blob: 63afe1fdf589d8298183686d2d52183bd2bf4511 [file] [log] [blame]
/*
* ARM Nested Vectored Interrupt Controller
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*
* The ARMv7M System controller is fairly tightly tied in with the
* NVIC. Much of that is also implemented here.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/timer.h"
#include "hw/intc/armv7m_nvic.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "sysemu/tcg.h"
#include "sysemu/runstate.h"
#include "target/arm/cpu.h"
#include "exec/exec-all.h"
#include "exec/memop.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "trace.h"
/* IRQ number counting:
*
* the num-irq property counts the number of external IRQ lines
*
* NVICState::num_irq counts the total number of exceptions
* (external IRQs, the 15 internal exceptions including reset,
* and one for the unused exception number 0).
*
* NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
*
* NVIC_MAX_VECTORS is the highest permitted number of exceptions.
*
* Iterating through all exceptions should typically be done with
* for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
*
* The external qemu_irq lines are the NVIC's external IRQ lines,
* so line 0 is exception 16.
*
* In the terminology of the architecture manual, "interrupts" are
* a subcategory of exception referring to the external interrupts
* (which are exception numbers NVIC_FIRST_IRQ and upward).
* For historical reasons QEMU tends to use "interrupt" and
* "exception" more or less interchangeably.
*/
#define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
#define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
/* Effective running priority of the CPU when no exception is active
* (higher than the highest possible priority value)
*/
#define NVIC_NOEXC_PRIO 0x100
/* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
#define NVIC_NS_PRIO_LIMIT 0x80
static const uint8_t nvic_id[] = {
0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
};
static void signal_sysresetreq(NVICState *s)
{
if (qemu_irq_is_connected(s->sysresetreq)) {
qemu_irq_pulse(s->sysresetreq);
} else {
/*
* Default behaviour if the SoC doesn't need to wire up
* SYSRESETREQ (eg to a system reset controller of some kind):
* perform a system reset via the usual QEMU API.
*/
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
}
static int nvic_pending_prio(NVICState *s)
{
/* return the group priority of the current pending interrupt,
* or NVIC_NOEXC_PRIO if no interrupt is pending
*/
return s->vectpending_prio;
}
/* Return the value of the ISCR RETTOBASE bit:
* 1 if there is exactly one active exception
* 0 if there is more than one active exception
* UNKNOWN if there are no active exceptions (we choose 1,
* which matches the choice Cortex-M3 is documented as making).
*
* NB: some versions of the documentation talk about this
* counting "active exceptions other than the one shown by IPSR";
* this is only different in the obscure corner case where guest
* code has manually deactivated an exception and is about
* to fail an exception-return integrity check. The definition
* above is the one from the v8M ARM ARM and is also in line
* with the behaviour documented for the Cortex-M3.
*/
static bool nvic_rettobase(NVICState *s)
{
int irq, nhand = 0;
bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
if (s->vectors[irq].active ||
(check_sec && irq < NVIC_INTERNAL_VECTORS &&
s->sec_vectors[irq].active)) {
nhand++;
if (nhand == 2) {
return 0;
}
}
}
return 1;
}
/* Return the value of the ISCR ISRPENDING bit:
* 1 if an external interrupt is pending
* 0 if no external interrupt is pending
*/
static bool nvic_isrpending(NVICState *s)
{
int irq;
/*
* We can shortcut if the highest priority pending interrupt
* happens to be external; if not we need to check the whole
* vectors[] array.
*/
if (s->vectpending > NVIC_FIRST_IRQ) {
return true;
}
for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
if (s->vectors[irq].pending) {
return true;
}
}
return false;
}
static bool exc_is_banked(int exc)
{
/* Return true if this is one of the limited set of exceptions which
* are banked (and thus have state in sec_vectors[])
*/
return exc == ARMV7M_EXCP_HARD ||
exc == ARMV7M_EXCP_MEM ||
exc == ARMV7M_EXCP_USAGE ||
exc == ARMV7M_EXCP_SVC ||
exc == ARMV7M_EXCP_PENDSV ||
exc == ARMV7M_EXCP_SYSTICK;
}
/* Return a mask word which clears the subpriority bits from
* a priority value for an M-profile exception, leaving only
* the group priority.
*/
static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
{
return ~0U << (s->prigroup[secure] + 1);
}
static bool exc_targets_secure(NVICState *s, int exc)
{
/* Return true if this non-banked exception targets Secure state. */
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
return false;
}
if (exc >= NVIC_FIRST_IRQ) {
return !s->itns[exc];
}
/* Function shouldn't be called for banked exceptions. */
assert(!exc_is_banked(exc));
switch (exc) {
case ARMV7M_EXCP_NMI:
case ARMV7M_EXCP_BUS:
return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
case ARMV7M_EXCP_SECURE:
return true;
case ARMV7M_EXCP_DEBUG:
/* TODO: controlled by DEMCR.SDME, which we don't yet implement */
return false;
default:
/* reset, and reserved (unused) low exception numbers.
