dev->conf.physical_block_size != 512) |
| { |
| error_setg(errp, "Physical and logical block size must " |
| "be 512 for floppy"); |
| return; |
| } |
| |
| /* rerror/werror aren't supported by fdc and therefore not even registered |
| * with qdev. So set the defaults manually before they are used in |
| * blkconf_apply_backend_options(). */ |
| dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO; |
| dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO; |
| |
| if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) { |
| return; |
| } |
| |
| /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us |
| * for empty drives. */ |
| if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC && |
| blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) { |
| error_setg(errp, "fdc doesn't support drive option werror"); |
| return; |
| } |
| if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) { |
| error_setg(errp, "fdc doesn't support drive option rerror"); |
| return; |
| } |
| |
| drive->conf = &dev->conf; |
| drive->blk = dev->conf.blk; |
| drive->fdctrl = bus->fdc; |
| |
| fd_init(drive); |
| blk_set_dev_ops(drive->blk, &fd_block_ops, drive); |
| |
| /* Keep 'type' qdev property and FDrive->drive in sync */ |
| drive->drive = dev->type; |
| pick_drive_type(drive); |
| dev->type = drive->drive; |
| |
| fd_revalidate(drive); |
| } |
| |
| static void floppy_drive_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *k = DEVICE_CLASS(klass); |
| k->realize = floppy_drive_realize; |
| set_bit(DEVICE_CATEGORY_STORAGE, k->categories); |
| k->bus_type = TYPE_FLOPPY_BUS; |
| device_class_set_props(k, floppy_drive_properties); |
| k->desc = "virtual floppy drive"; |
| } |
| |
| static const TypeInfo floppy_drive_info = { |
| .name = TYPE_FLOPPY_DRIVE, |
| .parent = TYPE_DEVICE, |
| .instance_size = sizeof(FloppyDrive), |
| .class_init = floppy_drive_class_init, |
| }; |
| |
| /********************************************************/ |
| /* Intel 82078 floppy disk controller emulation */ |
| |
| static void fdctrl_to_command_phase(FDCtrl *fdctrl); |
| static void fdctrl_raise_irq(FDCtrl *fdctrl); |
| static FDrive *get_cur_drv(FDCtrl *fdctrl); |
| |
| static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl); |
| static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl); |
| static uint32_t fdctrl_read_dor(FDCtrl *fdctrl); |
| static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value); |
| static uint32_t fdctrl_read_tape(FDCtrl *fdctrl); |
| static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value); |
| static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl); |
| static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value); |
| static uint32_t fdctrl_read_data(FDCtrl *fdctrl); |
| static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value); |
| static uint32_t fdctrl_read_dir(FDCtrl *fdctrl); |
| static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value); |
| |
| enum { |
| FD_DIR_WRITE = 0, |
| FD_DIR_READ = 1, |
| FD_DIR_SCANE = 2, |
| FD_DIR_SCANL = 3, |
| FD_DIR_SCANH = 4, |
| FD_DIR_VERIFY = 5, |
| }; |
| |
| enum { |
| FD_STATE_MULTI = 0x01, /* multi track flag */ |
| FD_STATE_FORMAT = 0x02, /* format flag */ |
| }; |
| |
| enum { |
| FD_REG_SRA = 0x00, |
| FD_REG_SRB = 0x01, |
| FD_REG_DOR = 0x02, |
| FD_REG_TDR = 0x03, |
| FD_REG_MSR = 0x04, |
| FD_REG_DSR = 0x04, |
| FD_REG_FIFO = 0x05, |
| FD_REG_DIR = 0x07, |
| FD_REG_CCR = 0x07, |
| }; |
| |
| enum { |
| FD_CMD_READ_TRACK = 0x02, |
| FD_CMD_SPECIFY = 0x03, |
| FD_CMD_SENSE_DRIVE_STATUS = 0x04, |
| FD_CMD_WRITE = 0x05, |
| FD_CMD_READ = 0x06, |
| FD_CMD_RECALIBRATE = 0x07, |
| FD_CMD_SENSE_INTERRUPT_STATUS = 0x08, |
| FD_CMD_WRITE_DELETED = 0x09, |
| FD_CMD_READ_ID = 0x0a, |
| FD_CMD_READ_DELETED = 0x0c, |
| FD_CMD_FORMAT_TRACK = 0x0d, |
| FD_CMD_DUMPREG = 0x0e, |
| FD_CMD_SEEK = 0x0f, |
| FD_CMD_VERSION = 0x10, |
| FD_CMD_SCAN_EQUAL = 0x11, |
| FD_CMD_PERPENDICULAR_MODE = 0x12, |
| FD_CMD_CONFIGURE = 0x13, |
| FD_CMD_LOCK = 0x14, |
| FD_CMD_VERIFY = 0x16, |
| FD_CMD_POWERDOWN_MODE = 0x17, |
| FD_CMD_PART_ID = 0x18, |
| FD_CMD_SCAN_LOW_OR_EQUAL = 0x19, |
| FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d, |
| FD_CMD_SAVE = 0x2e, |
| FD_CMD_OPTION = 0x33, |
| FD_CMD_RESTORE = 0x4e, |
| FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e, |
| FD_CMD_RELATIVE_SEEK_OUT = 0x8f, |
| FD_CMD_FORMAT_AND_WRITE = 0xcd, |
| FD_CMD_RELATIVE_SEEK_IN = 0xcf, |
| }; |
| |
| enum { |
| FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */ |
| FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */ |
| FD_CONFIG_POLL = 0x10, /* Poll enabled */ |
| FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */ |
| FD_CONFIG_EIS = 0x40, /* No implied seeks */ |
| }; |
| |
| enum { |
| FD_SR0_DS0 = 0x01, |
| FD_SR0_DS1 = 0x02, |
| FD_SR0_HEAD = 0x04, |
| FD_SR0_EQPMT = 0x10, |
| FD_SR0_SEEK = 0x20, |
| FD_SR0_ABNTERM = 0x40, |
| FD_SR0_INVCMD = 0x80, |
| FD_SR0_RDYCHG = 0xc0, |
| }; |
| |
| enum { |
| FD_SR1_MA = 0x01, /* Missing address mark */ |
| FD_SR1_NW = 0x02, /* Not writable */ |
| FD_SR1_EC = 0x80, /* End of cylinder */ |
| }; |
| |
| enum { |
| FD_SR2_SNS = 0x04, /* Scan not satisfied */ |
| FD_SR2_SEH = 0x08, /* Scan equal hit */ |
| }; |
| |
| enum { |
| FD_SRA_DIR = 0x01, |
| FD_SRA_nWP = 0x02, |
| FD_SRA_nINDX = 0x04, |
| FD_SRA_HDSEL = 0x08, |
| FD_SRA_nTRK0 = 0x10, |
| FD_SRA_STEP = 0x20, |
| FD_SRA_nDRV2 = 0x40, |
| FD_SRA_INTPEND = 0x80, |
| }; |
| |
| enum { |
| FD_SRB_MTR0 = 0x01, |
| FD_SRB_MTR1 = 0x02, |
| FD_SRB_WGATE = 0x04, |
| FD_SRB_RDATA = 0x08, |
| FD_SRB_WDATA = 0x10, |
| FD_SRB_DR0 = 0x20, |
| }; |
| |
| enum { |
| #if MAX_FD == 4 |
| FD_DOR_SELMASK = 0x03, |
| #else |
| FD_DOR_SELMASK = 0x01, |
| #endif |
| FD_DOR_nRESET = 0x04, |
| FD_DOR_DMAEN = 0x08, |
| FD_DOR_MOTEN0 = 0x10, |
| FD_DOR_MOTEN1 = 0x20, |
| FD_DOR_MOTEN2 = 0x40, |
| FD_DOR_MOTEN3 = 0x80, |
| }; |
| |
| enum { |
| #if MAX_FD == 4 |
| FD_TDR_BOOTSEL = 0x0c, |
| #else |
| FD_TDR_BOOTSEL = 0x04, |
| #endif |
| }; |
| |
| enum { |
| FD_DSR_DRATEMASK= 0x03, |
| FD_DSR_PWRDOWN = 0x40, |
| FD_DSR_SWRESET = 0x80, |
| }; |
| |
| enum { |
| FD_MSR_DRV0BUSY = 0x01, |
| FD_MSR_DRV1BUSY = 0x02, |
| FD_MSR_DRV2BUSY = 0x04, |
| FD_MSR_DRV3BUSY = 0x08, |
| FD_MSR_CMDBUSY = 0x10, |
| FD_MSR_NONDMA = 0x20, |
| FD_MSR_DIO = 0x40, |
| FD_MSR_RQM = 0x80, |
| }; |
| |
| enum { |
| FD_DIR_DSKCHG = 0x80, |
| }; |
| |
| /* |
| * See chapter 5.0 "Controller phases" of the spec: |
| * |
| * Command phase: |
| * The host writes a command and its parameters into the FIFO. The command |
| * phase is completed when all parameters for the command have been supplied, |
| * and execution phase is entered. |
| * |
| * Execution phase: |
| * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO |
