| /* |
| * Optimizations for Tiny Code Generator for QEMU |
| * |
| * Copyright (c) 2010 Samsung Electronics. |
| * Contributed by Kirill Batuzov <batuzovk@ispras.ru> |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/int128.h" |
| #include "tcg/tcg-op.h" |
| #include "tcg-internal.h" |
| |
| #define CASE_OP_32_64(x) \ |
| glue(glue(case INDEX_op_, x), _i32): \ |
| glue(glue(case INDEX_op_, x), _i64) |
| |
| #define CASE_OP_32_64_VEC(x) \ |
| glue(glue(case INDEX_op_, x), _i32): \ |
| glue(glue(case INDEX_op_, x), _i64): \ |
| glue(glue(case INDEX_op_, x), _vec) |
| |
| typedef struct TempOptInfo { |
| bool is_const; |
| TCGTemp *prev_copy; |
| TCGTemp *next_copy; |
| uint64_t val; |
| uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ |
| uint64_t s_mask; /* a left-aligned mask of clrsb(value) bits. */ |
| } TempOptInfo; |
| |
| typedef struct OptContext { |
| TCGContext *tcg; |
| TCGOp *prev_mb; |
| TCGTempSet temps_used; |
| |
| /* In flight values from optimization. */ |
| uint64_t a_mask; /* mask bit is 0 iff value identical to first input */ |
| uint64_t z_mask; /* mask bit is 0 iff value bit is 0 */ |
| uint64_t s_mask; /* mask of clrsb(value) bits */ |
| TCGType type; |
| } OptContext; |
| |
| /* Calculate the smask for a specific value. */ |
| static uint64_t smask_from_value(uint64_t value) |
| { |
| int rep = clrsb64(value); |
| return ~(~0ull >> rep); |
| } |
| |
| /* |
| * Calculate the smask for a given set of known-zeros. |
| * If there are lots of zeros on the left, we can consider the remainder |
| * an unsigned field, and thus the corresponding signed field is one bit |
| * larger. |
| */ |
| static uint64_t smask_from_zmask(uint64_t zmask) |
| { |
| /* |
| * Only the 0 bits are significant for zmask, thus the msb itself |
| * must be zero, else we have no sign information. |
| */ |
| int rep = clz64(zmask); |
| if (rep == 0) { |
| return 0; |
| } |
| rep -= 1; |
| return ~(~0ull >> rep); |
| } |
| |
| /* |
| * Recreate a properly left-aligned smask after manipulation. |
| * Some bit-shuffling, particularly shifts and rotates, may |
| * retain sign bits on the left, but may scatter disconnected |
| * sign bits on the right. Retain only what remains to the left. |
| */ |
| static uint64_t smask_from_smask(int64_t smask) |
| { |
| /* Only the 1 bits are significant for smask */ |
| return smask_from_zmask(~smask); |
| } |
| |
| static inline TempOptInfo *ts_info(TCGTemp *ts) |
| { |
| return ts->state_ptr; |
| } |
| |
| static inline TempOptInfo *arg_info(TCGArg arg) |
| { |
| return ts_info(arg_temp(arg)); |
| } |
| |
| static inline bool ts_is_const(TCGTemp *ts) |
| { |
| return ts_info(ts)->is_const; |
| } |
| |
| static inline bool arg_is_const(TCGArg arg) |
| { |
| return ts_is_const(arg_temp(arg)); |
| } |
| |
| static inline bool ts_is_copy(TCGTemp *ts) |
| { |
| return ts_info(ts)->next_copy != ts; |
| } |
| |
| /* Reset TEMP's state, possibly removing the temp for the list of copies. */ |
| static void reset_ts(TCGTemp *ts) |
| { |
| TempOptInfo *ti = ts_info(ts); |
| TempOptInfo *pi = ts_info(ti->prev_copy); |
| TempOptInfo *ni = ts_info(ti->next_copy); |
| |
| ni->prev_copy = ti->prev_copy; |
| pi->next_copy = ti->next_copy; |
| ti->next_copy = ts; |
| ti->prev_copy = ts; |
| ti->is_const = false; |
| ti->z_mask = -1; |
| ti->s_mask = 0; |
| } |
| |
| static void reset_temp(TCGArg arg) |
| { |
| reset_ts(arg_temp(arg)); |
| } |
| |
| /* Initialize and activate a temporary. */ |
| static void init_ts_info(OptContext *ctx, TCGTemp *ts) |
| { |
| size_t idx = temp_idx(ts); |
| TempOptInfo *ti; |
| |
| if (test_bit(idx, ctx->temps_used.l)) { |
| return; |
| } |
| set_bit(idx, ctx->temps_used.l); |
| |
| ti = ts->state_ptr; |
| if (ti == NULL) { |
| ti = tcg_malloc(sizeof(TempOptInfo)); |
| ts->state_ptr = ti; |
| } |
| |
| ti->next_copy = ts; |
| ti->prev_copy = ts; |
| if (ts->kind == TEMP_CONST) { |
| ti->is_const = true; |
| ti->val = ts->val; |
| ti->z_mask = ts->val; |
| ti->s_mask = smask_from_value(ts->val); |
| } else { |
| ti->is_const = false; |
| ti->z_mask = -1; |
| ti->s_mask = 0; |
| } |
| } |
| |
| static TCGTemp *find_better_copy(TCGContext *s, TCGTemp *ts) |
| { |
| TCGTemp *i, *g, *l; |
| |
| /* If this is already readonly, we can't do better. */ |
| if (temp_readonly(ts)) { |
| return ts; |
| } |
| |
| g = l = NULL; |
| for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { |
| if (temp_readonly(i)) { |
| return i; |
| } else if (i->kind > ts->kind) { |
| if (i->kind == TEMP_GLOBAL) { |
| g = i; |
| } else if (i->kind == TEMP_LOCAL) { |
| l = i; |
| } |
| } |
| } |
| |
| /* If we didn't find a better representation, return the same temp. */ |
| return g ? g : l ? l : ts; |
| } |
| |
| static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) |
| { |
| TCGTemp *i; |
| |
| if (ts1 == ts2) { |
| return true; |
| } |
| |
| if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { |
| return false; |
| } |
| |
| for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { |
| if (i == ts2) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool args_are_copies(TCGArg arg1, TCGArg arg2) |
| { |
| return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); |
| } |
| |
| static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) |
| { |
| TCGTemp *dst_ts = arg_temp(dst); |
| TCGTemp *src_ts = arg_temp(src); |
| TempOptInfo *di; |
| TempOptInfo *si; |
| TCGOpcode new_op; |
| |
| if (ts_are_copies(dst_ts, src_ts)) { |
| tcg_op_remove(ctx->tcg, op); |
| return true; |
| } |
| |
| reset_ts(dst_ts); |
| di = ts_info(dst_ts); |
| si = ts_info(src_ts); |
| |
| switch (ctx->type) { |
| case TCG_TYPE_I32: |
| new_op = INDEX_op_mov_i32; |
| break; |
| case TCG_TYPE_I64: |
| new_op = INDEX_op_mov_i64; |
| break; |
| case TCG_TYPE_V64: |
| case TCG_TYPE_V128: |
| case TCG_TYPE_V256: |
| /* TCGOP_VECL and TCGOP_VECE remain unchanged. */ |
| new_op = INDEX_op_mov_vec; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| op->opc = new_op; |
| op->args[0] = dst; |
| op->args[1] = src; |
| |
| di->z_mask = si->z_mask; |
| di->s_mask = si->s_mask; |
| |
| if (src_ts->type == dst_ts->type) { |
| TempOptInfo *ni = ts_info(si->next_copy); |
| |
| di->next_copy = si->next_copy; |
| di->prev_copy = src_ts; |
| ni->prev_copy = dst_ts; |
| si->next_copy = dst_ts; |
| di->is_const = si->is_const; |
| di->val = si->val; |
| } |
| return true; |
| } |
| |
| static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, |
| TCGArg dst, uint64_t val) |
| { |
| TCGTemp *tv; |
| |
| if (ctx->type == TCG_TYPE_I32) { |
| val = (int32_t)val; |
| } |
| |
| /* Convert movi to mov with constant temp. */ |
| tv = tcg_constant_internal(ctx->type, val); |
| init_ts_info(ctx, tv); |
| return tcg_opt_gen_mov(ctx, op, dst, temp_arg(tv)); |
| } |
| |
| static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) |