| * contains the payload now, otherwise it's unused. When all bytes of the |
| * required data have been transferred, the state is switched to either result |
| * phase (if the command produces status bytes) or directly back into the |
| * command phase for the next command. |
| * |
| * Result phase: |
| * The host reads out the FIFO, which contains one or more result bytes now. |
| */ |
| enum { |
| /* Only for migration: reconstruct phase from registers like qemu 2.3 */ |
| FD_PHASE_RECONSTRUCT = 0, |
| |
| FD_PHASE_COMMAND = 1, |
| FD_PHASE_EXECUTION = 2, |
| FD_PHASE_RESULT = 3, |
| }; |
| |
| #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI) |
| #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT) |
| |
| static FloppyDriveType get_fallback_drive_type(FDrive *drv) |
| { |
| return drv->fdctrl->fallback; |
| } |
| |
| uint32_t fdctrl_read(void *opaque, uint32_t reg) |
| { |
| FDCtrl *fdctrl = opaque; |
| uint32_t retval; |
| |
| reg &= 7; |
| switch (reg) { |
| case FD_REG_SRA: |
| retval = fdctrl_read_statusA(fdctrl); |
| break; |
| case FD_REG_SRB: |
| retval = fdctrl_read_statusB(fdctrl); |
| break; |
| case FD_REG_DOR: |
| retval = fdctrl_read_dor(fdctrl); |
| break; |
| case FD_REG_TDR: |
| retval = fdctrl_read_tape(fdctrl); |
| break; |
| case FD_REG_MSR: |
| retval = fdctrl_read_main_status(fdctrl); |
| break; |
| case FD_REG_FIFO: |
| retval = fdctrl_read_data(fdctrl); |
| break; |
| case FD_REG_DIR: |
| retval = fdctrl_read_dir(fdctrl); |
| break; |
| default: |
| retval = (uint32_t)(-1); |
| break; |
| } |
| trace_fdc_ioport_read(reg, retval); |
| |
| return retval; |
| } |
| |
| void fdctrl_write(void *opaque, uint32_t reg, uint32_t value) |
| { |
| FDCtrl *fdctrl = opaque; |
| |
| reg &= 7; |
| trace_fdc_ioport_write(reg, value); |
| switch (reg) { |
| case FD_REG_DOR: |
| fdctrl_write_dor(fdctrl, value); |
| break; |
| case FD_REG_TDR: |
| fdctrl_write_tape(fdctrl, value); |
| break; |
| case FD_REG_DSR: |
| fdctrl_write_rate(fdctrl, value); |
| break; |
| case FD_REG_FIFO: |
| fdctrl_write_data(fdctrl, value); |
| break; |
| case FD_REG_CCR: |
| fdctrl_write_ccr(fdctrl, value); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static bool fdrive_media_changed_needed(void *opaque) |
| { |
| FDrive *drive = opaque; |
| |
| return (drive->blk != NULL && drive->media_changed != 1); |
| } |
| |
| static const VMStateDescription vmstate_fdrive_media_changed = { |
| .name = "fdrive/media_changed", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = fdrive_media_changed_needed, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT8(media_changed, FDrive), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_fdrive_media_rate = { |
| .name = "fdrive/media_rate", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT8(media_rate, FDrive), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static bool fdrive_perpendicular_needed(void *opaque) |
| { |
| FDrive *drive = opaque; |
| |
| return drive->perpendicular != 0; |
| } |
| |
| static const VMStateDescription vmstate_fdrive_perpendicular = { |
| .name = "fdrive/perpendicular", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = fdrive_perpendicular_needed, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT8(perpendicular, FDrive), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static int fdrive_post_load(void *opaque, int version_id) |
| { |
| fd_revalidate(opaque); |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_fdrive = { |
| .name = "fdrive", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .post_load = fdrive_post_load, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT8(head, FDrive), |
| VMSTATE_UINT8(track, FDrive), |
| VMSTATE_UINT8(sect, FDrive), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription * const []) { |
| &vmstate_fdrive_media_changed, |
| &vmstate_fdrive_media_rate, |
| &vmstate_fdrive_perpendicular, |
| NULL |
| } |
| }; |
| |
| /* |
| * Reconstructs the phase from register values according to the logic that was |
| * implemented in qemu 2.3. This is the default value that is used if the phase |
| * subsection is not present on migration. |
| * |
| * Don't change this function to reflect newer qemu versions, it is part of |
| * the migration ABI. |
| */ |
| static int reconstruct_phase(FDCtrl *fdctrl) |
| { |
| if (fdctrl->msr & FD_MSR_NONDMA) { |
| return FD_PHASE_EXECUTION; |
| } else if ((fdctrl->msr & FD_MSR_RQM) == 0) { |
| /* qemu 2.3 disabled RQM only during DMA transfers */ |
| return FD_PHASE_EXECUTION; |
| } else if (fdctrl->msr & FD_MSR_DIO) { |
| return FD_PHASE_RESULT; |
| } else { |
| return FD_PHASE_COMMAND; |
| } |
| } |
| |
| static int fdc_pre_save(void *opaque) |
| { |
| FDCtrl *s = opaque; |
| |
| s->dor_vmstate = s->dor | GET_CUR_DRV(s); |
| |
| return 0; |
| } |
| |
| static int fdc_pre_load(void *opaque) |
| { |
| FDCtrl *s = opaque; |
| s->phase = FD_PHASE_RECONSTRUCT; |
| return 0; |
| } |
| |
| static int fdc_post_load(void *opaque, int version_id) |
| { |
| FDCtrl *s = opaque; |
| |
| SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK); |
| s->dor = s->dor_vmstate & ~FD_DOR_SELMASK; |
| |
| if (s->phase == FD_PHASE_RECONSTRUCT) { |
| s->phase = reconstruct_phase(s); |
| } |
| |
| return 0; |
| } |
| |
| static bool fdc_reset_sensei_needed(void *opaque) |
| { |
| FDCtrl *s = opaque; |
| |
| return s->reset_sensei != 0; |
| } |
| |
| static const VMStateDescription vmstate_fdc_reset_sensei = { |
| .name = "fdc/reset_sensei", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = fdc_reset_sensei_needed, |
| .fields = (const VMStateField[]) { |
| VMSTATE_INT32(reset_sensei, FDCtrl), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static bool fdc_result_timer_needed(void *opaque) |
| { |
| FDCtrl *s = opaque; |
| |
| return timer_pending(s->result_timer); |
| } |
| |
| static const VMStateDescription vmstate_fdc_result_timer = { |
| .name = "fdc/result_timer", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = fdc_result_timer_needed, |
| .fields = (const VMStateField[]) { |
| VMSTATE_TIMER_PTR(result_timer, FDCtrl), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static bool fdc_phase_needed(void *opaque) |
| { |
| FDCtrl *fdctrl = opaque; |
| |
| return reconstruct_phase(fdctrl) != fdctrl->phase; |
| } |
| |
| static const VMStateDescription vmstate_fdc_phase = { |
| .name = "fdc/phase", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = fdc_phase_needed, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT8(phase, FDCtrl), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| const VMStateDescription vmstate_fdc = { |
| .name = "fdc", |
| .version_id = 2, |
| .minimum_version_id = 2, |
| .pre_save = fdc_pre_save, |
| .pre_load = fdc_pre_load, |
| .post_load = fdc_post_load, |
| .fields = (const VMStateField[]) { |