| { |
| uint64_t l64, h64; |
| |
| switch (op) { |
| CASE_OP_32_64(add): |
| return x + y; |
| |
| CASE_OP_32_64(sub): |
| return x - y; |
| |
| CASE_OP_32_64(mul): |
| return x * y; |
| |
| CASE_OP_32_64_VEC(and): |
| return x & y; |
| |
| CASE_OP_32_64_VEC(or): |
| return x | y; |
| |
| CASE_OP_32_64_VEC(xor): |
| return x ^ y; |
| |
| case INDEX_op_shl_i32: |
| return (uint32_t)x << (y & 31); |
| |
| case INDEX_op_shl_i64: |
| return (uint64_t)x << (y & 63); |
| |
| case INDEX_op_shr_i32: |
| return (uint32_t)x >> (y & 31); |
| |
| case INDEX_op_shr_i64: |
| return (uint64_t)x >> (y & 63); |
| |
| case INDEX_op_sar_i32: |
| return (int32_t)x >> (y & 31); |
| |
| case INDEX_op_sar_i64: |
| return (int64_t)x >> (y & 63); |
| |
| case INDEX_op_rotr_i32: |
| return ror32(x, y & 31); |
| |
| case INDEX_op_rotr_i64: |
| return ror64(x, y & 63); |
| |
| case INDEX_op_rotl_i32: |
| return rol32(x, y & 31); |
| |
| case INDEX_op_rotl_i64: |
| return rol64(x, y & 63); |
| |
| CASE_OP_32_64_VEC(not): |
| return ~x; |
| |
| CASE_OP_32_64(neg): |
| return -x; |
| |
| CASE_OP_32_64_VEC(andc): |
| return x & ~y; |
| |
| CASE_OP_32_64_VEC(orc): |
| return x | ~y; |
| |
| CASE_OP_32_64(eqv): |
| return ~(x ^ y); |
| |
| CASE_OP_32_64(nand): |
| return ~(x & y); |
| |
| CASE_OP_32_64(nor): |
| return ~(x | y); |
| |
| case INDEX_op_clz_i32: |
| return (uint32_t)x ? clz32(x) : y; |
| |
| case INDEX_op_clz_i64: |
| return x ? clz64(x) : y; |
| |
| case INDEX_op_ctz_i32: |
| return (uint32_t)x ? ctz32(x) : y; |
| |
| case INDEX_op_ctz_i64: |
| return x ? ctz64(x) : y; |
| |
| case INDEX_op_ctpop_i32: |
| return ctpop32(x); |
| |
| case INDEX_op_ctpop_i64: |
| return ctpop64(x); |
| |
| CASE_OP_32_64(ext8s): |
| return (int8_t)x; |
| |
| CASE_OP_32_64(ext16s): |
| return (int16_t)x; |
| |
| CASE_OP_32_64(ext8u): |
| return (uint8_t)x; |
| |
| CASE_OP_32_64(ext16u): |
| return (uint16_t)x; |
| |
| CASE_OP_32_64(bswap16): |
| x = bswap16(x); |
| return y & TCG_BSWAP_OS ? (int16_t)x : x; |
| |
| CASE_OP_32_64(bswap32): |
| x = bswap32(x); |
| return y & TCG_BSWAP_OS ? (int32_t)x : x; |
| |
| case INDEX_op_bswap64_i64: |
| return bswap64(x); |
| |
| case INDEX_op_ext_i32_i64: |
| case INDEX_op_ext32s_i64: |
| return (int32_t)x; |
| |
| case INDEX_op_extu_i32_i64: |
| case INDEX_op_extrl_i64_i32: |
| case INDEX_op_ext32u_i64: |
| return (uint32_t)x; |
| |
| case INDEX_op_extrh_i64_i32: |
| return (uint64_t)x >> 32; |
| |
| case INDEX_op_muluh_i32: |
| return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; |
| case INDEX_op_mulsh_i32: |
| return ((int64_t)(int32_t)x * (int32_t)y) >> 32; |
| |
| case INDEX_op_muluh_i64: |
| mulu64(&l64, &h64, x, y); |
| return h64; |
| case INDEX_op_mulsh_i64: |
| muls64(&l64, &h64, x, y); |
| return h64; |
| |
| case INDEX_op_div_i32: |
| /* Avoid crashing on divide by zero, otherwise undefined. */ |
| return (int32_t)x / ((int32_t)y ? : 1); |
| case INDEX_op_divu_i32: |
| return (uint32_t)x / ((uint32_t)y ? : 1); |
| case INDEX_op_div_i64: |
| return (int64_t)x / ((int64_t)y ? : 1); |
| case INDEX_op_divu_i64: |
| return (uint64_t)x / ((uint64_t)y ? : 1); |
| |
| case INDEX_op_rem_i32: |
| return (int32_t)x % ((int32_t)y ? : 1); |
| case INDEX_op_remu_i32: |
| return (uint32_t)x % ((uint32_t)y ? : 1); |
| case INDEX_op_rem_i64: |
| return (int64_t)x % ((int64_t)y ? : 1); |
| case INDEX_op_remu_i64: |
| return (uint64_t)x % ((uint64_t)y ? : 1); |
| |
| default: |
| fprintf(stderr, |
| "Unrecognized operation %d in do_constant_folding.\n", op); |
| tcg_abort(); |
| } |
| } |
| |
| static uint64_t do_constant_folding(TCGOpcode op, TCGType type, |
| uint64_t x, uint64_t y) |
| { |
| uint64_t res = do_constant_folding_2(op, x, y); |
| if (type == TCG_TYPE_I32) { |
| res = (int32_t)res; |
| } |
| return res; |
| } |
| |
| static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) |
| { |
| switch (c) { |
| case TCG_COND_EQ: |
| return x == y; |
| case TCG_COND_NE: |
| return x != y; |
| case TCG_COND_LT: |
| return (int32_t)x < (int32_t)y; |
| case TCG_COND_GE: |
| return (int32_t)x >= (int32_t)y; |
| case TCG_COND_LE: |
| return (int32_t)x <= (int32_t)y; |
| case TCG_COND_GT: |
| return (int32_t)x > (int32_t)y; |
| case TCG_COND_LTU: |
| return x < y; |
| case TCG_COND_GEU: |
| return x >= y; |
| case TCG_COND_LEU: |
| return x <= y; |
| case TCG_COND_GTU: |
| return x > y; |
| default: |
| tcg_abort(); |
| } |
| } |
| |
| static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) |
| { |
| switch (c) { |
| case TCG_COND_EQ: |
| return x == y; |
| case TCG_COND_NE: |
| return x != y; |
| case TCG_COND_LT: |
| return (int64_t)x < (int64_t)y; |
| case TCG_COND_GE: |
| return (int64_t)x >= (int64_t)y; |
| case TCG_COND_LE: |
| return (int64_t)x <= (int64_t)y; |
| case TCG_COND_GT: |
| return (int64_t)x > (int64_t)y; |
| case TCG_COND_LTU: |
| return x < y; |
| case TCG_COND_GEU: |
| return x >= y; |
| case TCG_COND_LEU: |
| return x <= y; |
| case TCG_COND_GTU: |
| return x > y; |
| default: |
| tcg_abort(); |
| } |
| } |
| |
| static bool do_constant_folding_cond_eq(TCGCond c) |
| { |
| switch (c) { |
| case TCG_COND_GT: |
| case TCG_COND_LTU: |
| case TCG_COND_LT: |
| case TCG_COND_GTU: |
| case TCG_COND_NE: |
| return 0; |
| case TCG_COND_GE: |
| case TCG_COND_GEU: |
| case TCG_COND_LE: |
| case TCG_COND_LEU: |
| case TCG_COND_EQ: |
| return 1; |
| default: |
| tcg_abort(); |
| } |
| } |
| |
| /* |
| * Return -1 if the condition can't be simplified, |
| * and the result of the condition (0 or 1) if it can. |
| */ |
| static int do_constant_folding_cond(TCGType type, TCGArg x, |
| TCGArg y, TCGCond c) |
| { |
| uint64_t xv = arg_info(x)->val; |
| uint64_t yv = arg_info(y)->val; |
| |
| if (arg_is_const(x) && arg_is_const(y)) { |
| switch (type) { |
| case TCG_TYPE_I32: |
| return do_constant_folding_cond_32(xv, yv, c); |
| case TCG_TYPE_I64: |
| return do_constant_folding_cond_64(xv, yv, c); |
| default: |
| /* Only scalar comparisons are optimizable */ |
| return -1; |
| } |
| } else if (args_are_copies(x, y)) { |
| return do_constant_folding_cond_eq(c); |
| } else if (arg_is_const(y) && yv == 0) { |
| switch (c) { |
| case TCG_COND_LTU: |
| return 0; |
| case TCG_COND_GEU: |
| return 1; |
| default: |
| return -1; |
| } |
| } |
| return -1; |
| } |
| |
| /* |
| * Return -1 if the condition can't be simplified, |
| * and the result of the condition (0 or 1) if it can. |
| */ |
| static int do_constant_folding_cond2(TCGArg *p1, TCGArg *p2, TCGCond c) |
| { |
| TCGArg al = p1[0], ah = p1[1]; |
| TCGArg bl = p2[0], bh = p2[1]; |
| |
| if (arg_is_const(bl) && arg_is_const(bh)) { |
| tcg_target_ulong blv = arg_info(bl)->val; |
| tcg_target_ulong bhv = arg_info(bh)->val; |
| uint64_t b = deposit64(blv, 32, 32, bhv); |
| |
| if (arg_is_const(al) && arg_is_const(ah)) { |
| tcg_target_ulong alv = arg_info(al)->val; |
| tcg_target_ulong ahv = arg_info(ah)->val; |
| uint64_t a = deposit64(alv, 32, 32, ahv); |
| return do_constant_folding_cond_64(a, b, c); |
| } |
| if (b == 0) { |
| switch (c) { |
| case TCG_COND_LTU: |
| return 0; |
| case TCG_COND_GEU: |
| return 1; |
| default: |
| break; |
| } |
| } |
| } |
| if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { |
| return do_constant_folding_cond_eq(c); |
| } |
| return -1; |
| } |
| |
| /** |
| * swap_commutative: |
| * @dest: TCGArg of the destination argument, or NO_DEST. |
| * @p1: first paired argument |
| * @p2: second paired argument |
| * |
| * If *@p1 is a constant and *@p2 is not, swap. |
| * If *@p2 matches @dest, swap. |
| * Return true if a swap was performed. |
| */ |
| |
| #define NO_DEST temp_arg(NULL) |
| |
| static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) |
| { |
| TCGArg a1 = *p1, a2 = *p2; |
| int sum = 0; |
| sum += arg_is_const(a1); |
| sum -= arg_is_const(a2); |
| |
| /* Prefer the constant in second argument, and then the form |
| op a, a, b, which is better handled on non-RISC hosts. */ |
| if (sum > 0 || (sum == 0 && dest == a2)) { |
| *p1 = a2; |
| *p2 = a1; |
| return true; |
| } |
| return false; |
| } |
| |
| static bool swap_commutative2(TCGArg *p1, TCGArg *p2) |
| { |
| int sum = 0; |
| sum += arg_is_const(p1[0]); |
| sum += arg_is_const(p1[1]); |
| sum -= arg_is_const(p2[0]); |
| sum -= arg_is_const(p2[1]); |
| if (sum > 0) { |
| TCGArg t; |
| t = p1[0], p1[0] = p2[0], p2[0] = t; |
| t = p1[1], p1[1] = p2[1], p2[1] = t; |
| return true; |
| } |
| return false; |
| } |
| |
| static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) |
| { |
| for (int i = 0; i < nb_args; i++) { |
| TCGTemp *ts = arg_temp(op->args[i]); |
| if (ts) { |
| init_ts_info(ctx, ts); |
| } |
| } |
| } |
| |
| static void copy_propagate(OptContext *ctx, TCGOp *op, |
| int nb_oargs, int nb_iargs) |
| { |
| TCGContext *s = ctx->tcg; |
| |
| for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { |
| TCGTemp *ts = arg_temp(op->args[i]); |
| if (ts && ts_is_copy(ts)) { |
| op->args[i] = temp_arg(find_better_copy(s, ts)); |
| } |
| } |
| } |
| |
| static void finish_folding(OptContext *ctx, TCGOp *op) |
| { |
| const TCGOpDef *def = &tcg_op_defs[op->opc]; |
| int i, nb_oargs; |
| |
| /* |
| * For an opcode that ends a BB, reset all temp data. |
| * We do no cross-BB optimization. |
| */ |
| if (def->flags & TCG_OPF_BB_END) { |
| memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); |
| ctx->prev_mb = NULL; |
| return; |
| } |
| |
| nb_oargs = def->nb_oargs; |
| for (i = 0; i < nb_oargs; i++) { |
| TCGTemp *ts = arg_temp(op->args[i]); |
| reset_ts(ts); |
| /* |
| * Save the corresponding known-zero/sign bits mask for the |
| * first output argument (only one supported so far). |
| */ |
| if (i == 0) { |
| ts_info(ts)->z_mask = ctx->z_mask; |
| ts_info(ts)->s_mask = ctx->s_mask; |
| } |
| } |
| } |
| |
| /* |
| * The fold_* functions return true when processing is complete, |
| * usually by folding the operation to a constant or to a copy, |
| * and calling tcg_opt_gen_{mov,movi}. They may do other things, |
| * like collect information about the value produced, for use in |
| * optimizing a subsequent operation. |
| * |
| * These first fold_* functions are all helpers, used by other |
| * folders for more specific operations. |
| */ |
| |
| static bool fold_const1(OptContext *ctx, TCGOp *op) |
| { |
| if (arg_is_const(op->args[1])) { |
| uint64_t t; |
| |
| t = arg_info(op->args[1])->val; |
| t = do_constant_folding(op->opc, ctx->type, t, 0); |
| return tcg_opt_gen_movi(ctx, op, op->args[0], t); |
| } |
| return false; |
| } |
| |
| static bool fold_const2(OptContext *ctx, TCGOp *op) |
| { |
| if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { |
| uint64_t t1 = arg_info(op->args[1])->val; |
| uint64_t t2 = arg_info(op->args[2])->val; |
| |
| t1 = do_constant_folding(op->opc, ctx->type, t1, t2); |
| return tcg_opt_gen_movi(ctx, op, op->args[0], t1); |
| } |
| return false; |
| } |
| |
| static bool fold_commutative(OptContext *ctx, TCGOp *op) |
| { |
| swap_commutative(op->args[0], &op->args[1], &op->args[2]); |
| return false; |
| } |
| |
| static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) |
| { |
| swap_commutative(op->args[0], &op->args[1], &op->args[2]); |
| return fold_const2(ctx, op); |
| } |
| |
| static bool fold_masks(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t a_mask = ctx->a_mask; |
| uint64_t z_mask = ctx->z_mask; |
| uint64_t s_mask = ctx->s_mask; |
| |
| /* |
| * 32-bit ops generate 32-bit results, which for the purpose of |
| * simplifying tcg are sign-extended. Certainly that's how we |
| * represent our constants elsewhere. Note that the bits will |
| * be reset properly for a 64-bit value when encountering the |
| * type changing opcodes. |
| */ |
| if (ctx->type == TCG_TYPE_I32) { |
| a_mask = (int32_t)a_mask; |
| z_mask = (int32_t)z_mask; |
| s_mask |= MAKE_64BIT_MASK(32, 32); |
| ctx->z_mask = z_mask; |
| ctx->s_mask = s_mask; |
| } |
| |
| if (z_mask == 0) { |
| return tcg_opt_gen_movi(ctx, op, op->args[0], 0); |
| } |
| if (a_mask == 0) { |
| return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); |
| } |
| return false; |
| } |
| |
| /* |
| * Convert @op to NOT, if NOT is supported by the host. |
| * Return true f the conversion is successful, which will still |
| * indicate that the processing is complete. |
| */ |
| static bool fold_not(OptContext *ctx, TCGOp *op); |
| static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) |
| { |
| TCGOpcode not_op; |
| bool have_not; |
| |
| switch (ctx->type) { |
| case TCG_TYPE_I32: |
| not_op = INDEX_op_not_i32; |
| have_not = TCG_TARGET_HAS_not_i32; |
| break; |
| case TCG_TYPE_I64: |
| not_op = INDEX_op_not_i64; |
| have_not = TCG_TARGET_HAS_not_i64; |
| break; |
| case TCG_TYPE_V64: |
| case TCG_TYPE_V128: |
| case TCG_TYPE_V256: |
| not_op = INDEX_op_not_vec; |
| have_not = TCG_TARGET_HAS_not_vec; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| if (have_not) { |
| op->opc = not_op; |
| op->args[1] = op->args[idx]; |
| return fold_not(ctx, op); |
| } |
| return false; |
| } |
| |
| /* If the binary operation has first argument @i, fold to @i. */ |
| static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) |
| { |
| if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) { |
| return tcg_opt_gen_movi(ctx, op, op->args[0], i); |
| } |
| return false; |
| } |
| |
| /* If the binary operation has first argument @i, fold to NOT. */ |
| static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) |
| { |
| if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) { |
| return fold_to_not(ctx, op, 2); |
| } |
| return false; |
| } |
| |
| /* If the binary operation has second argument @i, fold to @i. */ |