| /* Controller State */ |
| VMSTATE_UINT8(sra, FDCtrl), |
| VMSTATE_UINT8(srb, FDCtrl), |
| VMSTATE_UINT8(dor_vmstate, FDCtrl), |
| VMSTATE_UINT8(tdr, FDCtrl), |
| VMSTATE_UINT8(dsr, FDCtrl), |
| VMSTATE_UINT8(msr, FDCtrl), |
| VMSTATE_UINT8(status0, FDCtrl), |
| VMSTATE_UINT8(status1, FDCtrl), |
| VMSTATE_UINT8(status2, FDCtrl), |
| /* Command FIFO */ |
| VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8, |
| uint8_t), |
| VMSTATE_UINT32(data_pos, FDCtrl), |
| VMSTATE_UINT32(data_len, FDCtrl), |
| VMSTATE_UINT8(data_state, FDCtrl), |
| VMSTATE_UINT8(data_dir, FDCtrl), |
| VMSTATE_UINT8(eot, FDCtrl), |
| /* States kept only to be returned back */ |
| VMSTATE_UINT8(timer0, FDCtrl), |
| VMSTATE_UINT8(timer1, FDCtrl), |
| VMSTATE_UINT8(precomp_trk, FDCtrl), |
| VMSTATE_UINT8(config, FDCtrl), |
| VMSTATE_UINT8(lock, FDCtrl), |
| VMSTATE_UINT8(pwrd, FDCtrl), |
| VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL), |
| VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1, |
| vmstate_fdrive, FDrive), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription * const []) { |
| &vmstate_fdc_reset_sensei, |
| &vmstate_fdc_result_timer, |
| &vmstate_fdc_phase, |
| NULL |
| } |
| }; |
| |
| /* Change IRQ state */ |
| static void fdctrl_reset_irq(FDCtrl *fdctrl) |
| { |
| fdctrl->status0 = 0; |
| if (!(fdctrl->sra & FD_SRA_INTPEND)) |
| return; |
| FLOPPY_DPRINTF("Reset interrupt\n"); |
| qemu_set_irq(fdctrl->irq, 0); |
| fdctrl->sra &= ~FD_SRA_INTPEND; |
| } |
| |
| static void fdctrl_raise_irq(FDCtrl *fdctrl) |
| { |
| if (!(fdctrl->sra & FD_SRA_INTPEND)) { |
| qemu_set_irq(fdctrl->irq, 1); |
| fdctrl->sra |= FD_SRA_INTPEND; |
| } |
| |
| fdctrl->reset_sensei = 0; |
| FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0); |
| } |
| |
| /* Reset controller */ |
| void fdctrl_reset(FDCtrl *fdctrl, int do_irq) |
| { |
| int i; |
| |
| FLOPPY_DPRINTF("reset controller\n"); |
| fdctrl_reset_irq(fdctrl); |
| /* Initialise controller */ |
| fdctrl->sra = 0; |
| fdctrl->srb = 0xc0; |
| if (!fdctrl->drives[1].blk) { |
| fdctrl->sra |= FD_SRA_nDRV2; |
| } |
| fdctrl->cur_drv = 0; |
| fdctrl->dor = FD_DOR_nRESET; |
| fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0; |
| fdctrl->msr = FD_MSR_RQM; |
| fdctrl->reset_sensei = 0; |
| timer_del(fdctrl->result_timer); |
| /* FIFO state */ |
| fdctrl->data_pos = 0; |
| fdctrl->data_len = 0; |
| fdctrl->data_state = 0; |
| fdctrl->data_dir = FD_DIR_WRITE; |
| for (i = 0; i < MAX_FD; i++) |
| fd_recalibrate(&fdctrl->drives[i]); |
| fdctrl_to_command_phase(fdctrl); |
| if (do_irq) { |
| fdctrl->status0 |= FD_SR0_RDYCHG; |
| fdctrl_raise_irq(fdctrl); |
| fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT; |
| } |
| } |
| |
| static inline FDrive *drv0(FDCtrl *fdctrl) |
| { |
| return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2]; |
| } |
| |
| static inline FDrive *drv1(FDCtrl *fdctrl) |
| { |
| if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2)) |
| return &fdctrl->drives[1]; |
| else |
| return &fdctrl->drives[0]; |
| } |
| |
| #if MAX_FD == 4 |
| static inline FDrive *drv2(FDCtrl *fdctrl) |
| { |
| if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2)) |
| return &fdctrl->drives[2]; |
| else |
| return &fdctrl->drives[1]; |
| } |
| |
| static inline FDrive *drv3(FDCtrl *fdctrl) |
| { |
| if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2)) |
| return &fdctrl->drives[3]; |
| else |
| return &fdctrl->drives[2]; |
| } |
| #endif |
| |
| static FDrive *get_drv(FDCtrl *fdctrl, int unit) |
| { |
| switch (unit) { |
| case 0: return drv0(fdctrl); |
| case 1: return drv1(fdctrl); |
| #if MAX_FD == 4 |
| case 2: return drv2(fdctrl); |
| case 3: return drv3(fdctrl); |
| #endif |
| default: return NULL; |
| } |
| } |
| |
| static FDrive *get_cur_drv(FDCtrl *fdctrl) |
| { |
| FDrive *cur_drv = get_drv(fdctrl, fdctrl->cur_drv); |
| |
| if (!cur_drv->blk) { |
| /* |
| * Kludge: empty drive line selected. Create an anonymous |
| * BlockBackend to avoid NULL deref with various BlockBackend |
| * API calls within this model (CVE-2021-20196). |
| * Due to the controller QOM model limitations, we don't |
| * attach the created to the controller device. |
| */ |
| cur_drv->blk = blk_create_empty_drive(); |
| } |
| return cur_drv; |
| } |
| |
| /* Status A register : 0x00 (read-only) */ |
| static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl) |
| { |
| uint32_t retval = fdctrl->sra; |
| |
| FLOPPY_DPRINTF("status register A: 0x%02x\n", retval); |
| |
| return retval; |
| } |
| |
| /* Status B register : 0x01 (read-only) */ |
| static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl) |
| { |
| uint32_t retval = fdctrl->srb; |
| |
| FLOPPY_DPRINTF("status register B: 0x%02x\n", retval); |
| |
| return retval; |
| } |
| |
| /* Digital output register : 0x02 */ |
| static uint32_t fdctrl_read_dor(FDCtrl *fdctrl) |
| { |
| uint32_t retval = fdctrl->dor; |
| |
| /* Selected drive */ |
| retval |= fdctrl->cur_drv; |
| FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval); |
| |
| return retval; |
| } |
| |
| static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value) |
| { |
| FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value); |
| |
| /* Motors */ |
| if (value & FD_DOR_MOTEN0) |
| fdctrl->srb |= FD_SRB_MTR0; |
| else |
| fdctrl->srb &= ~FD_SRB_MTR0; |
| if (value & FD_DOR_MOTEN1) |
| fdctrl->srb |= FD_SRB_MTR1; |
| else |
| fdctrl->srb &= ~FD_SRB_MTR1; |
| |
| /* Drive */ |
| if (value & 1) |
| fdctrl->srb |= FD_SRB_DR0; |
| else |
| fdctrl->srb &= ~FD_SRB_DR0; |
| |
| /* Reset */ |
| if (!(value & FD_DOR_nRESET)) { |
| if (fdctrl->dor & FD_DOR_nRESET) { |
| FLOPPY_DPRINTF("controller enter RESET state\n"); |
| } |
| } else { |
| if (!(fdctrl->dor & FD_DOR_nRESET)) { |
| FLOPPY_DPRINTF("controller out of RESET state\n"); |
| fdctrl_reset(fdctrl, 1); |
| fdctrl->dsr &= ~FD_DSR_PWRDOWN; |
| } |
| } |
| /* Selected drive */ |
| fdctrl->cur_drv = value & FD_DOR_SELMASK; |
| |
| fdctrl->dor = value; |
| } |
| |
| /* Tape drive register : 0x03 */ |
| static uint32_t fdctrl_read_tape(FDCtrl *fdctrl) |
| { |
| uint32_t retval = fdctrl->tdr; |
| |
| FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval); |
| |
| return retval; |
| } |
| |
| static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value) |
| { |
| /* Reset mode */ |
| if (!(fdctrl->dor & FD_DOR_nRESET)) { |
| FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); |
| return; |
| } |
| FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value); |
| /* Disk boot selection indicator */ |
| fdctrl->tdr = value & FD_TDR_BOOTSEL; |
| /* Tape indicators: never allow */ |
| } |
| |
| /* Main status register : 0x04 (read) */ |
| static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl) |
| { |