| static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) |
| { |
| if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { |
| return tcg_opt_gen_movi(ctx, op, op->args[0], i); |
| } |
| return false; |
| } |
| |
| /* If the binary operation has second argument @i, fold to identity. */ |
| static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) |
| { |
| if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { |
| return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); |
| } |
| return false; |
| } |
| |
| /* If the binary operation has second argument @i, fold to NOT. */ |
| static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) |
| { |
| if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { |
| return fold_to_not(ctx, op, 1); |
| } |
| return false; |
| } |
| |
| /* If the binary operation has both arguments equal, fold to @i. */ |
| static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) |
| { |
| if (args_are_copies(op->args[1], op->args[2])) { |
| return tcg_opt_gen_movi(ctx, op, op->args[0], i); |
| } |
| return false; |
| } |
| |
| /* If the binary operation has both arguments equal, fold to identity. */ |
| static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) |
| { |
| if (args_are_copies(op->args[1], op->args[2])) { |
| return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); |
| } |
| return false; |
| } |
| |
| /* |
| * These outermost fold_<op> functions are sorted alphabetically. |
| * |
| * The ordering of the transformations should be: |
| * 1) those that produce a constant |
| * 2) those that produce a copy |
| * 3) those that produce information about the result value. |
| */ |
| |
| static bool fold_add(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2_commutative(ctx, op) || |
| fold_xi_to_x(ctx, op, 0)) { |
| return true; |
| } |
| return false; |
| } |
| |
| /* We cannot as yet do_constant_folding with vectors. */ |
| static bool fold_add_vec(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_commutative(ctx, op) || |
| fold_xi_to_x(ctx, op, 0)) { |
| return true; |
| } |
| return false; |
| } |
| |
| static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) |
| { |
| if (arg_is_const(op->args[2]) && arg_is_const(op->args[3]) && |
| arg_is_const(op->args[4]) && arg_is_const(op->args[5])) { |
| uint64_t al = arg_info(op->args[2])->val; |
| uint64_t ah = arg_info(op->args[3])->val; |
| uint64_t bl = arg_info(op->args[4])->val; |
| uint64_t bh = arg_info(op->args[5])->val; |
| TCGArg rl, rh; |
| TCGOp *op2; |
| |
| if (ctx->type == TCG_TYPE_I32) { |
| uint64_t a = deposit64(al, 32, 32, ah); |
| uint64_t b = deposit64(bl, 32, 32, bh); |
| |
| if (add) { |
| a += b; |
| } else { |
| a -= b; |
| } |
| |
| al = sextract64(a, 0, 32); |
| ah = sextract64(a, 32, 32); |
| } else { |
| Int128 a = int128_make128(al, ah); |
| Int128 b = int128_make128(bl, bh); |
| |
| if (add) { |
| a = int128_add(a, b); |
| } else { |
| a = int128_sub(a, b); |
| } |
| |
| al = int128_getlo(a); |
| ah = int128_gethi(a); |
| } |
| |
| rl = op->args[0]; |
| rh = op->args[1]; |
| |
| /* The proper opcode is supplied by tcg_opt_gen_mov. */ |
| op2 = tcg_op_insert_before(ctx->tcg, op, 0); |
| |
| tcg_opt_gen_movi(ctx, op, rl, al); |
| tcg_opt_gen_movi(ctx, op2, rh, ah); |
| return true; |
| } |
| return false; |
| } |
| |
| static bool fold_add2(OptContext *ctx, TCGOp *op) |
| { |
| /* Note that the high and low parts may be independently swapped. */ |
| swap_commutative(op->args[0], &op->args[2], &op->args[4]); |
| swap_commutative(op->args[1], &op->args[3], &op->args[5]); |
| |
| return fold_addsub2(ctx, op, true); |
| } |
| |
| static bool fold_and(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t z1, z2; |
| |
| if (fold_const2_commutative(ctx, op) || |
| fold_xi_to_i(ctx, op, 0) || |
| fold_xi_to_x(ctx, op, -1) || |
| fold_xx_to_x(ctx, op)) { |
| return true; |
| } |
| |
| z1 = arg_info(op->args[1])->z_mask; |
| z2 = arg_info(op->args[2])->z_mask; |
| ctx->z_mask = z1 & z2; |
| |
| /* |
| * Sign repetitions are perforce all identical, whether they are 1 or 0. |
| * Bitwise operations preserve the relative quantity of the repetitions. |
| */ |
| ctx->s_mask = arg_info(op->args[1])->s_mask |
| & arg_info(op->args[2])->s_mask; |
| |
| /* |
| * Known-zeros does not imply known-ones. Therefore unless |
| * arg2 is constant, we can't infer affected bits from it. |
| */ |
| if (arg_is_const(op->args[2])) { |
| ctx->a_mask = z1 & ~z2; |
| } |
| |
| return fold_masks(ctx, op); |
| } |
| |
| static bool fold_andc(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t z1; |
| |
| if (fold_const2(ctx, op) || |
| fold_xx_to_i(ctx, op, 0) || |
| fold_xi_to_x(ctx, op, 0) || |
| fold_ix_to_not(ctx, op, -1)) { |
| return true; |
| } |
| |
| z1 = arg_info(op->args[1])->z_mask; |
| |
| /* |
| * Known-zeros does not imply known-ones. Therefore unless |
| * arg2 is constant, we can't infer anything from it. |
| */ |
| if (arg_is_const(op->args[2])) { |
| uint64_t z2 = ~arg_info(op->args[2])->z_mask; |
| ctx->a_mask = z1 & ~z2; |
| z1 &= z2; |
| } |
| ctx->z_mask = z1; |
| |
| ctx->s_mask = arg_info(op->args[1])->s_mask |
| & arg_info(op->args[2])->s_mask; |
| return fold_masks(ctx, op); |
| } |
| |
| static bool fold_brcond(OptContext *ctx, TCGOp *op) |
| { |
| TCGCond cond = op->args[2]; |
| int i; |
| |
| if (swap_commutative(NO_DEST, &op->args[0], &op->args[1])) { |
| op->args[2] = cond = tcg_swap_cond(cond); |
| } |
| |
| i = do_constant_folding_cond(ctx->type, op->args[0], op->args[1], cond); |
| if (i == 0) { |
| tcg_op_remove(ctx->tcg, op); |
| return true; |
| } |
| if (i > 0) { |
| op->opc = INDEX_op_br; |
| op->args[0] = op->args[3]; |
| } |
| return false; |
| } |
| |
| static bool fold_brcond2(OptContext *ctx, TCGOp *op) |
| { |
| TCGCond cond = op->args[4]; |
| TCGArg label = op->args[5]; |
| int i, inv = 0; |
| |
| if (swap_commutative2(&op->args[0], &op->args[2])) { |
| op->args[4] = cond = tcg_swap_cond(cond); |
| } |
| |
| i = do_constant_folding_cond2(&op->args[0], &op->args[2], cond); |
| if (i >= 0) { |
| goto do_brcond_const; |
| } |
| |
| switch (cond) { |
| case TCG_COND_LT: |
| case TCG_COND_GE: |
| /* |
| * Simplify LT/GE comparisons vs zero to a single compare |
| * vs the high word of the input. |
| */ |
| if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0 && |
| arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0) { |
| goto do_brcond_high; |
| } |
| break; |
| |
| case TCG_COND_NE: |
| inv = 1; |
| QEMU_FALLTHROUGH; |
| case TCG_COND_EQ: |
| /* |
| * Simplify EQ/NE comparisons where one of the pairs |
| * can be simplified. |
| */ |
| i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], |
| op->args[2], cond); |
| switch (i ^ inv) { |
| case 0: |
| goto do_brcond_const; |
| case 1: |
| goto do_brcond_high; |
| } |
| |
| i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], |
| op->args[3], cond); |
| switch (i ^ inv) { |
| case 0: |
| goto do_brcond_const; |
| case 1: |
| op->opc = INDEX_op_brcond_i32; |
| op->args[1] = op->args[2]; |
| op->args[2] = cond; |
| op->args[3] = label; |
| break; |
| } |
| break; |
| |
| default: |
| break; |
| |
| do_brcond_high: |
| op->opc = INDEX_op_brcond_i32; |
| op->args[0] = op->args[1]; |
| op->args[1] = op->args[3]; |
| op->args[2] = cond; |
| op->args[3] = label; |
| break; |
| |
| do_brcond_const: |
| if (i == 0) { |
| tcg_op_remove(ctx->tcg, op); |
| return true; |
| } |
| op->opc = INDEX_op_br; |
| op->args[0] = label; |
| break; |
| } |
| return false; |
| } |
| |
| static bool fold_bswap(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t z_mask, s_mask, sign; |
| |
| if (arg_is_const(op->args[1])) { |
| uint64_t t = arg_info(op->args[1])->val; |
| |
| t = do_constant_folding(op->opc, ctx->type, t, op->args[2]); |
| return tcg_opt_gen_movi(ctx, op, op->args[0], t); |
| } |
| |
| z_mask = arg_info(op->args[1])->z_mask; |
| |
| switch (op->opc) { |
| case INDEX_op_bswap16_i32: |
| case INDEX_op_bswap16_i64: |
| z_mask = bswap16(z_mask); |
| sign = INT16_MIN; |
| break; |
| case INDEX_op_bswap32_i32: |
| case INDEX_op_bswap32_i64: |
| z_mask = bswap32(z_mask); |
| sign = INT32_MIN; |
| break; |
| case INDEX_op_bswap64_i64: |
| z_mask = bswap64(z_mask); |
| sign = INT64_MIN; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| s_mask = smask_from_zmask(z_mask); |
| |
| switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { |
| case TCG_BSWAP_OZ: |
| break; |
| case TCG_BSWAP_OS: |
| /* If the sign bit may be 1, force all the bits above to 1. */ |
| if (z_mask & sign) { |
| z_mask |= sign; |
| s_mask = sign << 1; |
| } |
| break; |
| default: |
| /* The high bits are undefined: force all bits above the sign to 1. */ |
| z_mask |= sign << 1; |
| s_mask = 0; |
| break; |
| } |
| ctx->z_mask = z_mask; |
| ctx->s_mask = s_mask; |
| |
| return fold_masks(ctx, op); |
| } |
| |
| static bool fold_call(OptContext *ctx, TCGOp *op) |
| { |
| TCGContext *s = ctx->tcg; |
| int nb_oargs = TCGOP_CALLO(op); |
| int nb_iargs = TCGOP_CALLI(op); |
| int flags, i; |
| |
| init_arguments(ctx, op, nb_oargs + nb_iargs); |
| copy_propagate(ctx, op, nb_oargs, nb_iargs); |
| |
| /* If the function reads or writes globals, reset temp data. */ |
| flags = tcg_call_flags(op); |
| if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { |
| int nb_globals = s->nb_globals; |
| |
| for (i = 0; i < nb_globals; i++) { |
| if (test_bit(i, ctx->temps_used.l)) { |
| reset_ts(&ctx->tcg->temps[i]); |
| } |
| } |
| } |
| |
| /* Reset temp data for outputs. */ |
| for (i = 0; i < nb_oargs; i++) { |
| reset_temp(op->args[i]); |
| } |
| |
| /* Stop optimizing MB across calls. */ |
| ctx->prev_mb = NULL; |
| return true; |
| } |
| |
| static bool fold_count_zeros(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t z_mask; |
| |
| if (arg_is_const(op->args[1])) { |
| uint64_t t = arg_info(op->args[1])->val; |
| |
| if (t != 0) { |
| t = do_constant_folding(op->opc, ctx->type, t, 0); |
| return tcg_opt_gen_movi(ctx, op, op->args[0], t); |
| } |
| return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); |
| } |
| |
| switch (ctx->type) { |
| case TCG_TYPE_I32: |
| z_mask = 31; |
| break; |
| case TCG_TYPE_I64: |
| z_mask = 63; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| ctx->z_mask = arg_info(op->args[2])->z_mask | z_mask; |
| ctx->s_mask = smask_from_zmask(ctx->z_mask); |
| return false; |
| } |
| |
| static bool fold_ctpop(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const1(ctx, op)) { |
| return true; |
| } |
| |
| switch (ctx->type) { |
| case TCG_TYPE_I32: |
| ctx->z_mask = 32 | 31; |
| break; |
| case TCG_TYPE_I64: |
| ctx->z_mask = 64 | 63; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| ctx->s_mask = smask_from_zmask(ctx->z_mask); |
| return false; |
| } |
| |
| static bool fold_deposit(OptContext *ctx, TCGOp *op) |
| { |
| if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { |
| uint64_t t1 = arg_info(op->args[1])->val; |
| uint64_t t2 = arg_info(op->args[2])->val; |
| |
| t1 = deposit64(t1, op->args[3], op->args[4], t2); |
| return tcg_opt_gen_movi(ctx, op, op->args[0], t1); |
| } |
| |
| ctx->z_mask = deposit64(arg_info(op->args[1])->z_mask, |
| op->args[3], op->args[4], |
| arg_info(op->args[2])->z_mask); |
| return false; |
| } |
| |
| static bool fold_divide(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2(ctx, op) || |
| fold_xi_to_x(ctx, op, 1)) { |
| return true; |
| } |
| return false; |
| } |
| |
| static bool fold_dup(OptContext *ctx, TCGOp *op) |
| { |
| if (arg_is_const(op->args[1])) { |
| uint64_t t = arg_info(op->args[1])->val; |
| t = dup_const(TCGOP_VECE(op), t); |
| return tcg_opt_gen_movi(ctx, op, op->args[0], t); |
| } |
| return false; |
| } |
| |
| static bool fold_dup2(OptContext *ctx, TCGOp *op) |
| { |
| if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { |
| uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, |
| arg_info(op->args[2])->val); |
| return tcg_opt_gen_movi(ctx, op, op->args[0], t); |
| } |
| |
| if (args_are_copies(op->args[1], op->args[2])) { |
| op->opc = INDEX_op_dup_vec; |
| TCGOP_VECE(op) = MO_32; |
| } |
| return false; |
| } |
| |
| static bool fold_eqv(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2_commutative(ctx, op) || |
| fold_xi_to_x(ctx, op, -1) || |
| fold_xi_to_not(ctx, op, 0)) { |
| return true; |
| } |
| |
| ctx->s_mask = arg_info(op->args[1])->s_mask |
| & arg_info(op->args[2])->s_mask; |
| return false; |
| } |
| |
| static bool fold_extract(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t z_mask_old, z_mask; |
| int pos = op->args[2]; |
| int len = op->args[3]; |
| |
| if (arg_is_const(op->args[1])) { |
| uint64_t t; |
| |
| t = arg_info(op->args[1])->val; |
| t = extract64(t, pos, len); |
| return tcg_opt_gen_movi(ctx, op, op->args[0], t); |
| } |
| |
| z_mask_old = arg_info(op->args[1])->z_mask; |
| z_mask = extract64(z_mask_old, pos, len); |
| if (pos == 0) { |
| ctx->a_mask = z_mask_old ^ z_mask; |
| } |
| ctx->z_mask = z_mask; |
| ctx->s_mask = smask_from_zmask(z_mask); |
| |
| return fold_masks(ctx, op); |
| } |
| |
| static bool fold_extract2(OptContext *ctx, TCGOp *op) |
| { |
| if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { |
| uint64_t v1 = arg_info(op->args[1])->val; |
| uint64_t v2 = arg_info(op->args[2])->val; |
| int shr = op->args[3]; |
| |
| if (op->opc == INDEX_op_extract2_i64) { |
| v1 >>= shr; |
| v2 <<= 64 - shr; |
| } else { |
| v1 = (uint32_t)v1 >> shr; |
| v2 = (uint64_t)((int32_t)v2 << (32 - shr)); |
| } |
| return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); |
| } |
| return false; |
| } |
| |