| uint32_t retval = fdctrl->msr; |
| |
| fdctrl->dsr &= ~FD_DSR_PWRDOWN; |
| fdctrl->dor |= FD_DOR_nRESET; |
| |
| FLOPPY_DPRINTF("main status register: 0x%02x\n", retval); |
| |
| return retval; |
| } |
| |
| /* Data select rate register : 0x04 (write) */ |
| static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value) |
| { |
| /* Reset mode */ |
| if (!(fdctrl->dor & FD_DOR_nRESET)) { |
| FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); |
| return; |
| } |
| FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value); |
| /* Reset: autoclear */ |
| if (value & FD_DSR_SWRESET) { |
| fdctrl->dor &= ~FD_DOR_nRESET; |
| fdctrl_reset(fdctrl, 1); |
| fdctrl->dor |= FD_DOR_nRESET; |
| } |
| if (value & FD_DSR_PWRDOWN) { |
| fdctrl_reset(fdctrl, 1); |
| } |
| fdctrl->dsr = value; |
| } |
| |
| /* Configuration control register: 0x07 (write) */ |
| static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value) |
| { |
| /* Reset mode */ |
| if (!(fdctrl->dor & FD_DOR_nRESET)) { |
| FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); |
| return; |
| } |
| FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value); |
| |
| /* Only the rate selection bits used in AT mode, and we |
| * store those in the DSR. |
| */ |
| fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) | |
| (value & FD_DSR_DRATEMASK); |
| } |
| |
| static int fdctrl_media_changed(FDrive *drv) |
| { |
| return drv->media_changed; |
| } |
| |
| /* Digital input register : 0x07 (read-only) */ |
| static uint32_t fdctrl_read_dir(FDCtrl *fdctrl) |
| { |
| uint32_t retval = 0; |
| |
| if (fdctrl_media_changed(get_cur_drv(fdctrl))) { |
| retval |= FD_DIR_DSKCHG; |
| } |
| if (retval != 0) { |
| FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval); |
| } |
| |
| return retval; |
| } |
| |
| /* Clear the FIFO and update the state for receiving the next command */ |
| static void fdctrl_to_command_phase(FDCtrl *fdctrl) |
| { |
| fdctrl->phase = FD_PHASE_COMMAND; |
| fdctrl->data_dir = FD_DIR_WRITE; |
| fdctrl->data_pos = 0; |
| fdctrl->data_len = 1; /* Accept command byte, adjust for params later */ |
| fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO); |
| fdctrl->msr |= FD_MSR_RQM; |
| } |
| |
| /* Update the state to allow the guest to read out the command status. |
| * @fifo_len is the number of result bytes to be read out. */ |
| static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len) |
| { |
| fdctrl->phase = FD_PHASE_RESULT; |
| fdctrl->data_dir = FD_DIR_READ; |
| fdctrl->data_len = fifo_len; |
| fdctrl->data_pos = 0; |
| fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO; |
| } |
| |
| /* Set an error: unimplemented/unknown command */ |
| static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction) |
| { |
| qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n", |
| fdctrl->fifo[0]); |
| fdctrl->fifo[0] = FD_SR0_INVCMD; |
| fdctrl_to_result_phase(fdctrl, 1); |
| } |
| |
| /* Seek to next sector |
| * returns 0 when end of track reached (for DBL_SIDES on head 1) |
| * otherwise returns 1 |
| */ |
| static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv) |
| { |
| FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n", |
| cur_drv->head, cur_drv->track, cur_drv->sect, |
| fd_sector(cur_drv)); |
| /* XXX: cur_drv->sect >= cur_drv->last_sect should be an |
| error in fact */ |
| uint8_t new_head = cur_drv->head; |
| uint8_t new_track = cur_drv->track; |
| uint8_t new_sect = cur_drv->sect; |
| |
| int ret = 1; |
| |
| if (new_sect >= cur_drv->last_sect || |
| new_sect == fdctrl->eot) { |
| new_sect = 1; |
| if (FD_MULTI_TRACK(fdctrl->data_state)) { |
| if (new_head == 0 && |
| (cur_drv->flags & FDISK_DBL_SIDES) != 0) { |
| new_head = 1; |
| } else { |
| new_head = 0; |
| new_track++; |
| fdctrl->status0 |= FD_SR0_SEEK; |
| if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) { |
| ret = 0; |
| } |
| } |
| } else { |
| fdctrl->status0 |= FD_SR0_SEEK; |
| new_track++; |
| ret = 0; |
| } |
| if (ret == 1) { |
| FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n", |
| new_head, new_track, new_sect, fd_sector(cur_drv)); |
| } |
| } else { |
| new_sect++; |
| } |
| fd_seek(cur_drv, new_head, new_track, new_sect, 1); |
| return ret; |
| } |
| |
| /* Callback for transfer end (stop or abort) */ |
| static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0, |
| uint8_t status1, uint8_t status2) |
| { |
| FDrive *cur_drv; |
| cur_drv = get_cur_drv(fdctrl); |
| |
| fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD); |
| fdctrl->status0 |= GET_CUR_DRV(fdctrl); |
| if (cur_drv->head) { |
| fdctrl->status0 |= FD_SR0_HEAD; |
| } |
| fdctrl->status0 |= status0; |
| |
| FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n", |
| status0, status1, status2, fdctrl->status0); |
| fdctrl->fifo[0] = fdctrl->status0; |
| fdctrl->fifo[1] = status1; |
| fdctrl->fifo[2] = status2; |
| fdctrl->fifo[3] = cur_drv->track; |
| fdctrl->fifo[4] = cur_drv->head; |
| fdctrl->fifo[5] = cur_drv->sect; |
| fdctrl->fifo[6] = FD_SECTOR_SC; |
| fdctrl->data_dir = FD_DIR_READ; |
| if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) { |
| IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); |
| k->release_DREQ(fdctrl->dma, fdctrl->dma_chann); |
| } |
| fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO; |
| fdctrl->msr &= ~FD_MSR_NONDMA; |
| |
| fdctrl_to_result_phase(fdctrl, 7); |
| fdctrl_raise_irq(fdctrl); |
| } |
| |
| /* Prepare a data transfer (either DMA or FIFO) */ |
| static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv; |
| uint8_t kh, kt, ks; |
| |
| SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); |
| cur_drv = get_cur_drv(fdctrl); |
| kt = fdctrl->fifo[2]; |
| kh = fdctrl->fifo[3]; |
| ks = fdctrl->fifo[4]; |
| FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n", |
| GET_CUR_DRV(fdctrl), kh, kt, ks, |
| fd_sector_calc(kh, kt, ks, cur_drv->last_sect, |
| NUM_SIDES(cur_drv))); |
| switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { |
| case 2: |
| /* sect too big */ |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); |
| fdctrl->fifo[3] = kt; |
| fdctrl->fifo[4] = kh; |
| fdctrl->fifo[5] = ks; |
| return; |
| case 3: |
| /* track too big */ |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); |
| fdctrl->fifo[3] = kt; |
| fdctrl->fifo[4] = kh; |
| fdctrl->fifo[5] = ks; |
| return; |
| case 4: |
| /* No seek enabled */ |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); |
| fdctrl->fifo[3] = kt; |
| fdctrl->fifo[4] = kh; |
| fdctrl->fifo[5] = ks; |
| return; |
| case 1: |
| fdctrl->status0 |= FD_SR0_SEEK; |
| break; |
| default: |
| break; |
| } |
| |
| /* Check the data rate. If the programmed data rate does not match |
| * the currently inserted medium, the operation has to fail. */ |