| static bool fold_exts(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t s_mask_old, s_mask, z_mask, sign; |
| bool type_change = false; |
| |
| if (fold_const1(ctx, op)) { |
| return true; |
| } |
| |
| z_mask = arg_info(op->args[1])->z_mask; |
| s_mask = arg_info(op->args[1])->s_mask; |
| s_mask_old = s_mask; |
| |
| switch (op->opc) { |
| CASE_OP_32_64(ext8s): |
| sign = INT8_MIN; |
| z_mask = (uint8_t)z_mask; |
| break; |
| CASE_OP_32_64(ext16s): |
| sign = INT16_MIN; |
| z_mask = (uint16_t)z_mask; |
| break; |
| case INDEX_op_ext_i32_i64: |
| type_change = true; |
| QEMU_FALLTHROUGH; |
| case INDEX_op_ext32s_i64: |
| sign = INT32_MIN; |
| z_mask = (uint32_t)z_mask; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (z_mask & sign) { |
| z_mask |= sign; |
| } |
| s_mask |= sign << 1; |
| |
| ctx->z_mask = z_mask; |
| ctx->s_mask = s_mask; |
| if (!type_change) { |
| ctx->a_mask = s_mask & ~s_mask_old; |
| } |
| |
| return fold_masks(ctx, op); |
| } |
| |
| static bool fold_extu(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t z_mask_old, z_mask; |
| bool type_change = false; |
| |
| if (fold_const1(ctx, op)) { |
| return true; |
| } |
| |
| z_mask_old = z_mask = arg_info(op->args[1])->z_mask; |
| |
| switch (op->opc) { |
| CASE_OP_32_64(ext8u): |
| z_mask = (uint8_t)z_mask; |
| break; |
| CASE_OP_32_64(ext16u): |
| z_mask = (uint16_t)z_mask; |
| break; |
| case INDEX_op_extrl_i64_i32: |
| case INDEX_op_extu_i32_i64: |
| type_change = true; |
| QEMU_FALLTHROUGH; |
| case INDEX_op_ext32u_i64: |
| z_mask = (uint32_t)z_mask; |
| break; |
| case INDEX_op_extrh_i64_i32: |
| type_change = true; |
| z_mask >>= 32; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| ctx->z_mask = z_mask; |
| ctx->s_mask = smask_from_zmask(z_mask); |
| if (!type_change) { |
| ctx->a_mask = z_mask_old ^ z_mask; |
| } |
| return fold_masks(ctx, op); |
| } |
| |
| static bool fold_mb(OptContext *ctx, TCGOp *op) |
| { |
| /* Eliminate duplicate and redundant fence instructions. */ |
| if (ctx->prev_mb) { |
| /* |
| * Merge two barriers of the same type into one, |
| * or a weaker barrier into a stronger one, |
| * or two weaker barriers into a stronger one. |
| * mb X; mb Y => mb X|Y |
| * mb; strl => mb; st |
| * ldaq; mb => ld; mb |
| * ldaq; strl => ld; mb; st |
| * Other combinations are also merged into a strong |
| * barrier. This is stricter than specified but for |
| * the purposes of TCG is better than not optimizing. |
| */ |
| ctx->prev_mb->args[0] |= op->args[0]; |
| tcg_op_remove(ctx->tcg, op); |
| } else { |
| ctx->prev_mb = op; |
| } |
| return true; |
| } |
| |
| static bool fold_mov(OptContext *ctx, TCGOp *op) |
| { |
| return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); |
| } |
| |
| static bool fold_movcond(OptContext *ctx, TCGOp *op) |
| { |
| TCGCond cond = op->args[5]; |
| int i; |
| |
| if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { |
| op->args[5] = cond = tcg_swap_cond(cond); |
| } |
| /* |
| * Canonicalize the "false" input reg to match the destination reg so |
| * that the tcg backend can implement a "move if true" operation. |
| */ |
| if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { |
| op->args[5] = cond = tcg_invert_cond(cond); |
| } |
| |
| i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); |
| if (i >= 0) { |
| return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); |
| } |
| |
| ctx->z_mask = arg_info(op->args[3])->z_mask |
| | arg_info(op->args[4])->z_mask; |
| ctx->s_mask = arg_info(op->args[3])->s_mask |
| & arg_info(op->args[4])->s_mask; |
| |
| if (arg_is_const(op->args[3]) && arg_is_const(op->args[4])) { |
| uint64_t tv = arg_info(op->args[3])->val; |
| uint64_t fv = arg_info(op->args[4])->val; |
| TCGOpcode opc; |
| |
| switch (ctx->type) { |
| case TCG_TYPE_I32: |
| opc = INDEX_op_setcond_i32; |
| break; |
| case TCG_TYPE_I64: |
| opc = INDEX_op_setcond_i64; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (tv == 1 && fv == 0) { |
| op->opc = opc; |
| op->args[3] = cond; |
| } else if (fv == 1 && tv == 0) { |
| op->opc = opc; |
| op->args[3] = tcg_invert_cond(cond); |
| } |
| } |
| return false; |
| } |
| |
| static bool fold_mul(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2(ctx, op) || |
| fold_xi_to_i(ctx, op, 0) || |
| fold_xi_to_x(ctx, op, 1)) { |
| return true; |
| } |
| return false; |
| } |
| |
| static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2_commutative(ctx, op) || |
| fold_xi_to_i(ctx, op, 0)) { |
| return true; |
| } |
| return false; |
| } |
| |
| static bool fold_multiply2(OptContext *ctx, TCGOp *op) |
| { |
| swap_commutative(op->args[0], &op->args[2], &op->args[3]); |
| |
| if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { |
| uint64_t a = arg_info(op->args[2])->val; |
| uint64_t b = arg_info(op->args[3])->val; |
| uint64_t h, l; |
| TCGArg rl, rh; |
| TCGOp *op2; |
| |
| switch (op->opc) { |
| case INDEX_op_mulu2_i32: |
| l = (uint64_t)(uint32_t)a * (uint32_t)b; |
| h = (int32_t)(l >> 32); |
| l = (int32_t)l; |
| break; |
| case INDEX_op_muls2_i32: |
| l = (int64_t)(int32_t)a * (int32_t)b; |
| h = l >> 32; |
| l = (int32_t)l; |
| break; |
| case INDEX_op_mulu2_i64: |
| mulu64(&l, &h, a, b); |
| break; |
| case INDEX_op_muls2_i64: |
| muls64(&l, &h, a, b); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| rl = op->args[0]; |
| rh = op->args[1]; |
| |
| /* The proper opcode is supplied by tcg_opt_gen_mov. */ |
| op2 = tcg_op_insert_before(ctx->tcg, op, 0); |
| |
| tcg_opt_gen_movi(ctx, op, rl, l); |
| tcg_opt_gen_movi(ctx, op2, rh, h); |
| return true; |
| } |
| return false; |
| } |
| |
| static bool fold_nand(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2_commutative(ctx, op) || |
| fold_xi_to_not(ctx, op, -1)) { |
| return true; |
| } |
| |
| ctx->s_mask = arg_info(op->args[1])->s_mask |
| & arg_info(op->args[2])->s_mask; |
| return false; |
| } |
| |
| static bool fold_neg(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t z_mask; |
| |
| if (fold_const1(ctx, op)) { |
| return true; |
| } |
| |
| /* Set to 1 all bits to the left of the rightmost. */ |
| z_mask = arg_info(op->args[1])->z_mask; |
| ctx->z_mask = -(z_mask & -z_mask); |
| |
| /* |
| * Because of fold_sub_to_neg, we want to always return true, |
| * via finish_folding. |
| */ |
| finish_folding(ctx, op); |
| return true; |
| } |
| |
| static bool fold_nor(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2_commutative(ctx, op) || |
| fold_xi_to_not(ctx, op, 0)) { |
| return true; |
| } |
| |
| ctx->s_mask = arg_info(op->args[1])->s_mask |
| & arg_info(op->args[2])->s_mask; |
| return false; |
| } |
| |
| static bool fold_not(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const1(ctx, op)) { |
| return true; |
| } |
| |
| ctx->s_mask = arg_info(op->args[1])->s_mask; |
| |
| /* Because of fold_to_not, we want to always return true, via finish. */ |