| if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { |
| FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n", |
| fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); |
| fdctrl->fifo[3] = kt; |
| fdctrl->fifo[4] = kh; |
| fdctrl->fifo[5] = ks; |
| return; |
| } |
| |
| /* Set the FIFO state */ |
| fdctrl->data_dir = direction; |
| fdctrl->data_pos = 0; |
| assert(fdctrl->msr & FD_MSR_CMDBUSY); |
| if (fdctrl->fifo[0] & 0x80) |
| fdctrl->data_state |= FD_STATE_MULTI; |
| else |
| fdctrl->data_state &= ~FD_STATE_MULTI; |
| if (fdctrl->fifo[5] == 0) { |
| fdctrl->data_len = fdctrl->fifo[8]; |
| } else { |
| int tmp; |
| fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]); |
| tmp = (fdctrl->fifo[6] - ks + 1); |
| if (tmp < 0) { |
| FLOPPY_DPRINTF("invalid EOT: %d\n", tmp); |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); |
| fdctrl->fifo[3] = kt; |
| fdctrl->fifo[4] = kh; |
| fdctrl->fifo[5] = ks; |
| return; |
| } |
| if (fdctrl->fifo[0] & 0x80) |
| tmp += fdctrl->fifo[6]; |
| fdctrl->data_len *= tmp; |
| } |
| fdctrl->eot = fdctrl->fifo[6]; |
| if (fdctrl->dor & FD_DOR_DMAEN) { |
| /* DMA transfer is enabled. */ |
| IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); |
| |
| FLOPPY_DPRINTF("direction=%d (%d - %d)\n", |
| direction, (128 << fdctrl->fifo[5]) * |
| (cur_drv->last_sect - ks + 1), fdctrl->data_len); |
| |
| /* No access is allowed until DMA transfer has completed */ |
| fdctrl->msr &= ~FD_MSR_RQM; |
| if (direction != FD_DIR_VERIFY) { |
| /* |
| * Now, we just have to wait for the DMA controller to |
| * recall us... |
| */ |
| k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann); |
| k->schedule(fdctrl->dma); |
| } else { |
| /* Start transfer */ |
| fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0, |
| fdctrl->data_len); |
| } |
| return; |
| } |
| FLOPPY_DPRINTF("start non-DMA transfer\n"); |
| fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM; |
| if (direction != FD_DIR_WRITE) |
| fdctrl->msr |= FD_MSR_DIO; |
| /* IO based transfer: calculate len */ |
| fdctrl_raise_irq(fdctrl); |
| } |
| |
| /* Prepare a transfer of deleted data */ |
| static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction) |
| { |
| qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n"); |
| |
| /* We don't handle deleted data, |
| * so we don't return *ANYTHING* |
| */ |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); |
| } |
| |
| /* handlers for DMA transfers */ |
| int fdctrl_transfer_handler(void *opaque, int nchan, int dma_pos, int dma_len) |
| { |
| FDCtrl *fdctrl; |
| FDrive *cur_drv; |
| int len, start_pos, rel_pos; |
| uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00; |
| IsaDmaClass *k; |
| |
| fdctrl = opaque; |
| if (fdctrl->msr & FD_MSR_RQM) { |
| FLOPPY_DPRINTF("Not in DMA transfer mode !\n"); |
| return 0; |
| } |
| k = ISADMA_GET_CLASS(fdctrl->dma); |
| cur_drv = get_cur_drv(fdctrl); |
| if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || |
| fdctrl->data_dir == FD_DIR_SCANH) |
| status2 = FD_SR2_SNS; |
| if (dma_len > fdctrl->data_len) |
| dma_len = fdctrl->data_len; |
| if (cur_drv->blk == NULL) { |
| if (fdctrl->data_dir == FD_DIR_WRITE) |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); |
| else |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); |
| len = 0; |
| goto transfer_error; |
| } |
| rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; |
| for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) { |
| len = dma_len - fdctrl->data_pos; |
| if (len + rel_pos > FD_SECTOR_LEN) |
| len = FD_SECTOR_LEN - rel_pos; |
| FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x " |
| "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos, |
| fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head, |
| cur_drv->track, cur_drv->sect, fd_sector(cur_drv), |
| fd_sector(cur_drv) * FD_SECTOR_LEN); |
| if (fdctrl->data_dir != FD_DIR_WRITE || |
| len < FD_SECTOR_LEN || rel_pos != 0) { |
| /* READ & SCAN commands and realign to a sector for WRITE */ |
| if (blk_pread(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE, |
| fdctrl->fifo, 0) < 0) { |
| FLOPPY_DPRINTF("Floppy: error getting sector %d\n", |
| fd_sector(cur_drv)); |
| /* Sure, image size is too small... */ |
| memset(fdctrl->fifo, 0, FD_SECTOR_LEN); |
| } |
| } |
| switch (fdctrl->data_dir) { |
| case FD_DIR_READ: |
| /* READ commands */ |
| k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, |
| fdctrl->data_pos, len); |
| break; |
| case FD_DIR_WRITE: |
| /* WRITE commands */ |
| if (cur_drv->ro) { |
| /* Handle readonly medium early, no need to do DMA, touch the |
| * LED or attempt any writes. A real floppy doesn't attempt |
| * to write to readonly media either. */ |
| fdctrl_stop_transfer(fdctrl, |
| FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW, |
| 0x00); |
| goto transfer_error; |
| } |
| |
| k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, |
| fdctrl->data_pos, len); |
| if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE, |
| fdctrl->fifo, 0) < 0) { |
| FLOPPY_DPRINTF("error writing sector %d\n", |
| fd_sector(cur_drv)); |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); |
| goto transfer_error; |
| } |
| break; |
| case FD_DIR_VERIFY: |
| /* VERIFY commands */ |
| break; |
| default: |
| /* SCAN commands */ |
| { |
| uint8_t tmpbuf[FD_SECTOR_LEN]; |
| int ret; |
| k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos, |
| len); |
| ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len); |
| if (ret == 0) { |
| status2 = FD_SR2_SEH; |
| goto end_transfer; |
| } |
| if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) || |
| (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) { |
| status2 = 0x00; |
| goto end_transfer; |
| } |
| } |
| break; |
| } |
| fdctrl->data_pos += len; |
| rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; |
| if (rel_pos == 0) { |
| /* Seek to next sector */ |
| if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) |
| break; |
| } |
| } |
| end_transfer: |
| len = fdctrl->data_pos - start_pos; |
| FLOPPY_DPRINTF("end transfer %d %d %d\n", |
| fdctrl->data_pos, len, fdctrl->data_len); |
| if (fdctrl->data_dir == FD_DIR_SCANE || |
| fdctrl->data_dir == FD_DIR_SCANL || |
| fdctrl->data_dir == FD_DIR_SCANH) |
| status2 = FD_SR2_SEH; |
| fdctrl->data_len -= len; |
| fdctrl_stop_transfer(fdctrl, status0, status1, status2); |
| transfer_error: |
| |
| return len; |
| } |
| |
| /* Data register : 0x05 */ |
| static uint32_t fdctrl_read_data(FDCtrl *fdctrl) |
| { |
| FDrive *cur_drv; |
| uint32_t retval = 0; |
| uint32_t pos; |
| |
| cur_drv = get_cur_drv(fdctrl); |
| fdctrl->dsr &= ~FD_DSR_PWRDOWN; |
| if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) { |
| FLOPPY_DPRINTF("error: controller not ready for reading\n"); |