| finish_folding(ctx, op); |
| return true; |
| } |
| |
| static bool fold_or(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2_commutative(ctx, op) || |
| fold_xi_to_x(ctx, op, 0) || |
| fold_xx_to_x(ctx, op)) { |
| return true; |
| } |
| |
| ctx->z_mask = arg_info(op->args[1])->z_mask |
| | arg_info(op->args[2])->z_mask; |
| ctx->s_mask = arg_info(op->args[1])->s_mask |
| & arg_info(op->args[2])->s_mask; |
| return fold_masks(ctx, op); |
| } |
| |
| static bool fold_orc(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2(ctx, op) || |
| fold_xx_to_i(ctx, op, -1) || |
| fold_xi_to_x(ctx, op, -1) || |
| fold_ix_to_not(ctx, op, 0)) { |
| return true; |
| } |
| |
| ctx->s_mask = arg_info(op->args[1])->s_mask |
| & arg_info(op->args[2])->s_mask; |
| return false; |
| } |
| |
| static bool fold_qemu_ld(OptContext *ctx, TCGOp *op) |
| { |
| const TCGOpDef *def = &tcg_op_defs[op->opc]; |
| MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; |
| MemOp mop = get_memop(oi); |
| int width = 8 * memop_size(mop); |
| |
| if (width < 64) { |
| ctx->s_mask = MAKE_64BIT_MASK(width, 64 - width); |
| if (!(mop & MO_SIGN)) { |
| ctx->z_mask = MAKE_64BIT_MASK(0, width); |
| ctx->s_mask <<= 1; |
| } |
| } |
| |
| /* Opcodes that touch guest memory stop the mb optimization. */ |
| ctx->prev_mb = NULL; |
| return false; |
| } |
| |
| static bool fold_qemu_st(OptContext *ctx, TCGOp *op) |
| { |
| /* Opcodes that touch guest memory stop the mb optimization. */ |
| ctx->prev_mb = NULL; |
| return false; |
| } |
| |
| static bool fold_remainder(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2(ctx, op) || |
| fold_xx_to_i(ctx, op, 0)) { |
| return true; |
| } |
| return false; |
| } |
| |
| static bool fold_setcond(OptContext *ctx, TCGOp *op) |
| { |
| TCGCond cond = op->args[3]; |
| int i; |
| |
| if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) { |
| op->args[3] = cond = tcg_swap_cond(cond); |
| } |
| |
| i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); |
| if (i >= 0) { |
| return tcg_opt_gen_movi(ctx, op, op->args[0], i); |
| } |
| |
| ctx->z_mask = 1; |
| ctx->s_mask = smask_from_zmask(1); |
| return false; |
| } |
| |
| static bool fold_setcond2(OptContext *ctx, TCGOp *op) |
| { |
| TCGCond cond = op->args[5]; |
| int i, inv = 0; |
| |
| if (swap_commutative2(&op->args[1], &op->args[3])) { |
| op->args[5] = cond = tcg_swap_cond(cond); |
| } |
| |
| i = do_constant_folding_cond2(&op->args[1], &op->args[3], cond); |
| if (i >= 0) { |
| goto do_setcond_const; |
| } |
| |
| switch (cond) { |
| case TCG_COND_LT: |
| case TCG_COND_GE: |
| /* |
| * Simplify LT/GE comparisons vs zero to a single compare |
| * vs the high word of the input. |
| */ |
| if (arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0 && |
| arg_is_const(op->args[4]) && arg_info(op->args[4])->val == 0) { |
| goto do_setcond_high; |
| } |
| break; |
| |
| case TCG_COND_NE: |
| inv = 1; |
| QEMU_FALLTHROUGH; |
| case TCG_COND_EQ: |
| /* |
| * Simplify EQ/NE comparisons where one of the pairs |
| * can be simplified. |
| */ |
| i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], |
| op->args[3], cond); |
| switch (i ^ inv) { |
| case 0: |
| goto do_setcond_const; |
| case 1: |
| goto do_setcond_high; |
| } |
| |
| i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], |
| op->args[4], cond); |
| switch (i ^ inv) { |
| case 0: |
| goto do_setcond_const; |
| case 1: |
| op->args[2] = op->args[3]; |
| op->args[3] = cond; |
| op->opc = INDEX_op_setcond_i32; |
| break; |
| } |
| break; |
| |
| default: |
| break; |
| |
| do_setcond_high: |
| op->args[1] = op->args[2]; |
| op->args[2] = op->args[4]; |
| op->args[3] = cond; |
| op->opc = INDEX_op_setcond_i32; |
| break; |
| } |
| |
| ctx->z_mask = 1; |
| ctx->s_mask = smask_from_zmask(1); |
| return false; |
| |
| do_setcond_const: |
| return tcg_opt_gen_movi(ctx, op, op->args[0], i); |
| } |
| |
| static bool fold_sextract(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t z_mask, s_mask, s_mask_old; |
| int pos = op->args[2]; |
| int len = op->args[3]; |
| |
| if (arg_is_const(op->args[1])) { |
| uint64_t t; |
| |
| t = arg_info(op->args[1])->val; |
| t = sextract64(t, pos, len); |
| return tcg_opt_gen_movi(ctx, op, op->args[0], t); |
| } |
| |
| z_mask = arg_info(op->args[1])->z_mask; |
| z_mask = sextract64(z_mask, pos, len); |
| ctx->z_mask = z_mask; |
| |
| s_mask_old = arg_info(op->args[1])->s_mask; |
| s_mask = sextract64(s_mask_old, pos, len); |
| s_mask |= MAKE_64BIT_MASK(len, 64 - len); |
| ctx->s_mask = s_mask; |
| |
| if (pos == 0) { |
| ctx->a_mask = s_mask & ~s_mask_old; |
| } |
| |
| return fold_masks(ctx, op); |
| } |
| |
| static bool fold_shift(OptContext *ctx, TCGOp *op) |
| { |
| uint64_t s_mask, z_mask, sign; |
| |
| if (fold_const2(ctx, op) || |
| fold_ix_to_i(ctx, op, 0) || |
| fold_xi_to_x(ctx, op, 0)) { |
| return true; |
| } |
| |
| s_mask = arg_info(op->args[1])->s_mask; |
| z_mask = arg_info(op->args[1])->z_mask; |
| |
| if (arg_is_const(op->args[2])) { |
| int sh = arg_info(op->args[2])->val; |
| |
| ctx->z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); |
| |
| s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); |
| ctx->s_mask = smask_from_smask(s_mask); |
| |
| return fold_masks(ctx, op); |
| } |
| |
| switch (op->opc) { |
| CASE_OP_32_64(sar): |
| /* |
| * Arithmetic right shift will not reduce the number of |
| * input sign repetitions. |
| */ |
| ctx->s_mask = s_mask; |
| break; |
| CASE_OP_32_64(shr): |
| /* |
| * If the sign bit is known zero, then logical right shift |
| * will not reduced the number of input sign repetitions. |
| */ |
| sign = (s_mask & -s_mask) >> 1; |
| if (!(z_mask & sign)) { |
| ctx->s_mask = s_mask; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) |
| { |
| TCGOpcode neg_op; |
| bool have_neg; |
| |
| if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { |
| return false; |
| } |
| |
| switch (ctx->type) { |
| case TCG_TYPE_I32: |
| neg_op = INDEX_op_neg_i32; |
| have_neg = TCG_TARGET_HAS_neg_i32; |
| break; |
| case TCG_TYPE_I64: |
| neg_op = INDEX_op_neg_i64; |
| have_neg = TCG_TARGET_HAS_neg_i64; |
| break; |
| case TCG_TYPE_V64: |
| case TCG_TYPE_V128: |
| case TCG_TYPE_V256: |
| neg_op = INDEX_op_neg_vec; |
| have_neg = (TCG_TARGET_HAS_neg_vec && |
| tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| if (have_neg) { |
| op->opc = neg_op; |
| op->args[1] = op->args[2]; |
| return fold_neg(ctx, op); |
| } |
| return false; |
| } |
| |
| /* We cannot as yet do_constant_folding with vectors. */ |
| static bool fold_sub_vec(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_xx_to_i(ctx, op, 0) || |
| fold_xi_to_x(ctx, op, 0) || |
| fold_sub_to_neg(ctx, op)) { |
| return true; |
| } |
| return false; |
| } |
| |
| static bool fold_sub(OptContext *ctx, TCGOp *op) |
| { |