| return 0; |
| } |
| |
| /* If data_len spans multiple sectors, the current position in the FIFO |
| * wraps around while fdctrl->data_pos is the real position in the whole |
| * request. */ |
| pos = fdctrl->data_pos; |
| pos %= FD_SECTOR_LEN; |
| |
| switch (fdctrl->phase) { |
| case FD_PHASE_EXECUTION: |
| assert(fdctrl->msr & FD_MSR_NONDMA); |
| if (pos == 0) { |
| if (fdctrl->data_pos != 0) |
| if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { |
| FLOPPY_DPRINTF("error seeking to next sector %d\n", |
| fd_sector(cur_drv)); |
| return 0; |
| } |
| if (blk_pread(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE, |
| fdctrl->fifo, 0) |
| < 0) { |
| FLOPPY_DPRINTF("error getting sector %d\n", |
| fd_sector(cur_drv)); |
| /* Sure, image size is too small... */ |
| memset(fdctrl->fifo, 0, FD_SECTOR_LEN); |
| } |
| } |
| |
| if (++fdctrl->data_pos == fdctrl->data_len) { |
| fdctrl->msr &= ~FD_MSR_RQM; |
| fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); |
| } |
| break; |
| |
| case FD_PHASE_RESULT: |
| assert(!(fdctrl->msr & FD_MSR_NONDMA)); |
| if (++fdctrl->data_pos == fdctrl->data_len) { |
| fdctrl->msr &= ~FD_MSR_RQM; |
| fdctrl_to_command_phase(fdctrl); |
| fdctrl_reset_irq(fdctrl); |
| } |
| break; |
| |
| case FD_PHASE_COMMAND: |
| default: |
| abort(); |
| } |
| |
| retval = fdctrl->fifo[pos]; |
| FLOPPY_DPRINTF("data register: 0x%02x\n", retval); |
| |
| return retval; |
| } |
| |
| static void fdctrl_format_sector(FDCtrl *fdctrl) |
| { |
| FDrive *cur_drv; |
| uint8_t kh, kt, ks; |
| |
| SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); |
| cur_drv = get_cur_drv(fdctrl); |
| kt = fdctrl->fifo[6]; |
| kh = fdctrl->fifo[7]; |
| ks = fdctrl->fifo[8]; |
| FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n", |
| GET_CUR_DRV(fdctrl), kh, kt, ks, |
| fd_sector_calc(kh, kt, ks, cur_drv->last_sect, |
| NUM_SIDES(cur_drv))); |
| switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { |
| case 2: |
| /* sect too big */ |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); |
| fdctrl->fifo[3] = kt; |
| fdctrl->fifo[4] = kh; |
| fdctrl->fifo[5] = ks; |
| return; |
| case 3: |
| /* track too big */ |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); |
| fdctrl->fifo[3] = kt; |
| fdctrl->fifo[4] = kh; |
| fdctrl->fifo[5] = ks; |
| return; |
| case 4: |
| /* No seek enabled */ |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); |
| fdctrl->fifo[3] = kt; |
| fdctrl->fifo[4] = kh; |
| fdctrl->fifo[5] = ks; |
| return; |
| case 1: |
| fdctrl->status0 |= FD_SR0_SEEK; |
| break; |
| default: |
| break; |
| } |
| memset(fdctrl->fifo, 0, FD_SECTOR_LEN); |
| if (cur_drv->blk == NULL || |
| blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE, |
| fdctrl->fifo, 0) < 0) { |
| FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv)); |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); |
| } else { |
| if (cur_drv->sect == cur_drv->last_sect) { |
| fdctrl->data_state &= ~FD_STATE_FORMAT; |
| /* Last sector done */ |
| fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); |
| } else { |
| /* More to do */ |
| fdctrl->data_pos = 0; |
| fdctrl->data_len = 4; |
| } |
| } |
| } |
| |
| static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction) |
| { |
| fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0; |
| fdctrl->fifo[0] = fdctrl->lock << 4; |
| fdctrl_to_result_phase(fdctrl, 1); |
| } |
| |
| static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv = get_cur_drv(fdctrl); |
| |
| /* Drives position */ |
| fdctrl->fifo[0] = drv0(fdctrl)->track; |
| fdctrl->fifo[1] = drv1(fdctrl)->track; |
| #if MAX_FD == 4 |
| fdctrl->fifo[2] = drv2(fdctrl)->track; |
| fdctrl->fifo[3] = drv3(fdctrl)->track; |
| #else |
| fdctrl->fifo[2] = 0; |
| fdctrl->fifo[3] = 0; |
| #endif |
| /* timers */ |
| fdctrl->fifo[4] = fdctrl->timer0; |
| fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0); |
| fdctrl->fifo[6] = cur_drv->last_sect; |
| fdctrl->fifo[7] = (fdctrl->lock << 7) | |
| (cur_drv->perpendicular << 2); |
| fdctrl->fifo[8] = fdctrl->config; |
| fdctrl->fifo[9] = fdctrl->precomp_trk; |
| fdctrl_to_result_phase(fdctrl, 10); |
| } |
| |
| static void fdctrl_handle_version(FDCtrl *fdctrl, int direction) |
| { |
| /* Controller's version */ |
| fdctrl->fifo[0] = fdctrl->version; |
| fdctrl_to_result_phase(fdctrl, 1); |
| } |
| |
| static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction) |
| { |
| fdctrl->fifo[0] = 0x41; /* Stepping 1 */ |
| fdctrl_to_result_phase(fdctrl, 1); |
| } |
| |
| static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv = get_cur_drv(fdctrl); |
| |
| /* Drives position */ |
| drv0(fdctrl)->track = fdctrl->fifo[3]; |
| drv1(fdctrl)->track = fdctrl->fifo[4]; |
| #if MAX_FD == 4 |
| drv2(fdctrl)->track = fdctrl->fifo[5]; |
| drv3(fdctrl)->track = fdctrl->fifo[6]; |
| #endif |
| /* timers */ |
| fdctrl->timer0 = fdctrl->fifo[7]; |
| fdctrl->timer1 = fdctrl->fifo[8]; |
| cur_drv->last_sect = fdctrl->fifo[9]; |
| fdctrl->lock = fdctrl->fifo[10] >> 7; |
| cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF; |
| fdctrl->config = fdctrl->fifo[11]; |
| fdctrl->precomp_trk = fdctrl->fifo[12]; |
| fdctrl->pwrd = fdctrl->fifo[13]; |
| fdctrl_to_command_phase(fdctrl); |
| } |
| |
| static void fdctrl_handle_save(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv = get_cur_drv(fdctrl); |
| |
| fdctrl->fifo[0] = 0; |
| fdctrl->fifo[1] = 0; |
| /* Drives position */ |
| fdctrl->fifo[2] = drv0(fdctrl)->track; |
| fdctrl->fifo[3] = drv1(fdctrl)->track; |
| #if MAX_FD == 4 |
| fdctrl->fifo[4] = drv2(fdctrl)->track; |
| fdctrl->fifo[5] = drv3(fdctrl)->track; |
| #else |
| fdctrl->fifo[4] = 0; |
| fdctrl->fifo[5] = 0; |
| #endif |
| /* timers */ |
| fdctrl->fifo[6] = fdctrl->timer0; |
| fdctrl->fifo[7] = fdctrl->timer1; |
| fdctrl->fifo[8] = cur_drv->last_sect; |
| fdctrl->fifo[9] = (fdctrl->lock << 7) | |
| (cur_drv->perpendicular << 2); |
| fdctrl->fifo[10] = fdctrl->config; |
| fdctrl->fifo[11] = fdctrl->precomp_trk; |
| fdctrl->fifo[12] = fdctrl->pwrd; |
| fdctrl->fifo[13] = 0; |
| fdctrl->fifo[14] = 0; |
| fdctrl_to_result_phase(fdctrl, 15); |
| } |
| |
| static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv = get_cur_drv(fdctrl); |
| |
| cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; |
| timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| (NANOSECONDS_PER_SECOND / 50)); |
| } |
| |
| static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv; |
| |
| SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); |
| cur_drv = get_cur_drv(fdctrl); |
| fdctrl->data_state |= FD_STATE_FORMAT; |
| if (fdctrl->fifo[0] & 0x80) |
| fdctrl->data_state |= FD_STATE_MULTI; |
| else |
| fdctrl->data_state &= ~FD_STATE_MULTI; |
| cur_drv->bps = |
| fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2]; |