| return fold_const2(ctx, op) || fold_sub_vec(ctx, op); |
| } |
| |
| static bool fold_sub2(OptContext *ctx, TCGOp *op) |
| { |
| return fold_addsub2(ctx, op, false); |
| } |
| |
| static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) |
| { |
| /* We can't do any folding with a load, but we can record bits. */ |
| switch (op->opc) { |
| CASE_OP_32_64(ld8s): |
| ctx->s_mask = MAKE_64BIT_MASK(8, 56); |
| break; |
| CASE_OP_32_64(ld8u): |
| ctx->z_mask = MAKE_64BIT_MASK(0, 8); |
| ctx->s_mask = MAKE_64BIT_MASK(9, 55); |
| break; |
| CASE_OP_32_64(ld16s): |
| ctx->s_mask = MAKE_64BIT_MASK(16, 48); |
| break; |
| CASE_OP_32_64(ld16u): |
| ctx->z_mask = MAKE_64BIT_MASK(0, 16); |
| ctx->s_mask = MAKE_64BIT_MASK(17, 47); |
| break; |
| case INDEX_op_ld32s_i64: |
| ctx->s_mask = MAKE_64BIT_MASK(32, 32); |
| break; |
| case INDEX_op_ld32u_i64: |
| ctx->z_mask = MAKE_64BIT_MASK(0, 32); |
| ctx->s_mask = MAKE_64BIT_MASK(33, 31); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return false; |
| } |
| |
| static bool fold_xor(OptContext *ctx, TCGOp *op) |
| { |
| if (fold_const2_commutative(ctx, op) || |
| fold_xx_to_i(ctx, op, 0) || |
| fold_xi_to_x(ctx, op, 0) || |
| fold_xi_to_not(ctx, op, -1)) { |
| return true; |
| } |
| |
| ctx->z_mask = arg_info(op->args[1])->z_mask |
| | arg_info(op->args[2])->z_mask; |
| ctx->s_mask = arg_info(op->args[1])->s_mask |
| & arg_info(op->args[2])->s_mask; |
| return fold_masks(ctx, op); |
| } |
| |
| /* Propagate constants and copies, fold constant expressions. */ |
| void tcg_optimize(TCGContext *s) |
| { |
| int nb_temps, i; |
| TCGOp *op, *op_next; |
| OptContext ctx = { .tcg = s }; |
| |
| /* Array VALS has an element for each temp. |
| If this temp holds a constant then its value is kept in VALS' element. |
| If this temp is a copy of other ones then the other copies are |
| available through the doubly linked circular list. */ |
| |
| nb_temps = s->nb_temps; |
| for (i = 0; i < nb_temps; ++i) { |
| s->temps[i].state_ptr = NULL; |
| } |
| |
| QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { |
| TCGOpcode opc = op->opc; |
| const TCGOpDef *def; |
| bool done = false; |
| |
| /* Calls are special. */ |
| if (opc == INDEX_op_call) { |
| fold_call(&ctx, op); |
| continue; |
| } |
| |
| def = &tcg_op_defs[opc]; |
| init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); |
| copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); |
| |
| /* Pre-compute the type of the operation. */ |
| if (def->flags & TCG_OPF_VECTOR) { |
| ctx.type = TCG_TYPE_V64 + TCGOP_VECL(op); |
| } else if (def->flags & TCG_OPF_64BIT) { |
| ctx.type = TCG_TYPE_I64; |
| } else { |
| ctx.type = TCG_TYPE_I32; |
| } |
| |
| /* Assume all bits affected, no bits known zero, no sign reps. */ |
| ctx.a_mask = -1; |
| ctx.z_mask = -1; |
| ctx.s_mask = 0; |
| |
| /* |
| * Process each opcode. |
| * Sorted alphabetically by opcode as much as possible. |
| */ |
| switch (opc) { |
| CASE_OP_32_64(add): |
| done = fold_add(&ctx, op); |
| break; |
| case INDEX_op_add_vec: |
| done = fold_add_vec(&ctx, op); |
| break; |
| CASE_OP_32_64(add2): |
| done = fold_add2(&ctx, op); |
| break; |
| CASE_OP_32_64_VEC(and): |
| done = fold_and(&ctx, op); |
| break; |
| CASE_OP_32_64_VEC(andc): |
| done = fold_andc(&ctx, op); |
| break; |
| CASE_OP_32_64(brcond): |
| done = fold_brcond(&ctx, op); |
| break; |
| case INDEX_op_brcond2_i32: |
| done = fold_brcond2(&ctx, op); |
| break; |
| CASE_OP_32_64(bswap16): |
| CASE_OP_32_64(bswap32): |
| case INDEX_op_bswap64_i64: |
| done = fold_bswap(&ctx, op); |
| break; |
| CASE_OP_32_64(clz): |
| CASE_OP_32_64(ctz): |
| done = fold_count_zeros(&ctx, op); |
| break; |
| CASE_OP_32_64(ctpop): |
| done = fold_ctpop(&ctx, op); |
| break; |
| CASE_OP_32_64(deposit): |
| done = fold_deposit(&ctx, op); |
| break; |
| CASE_OP_32_64(div): |
| CASE_OP_32_64(divu): |
| done = fold_divide(&ctx, op); |
| break; |
| case INDEX_op_dup_vec: |
| done = fold_dup(&ctx, op); |
| break; |
| case INDEX_op_dup2_vec: |
| done = fold_dup2(&ctx, op); |
| break; |
| CASE_OP_32_64(eqv): |
| done = fold_eqv(&ctx, op); |
| break; |
| CASE_OP_32_64(extract): |
| done = fold_extract(&ctx, op); |
| break; |
| CASE_OP_32_64(extract2): |
| done = fold_extract2(&ctx, op); |
| break; |
| CASE_OP_32_64(ext8s): |
| CASE_OP_32_64(ext16s): |
| case INDEX_op_ext32s_i64: |
| case INDEX_op_ext_i32_i64: |
| done = fold_exts(&ctx, op); |
| break; |
| CASE_OP_32_64(ext8u): |
| CASE_OP_32_64(ext16u): |
| case INDEX_op_ext32u_i64: |
| case INDEX_op_extu_i32_i64: |
| case INDEX_op_extrl_i64_i32: |
| case INDEX_op_extrh_i64_i32: |
| done = fold_extu(&ctx, op); |
| break; |
| CASE_OP_32_64(ld8s): |
| CASE_OP_32_64(ld8u): |
| CASE_OP_32_64(ld16s): |
| CASE_OP_32_64(ld16u): |
| case INDEX_op_ld32s_i64: |
| case INDEX_op_ld32u_i64: |
| done = fold_tcg_ld(&ctx, op); |
| break; |
| case INDEX_op_mb: |
| done = fold_mb(&ctx, op); |
| break; |
| CASE_OP_32_64_VEC(mov): |
| done = fold_mov(&ctx, op); |
| break; |
| CASE_OP_32_64(movcond): |
| done = fold_movcond(&ctx, op); |
| break; |
| CASE_OP_32_64(mul): |
| done = fold_mul(&ctx, op); |
| break; |
| CASE_OP_32_64(mulsh): |
| CASE_OP_32_64(muluh): |
| done = fold_mul_highpart(&ctx, op); |
| break; |
| CASE_OP_32_64(muls2): |
| CASE_OP_32_64(mulu2): |
| done = fold_multiply2(&ctx, op); |
| break; |
| CASE_OP_32_64(nand): |
| done = fold_nand(&ctx, op); |
| break; |
| CASE_OP_32_64(neg): |
| done = fold_neg(&ctx, op); |
| break; |
| CASE_OP_32_64(nor): |
| done = fold_nor(&ctx, op); |
| break; |
| CASE_OP_32_64_VEC(not): |
| done = fold_not(&ctx, op); |
| break; |
| CASE_OP_32_64_VEC(or): |
| done = fold_or(&ctx, op); |
| break; |
| CASE_OP_32_64_VEC(orc): |
| done = fold_orc(&ctx, op); |
| break; |
| case INDEX_op_qemu_ld_i32: |
| case INDEX_op_qemu_ld_i64: |
| done = fold_qemu_ld(&ctx, op); |
| break; |
| case INDEX_op_qemu_st_i32: |
| case INDEX_op_qemu_st8_i32: |
| case INDEX_op_qemu_st_i64: |
| done = fold_qemu_st(&ctx, op); |
| break; |
| CASE_OP_32_64(rem): |
| CASE_OP_32_64(remu): |
| done = fold_remainder(&ctx, op); |
| break; |
| CASE_OP_32_64(rotl): |
| CASE_OP_32_64(rotr): |
| CASE_OP_32_64(sar): |
| CASE_OP_32_64(shl): |
| CASE_OP_32_64(shr): |
| done = fold_shift(&ctx, op); |
| break; |
| CASE_OP_32_64(setcond): |
| done = fold_setcond(&ctx, op); |
| break; |
| case INDEX_op_setcond2_i32: |
| done = fold_setcond2(&ctx, op); |
| break; |
| CASE_OP_32_64(sextract): |
| done = fold_sextract(&ctx, op); |
| break; |
| CASE_OP_32_64(sub): |
| done = fold_sub(&ctx, op); |
| break; |
| case INDEX_op_sub_vec: |
| done = fold_sub_vec(&ctx, op); |
| break; |
| CASE_OP_32_64(sub2): |
| done = fold_sub2(&ctx, op); |
| break; |
| CASE_OP_32_64_VEC(xor): |
| done = fold_xor(&ctx, op); |
| break; |
| default: |
| break; |
| } |
| |
| if (!done) { |
| finish_folding(&ctx, op); |
| } |
| } |
| } |