| #if 0 |
| cur_drv->last_sect = |
| cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] : |
| fdctrl->fifo[3] / 2; |
| #else |
| cur_drv->last_sect = fdctrl->fifo[3]; |
| #endif |
| /* TODO: implement format using DMA expected by the Bochs BIOS |
| * and Linux fdformat (read 3 bytes per sector via DMA and fill |
| * the sector with the specified fill byte |
| */ |
| fdctrl->data_state &= ~FD_STATE_FORMAT; |
| fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); |
| } |
| |
| static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction) |
| { |
| fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF; |
| fdctrl->timer1 = fdctrl->fifo[2] >> 1; |
| if (fdctrl->fifo[2] & 1) |
| fdctrl->dor &= ~FD_DOR_DMAEN; |
| else |
| fdctrl->dor |= FD_DOR_DMAEN; |
| /* No result back */ |
| fdctrl_to_command_phase(fdctrl); |
| } |
| |
| static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv; |
| |
| SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); |
| cur_drv = get_cur_drv(fdctrl); |
| cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; |
| /* 1 Byte status back */ |
| fdctrl->fifo[0] = (cur_drv->ro << 6) | |
| (cur_drv->track == 0 ? 0x10 : 0x00) | |
| (cur_drv->head << 2) | |
| GET_CUR_DRV(fdctrl) | |
| 0x28; |
| fdctrl_to_result_phase(fdctrl, 1); |
| } |
| |
| static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv; |
| |
| SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); |
| cur_drv = get_cur_drv(fdctrl); |
| fd_recalibrate(cur_drv); |
| fdctrl_to_command_phase(fdctrl); |
| /* Raise Interrupt */ |
| fdctrl->status0 |= FD_SR0_SEEK; |
| fdctrl_raise_irq(fdctrl); |
| } |
| |
| static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv = get_cur_drv(fdctrl); |
| |
| if (fdctrl->reset_sensei > 0) { |
| fdctrl->fifo[0] = |
| FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei; |
| fdctrl->reset_sensei--; |
| } else if (!(fdctrl->sra & FD_SRA_INTPEND)) { |
| fdctrl->fifo[0] = FD_SR0_INVCMD; |
| fdctrl_to_result_phase(fdctrl, 1); |
| return; |
| } else { |
| fdctrl->fifo[0] = |
| (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0)) |
| | GET_CUR_DRV(fdctrl); |
| } |
| |
| fdctrl->fifo[1] = cur_drv->track; |
| fdctrl_to_result_phase(fdctrl, 2); |
| fdctrl_reset_irq(fdctrl); |
| fdctrl->status0 = FD_SR0_RDYCHG; |
| } |
| |
| static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv; |
| |
| SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); |
| cur_drv = get_cur_drv(fdctrl); |
| fdctrl_to_command_phase(fdctrl); |
| /* The seek command just sends step pulses to the drive and doesn't care if |
| * there is a medium inserted of if it's banging the head against the drive. |
| */ |
| fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1); |
| /* Raise Interrupt */ |
| fdctrl->status0 |= FD_SR0_SEEK; |
| fdctrl_raise_irq(fdctrl); |
| } |
| |
| static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv = get_cur_drv(fdctrl); |
| |
| if (fdctrl->fifo[1] & 0x80) |
| cur_drv->perpendicular = fdctrl->fifo[1] & 0x7; |
| /* No result back */ |
| fdctrl_to_command_phase(fdctrl); |
| } |
| |
| static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction) |
| { |
| fdctrl->config = fdctrl->fifo[2]; |
| fdctrl->precomp_trk = fdctrl->fifo[3]; |
| /* No result back */ |
| fdctrl_to_command_phase(fdctrl); |
| } |
| |
| static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction) |
| { |
| fdctrl->pwrd = fdctrl->fifo[1]; |
| fdctrl->fifo[0] = fdctrl->fifo[1]; |
| fdctrl_to_result_phase(fdctrl, 1); |
| } |
| |
| static void fdctrl_handle_option(FDCtrl *fdctrl, int direction) |
| { |
| /* No result back */ |
| fdctrl_to_command_phase(fdctrl); |
| } |
| |
| static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv = get_cur_drv(fdctrl); |
| uint32_t pos; |
| |
| pos = fdctrl->data_pos - 1; |
| pos %= FD_SECTOR_LEN; |
| if (fdctrl->fifo[pos] & 0x80) { |
| /* Command parameters done */ |
| if (fdctrl->fifo[pos] & 0x40) { |
| fdctrl->fifo[0] = fdctrl->fifo[1]; |
| fdctrl->fifo[2] = 0; |
| fdctrl->fifo[3] = 0; |
| fdctrl_to_result_phase(fdctrl, 4); |
| } else { |
| fdctrl_to_command_phase(fdctrl); |
| } |
| } else if (fdctrl->data_len > 7) { |
| /* ERROR */ |
| fdctrl->fifo[0] = 0x80 | |
| (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); |
| fdctrl_to_result_phase(fdctrl, 1); |
| } |
| } |
| |
| static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv; |
| |
| SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); |
| cur_drv = get_cur_drv(fdctrl); |
| if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) { |
| fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1, |
| cur_drv->sect, 1); |
| } else { |
| fd_seek(cur_drv, cur_drv->head, |
| cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1); |
| } |
| fdctrl_to_command_phase(fdctrl); |
| /* Raise Interrupt */ |
| fdctrl->status0 |= FD_SR0_SEEK; |
| fdctrl_raise_irq(fdctrl); |
| } |
| |
| static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction) |
| { |
| FDrive *cur_drv; |
| |
| SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); |
| cur_drv = get_cur_drv(fdctrl); |
| if (fdctrl->fifo[2] > cur_drv->track) { |
| fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1); |
| } else { |
| fd_seek(cur_drv, cur_drv->head, |
| cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1); |
| } |
| fdctrl_to_command_phase(fdctrl); |
| /* Raise Interrupt */ |
| fdctrl->status0 |= FD_SR0_SEEK; |
| fdctrl_raise_irq(fdctrl); |
| } |
| |
| /* |
| * Handlers for the execution phase of each command |
| */ |
| typedef struct FDCtrlCommand { |
| uint8_t value; |
| uint8_t mask; |
| const char* name; |
| int parameters; |
| void (*handler)(FDCtrl *fdctrl, int direction); |
| int direction; |
| } FDCtrlCommand; |
| |
| static const FDCtrlCommand handlers[] = { |
| { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ }, |
| { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE }, |
| { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek }, |
| { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status }, |
| { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate }, |
| { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track }, |
| { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ }, |
| { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */ |
| { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */ |
| { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ }, |
| { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE }, |
| { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY }, |
| { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL }, |
| { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH }, |
| { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE }, |
| { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid }, |
| { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify }, |
| { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status }, |
| { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode }, |
| { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure }, |
| { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode }, |
| { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option }, |
| { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command }, |
| { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out }, |
| { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented }, |
| { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in }, |
| { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock }, |
| { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg }, |
| { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version }, |
| { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid }, |
| { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */ |
| { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */ |
| }; |
| /* Associate command to an index in the 'handlers' array */ |
| static uint8_t command_to_handler[256]; |
| |
| static const FDCtrlCommand *get_command(uint8_t cmd) |
| { |
| int idx; |
| |
| idx = command_to_handler[cmd]; |
| FLOPPY_DPRINTF("%s command\n", handlers[idx].name); |
| return &handlers[idx]; |
| } |
| |
| static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value) |
| { |
| FDrive *cur_drv; |
| const FDCtrlCommand *cmd; |
| uint32_t pos; |
| |
| /* Reset mode */ |
| if (!(fdctrl->dor & FD_DOR_nRESET)) { |
| FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); |
| return; |
| } |
| if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) { |
| FLOPPY_DPRINTF("error: controller not ready for writing\n"); |
| return; |
| } |
| fdctrl->dsr &= ~FD_DSR_PWRDOWN; |
| |
| FLOPPY_DPRINTF("%s: %02x\n", __func__, value); |
| |
| /* If data_len spans multiple sectors, the current position in the FIFO |
| * wraps around while fdctrl->data_pos is the real position in the whole |
| * request. */ |
| pos = fdctrl->data_pos++; |
| pos %= FD_SECTOR_LEN; |
| fdctrl->fifo[pos] = value; |
| |
| if (fdctrl->data_pos == fdctrl->data_len) { |
| fdctrl->msr &= ~FD_MSR_RQM; |
| } |
| |
| switch (fdctrl->phase) { |
| case FD_PHASE_EXECUTION: |
| /* For DMA requests, RQM should be cleared during execution phase, so |
| * we would have errored out above. */ |
| assert(fdctrl->msr & FD_MSR_NONDMA); |
| |
| /* FIFO data write */ |
| if (pos == FD_SECTOR_LEN - 1 || |
| fdctrl->data_pos == fdctrl->data_len) { |
| cur_drv = get_cur_drv(fdctrl); |
| if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE, |
| fdctrl->fifo, 0) < 0) { |
| FLOPPY_DPRINTF("error writing sector %d\n", |
| fd_sector(cur_drv)); |
| break; |
| } |
| if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { |
| FLOPPY_DPRINTF("error seeking to next sector %d\n", |
| fd_sector(cur_drv)); |
| break; |
| } |
| } |
| |
| /* Switch to result phase when done with the transfer */ |
| if (fdctrl->data_pos == fdctrl->data_len) { |
| fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); |
| } |
| break; |
| |
| case FD_PHASE_COMMAND: |
| assert(!(fdctrl->msr & FD_MSR_NONDMA)); |
| assert(fdctrl->data_pos < FD_SECTOR_LEN); |
| |
| if (pos == 0) { |
| /* The first byte specifies the command. Now we start reading |
| * as many parameters as this command requires. */ |
| cmd = get_command(value); |
| fdctrl->data_len = cmd->parameters + 1; |
| if (cmd->parameters) { |
| fdctrl->msr |= FD_MSR_RQM; |
| } |
| fdctrl->msr |= FD_MSR_CMDBUSY; |
| } |
| |
| if (fdctrl->data_pos == fdctrl->data_len) { |
| /* We have all parameters now, execute the command */ |
| fdctrl->phase = FD_PHASE_EXECUTION; |
| |
| if (fdctrl->data_state & FD_STATE_FORMAT) { |
| fdctrl_format_sector(fdctrl); |
| break; |
| } |
| |
| cmd = get_command(fdctrl->fifo[0]); |
| FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name); |
| cmd->handler(fdctrl, cmd->direction); |
| } |
| break; |
| |
| case FD_PHASE_RESULT: |
| default: |
| abort(); |
| } |
| } |
| |
| static void fdctrl_result_timer(void *opaque) |
| { |
| FDCtrl *fdctrl = opaque; |
| FDrive *cur_drv = get_cur_drv(fdctrl); |
| |
| /* Pretend we are spinning. |
| * This is needed for Coherent, which uses READ ID to check for |
| * sector interleaving. |
| */ |
| if (cur_drv->last_sect != 0) { |
| cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1; |
| } |
| /* READ_ID can't automatically succeed! */ |
| if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { |
| FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n", |
| fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); |
| fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); |
| } else { |
| fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); |
| } |
| } |
| |
| /* Init functions */ |
| |
| void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds) |
| { |
| DeviceState *dev; |
| int i; |
| |
| for (i = 0; i < MAX_FD; i++) { |
| if (fds[i]) { |
| dev = qdev_new("floppy"); |
| qdev_prop_set_uint32(dev, "unit", i); |
| qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO); |
| qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]), |
| &error_fatal); |
| qdev_realize_and_unref(dev, &bus->bus, &error_fatal); |
| } |
| } |
| } |
| |
| void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp) |
| { |
| int i, j; |
| FDrive *drive; |
| static int command_tables_inited = 0; |
| |
| if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) { |
| error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'"); |
| return; |
| } |
| |
| /* Fill 'command_to_handler' lookup table */ |
| if (!command_tables_inited) { |
| command_tables_inited = 1; |
| for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) { |
| for (j = 0; j < sizeof(command_to_handler); j++) { |
| if ((j & handlers[i].mask) == handlers[i].value) { |
| command_to_handler[j] = i; |
| } |
| } |
| } |
| } |
| |
| FLOPPY_DPRINTF("init controller\n"); |
| fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN); |
| memset(fdctrl->fifo, 0, FD_SECTOR_LEN); |
| fdctrl->fifo_size = 512; |
| fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, |
| fdctrl_result_timer, fdctrl); |
| |
| fdctrl->version = 0x90; /* Intel 82078 controller */ |
| fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */ |
| fdctrl->num_floppies = MAX_FD; |
| |
| floppy_bus_create(fdctrl, &fdctrl->bus, dev); |
| |
| for (i = 0; i < MAX_FD; i++) { |
| drive = &fdctrl->drives[i]; |
| drive->fdctrl = fdctrl; |
| fd_init(drive); |
| fd_revalidate(drive); |
| } |
| } |
| |
| static void fdc_register_types(void) |
| { |
| type_register_static(&floppy_bus_info); |
| type_register_static(&floppy_drive_info); |
| } |
| |
| type_init(fdc_register_types) |