* We'll get called by code that loops through all the exception
* numbers, but it doesn't matter what we return here as these
* non-existent exceptions will never be pended or active.
*/
return true;
}
}
static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
{
/* Return the group priority for this exception, given its raw
* (group-and-subgroup) priority value and whether it is targeting
* secure state or not.
*/
if (rawprio < 0) {
return rawprio;
}
rawprio &= nvic_gprio_mask(s, targets_secure);
/* AIRCR.PRIS causes us to squash all NS priorities into the
* lower half of the total range
*/
if (!targets_secure &&
(s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
}
return rawprio;
}
/* Recompute vectpending and exception_prio for a CPU which implements
* the Security extension
*/
static void nvic_recompute_state_secure(NVICState *s)
{
int i, bank;
int pend_prio = NVIC_NOEXC_PRIO;
int active_prio = NVIC_NOEXC_PRIO;
int pend_irq = 0;
bool pending_is_s_banked = false;
int pend_subprio = 0;
/* R_CQRV: precedence is by:
* - lowest group priority; if both the same then
* - lowest subpriority; if both the same then
* - lowest exception number; if both the same (ie banked) then
* - secure exception takes precedence
* Compare pseudocode RawExecutionPriority.
* Annoyingly, now we have two prigroup values (for S and NS)
* we can't do the loop comparison on raw priority values.
*/
for (i = 1; i < s->num_irq; i++) {
for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
VecInfo *vec;
int prio, subprio;
bool targets_secure;
if (bank == M_REG_S) {
if (!exc_is_banked(i)) {
continue;
}
vec = &s->sec_vectors[i];
targets_secure = true;
} else {
vec = &s->vectors[i];
targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
}
prio = exc_group_prio(s, vec->prio, targets_secure);
subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
if (vec->enabled && vec->pending &&
((prio < pend_prio) ||
(prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
pend_prio = prio;
pend_subprio = subprio;
pend_irq = i;
pending_is_s_banked = (bank == M_REG_S);
}
if (vec->active && prio < active_prio) {
active_prio = prio;
}
}
}
s->vectpending_is_s_banked = pending_is_s_banked;
s->vectpending = pend_irq;
s->vectpending_prio = pend_prio;
s->exception_prio = active_prio;
trace_nvic_recompute_state_secure(s->vectpending,
s->vectpending_is_s_banked,
s->vectpending_prio,
s->exception_prio);
}
/* Recompute vectpending and exception_prio */
static void nvic_recompute_state(NVICState *s)
{
int i;
int pend_prio = NVIC_NOEXC_PRIO;
int active_prio = NVIC_NOEXC_PRIO;
int pend_irq = 0;
/* In theory we could write one function that handled both
* the "security extension present" and "not present"; however
* the security related changes significantly complicate the
* recomputation just by themselves and mixing both cases together
* would be even worse, so we retain a separate non-secure-only
* version for CPUs which don't implement the security extension.
*/
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
nvic_recompute_state_secure(s);
return;
}
for (i = 1; i < s->num_irq; i++) {
VecInfo *vec = &s->vectors[i];
if (vec->enabled && vec->pending && vec->prio < pend_prio) {
pend_prio = vec->prio;
pend_irq = i;
}
if (vec->active && vec->prio < active_prio) {
active_prio = vec->prio;
}
}
if (active_prio > 0) {
active_prio &= nvic_gprio_mask(s, false);
}
if (pend_prio > 0) {
pend_prio &= nvic_gprio_mask(s, false);
}
s->vectpending = pend_irq;
s->vectpending_prio = pend_prio;
s->exception_prio = active_prio;
trace_nvic_recompute_state(s->vectpending,
s->vectpending_prio,
s->exception_prio);
}
/* Return the current execution priority of the CPU
* (equivalent to the pseudocode ExecutionPriority function).
* This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
*/
static inline int nvic_exec_prio(NVICState *s)
{
CPUARMState *env = &s->cpu->env;
int running = NVIC_NOEXC_PRIO;
if (env->v7m.basepri[M_REG_NS] > 0) {
running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
}
if (env->v7m.basepri[M_REG_S] > 0) {
int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
if (running > basepri) {
running = basepri;
}
}
if (env->v7m.primask[M_REG_NS]) {
if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
if (running > NVIC_NS_PRIO_LIMIT) {
running = NVIC_NS_PRIO_LIMIT;
}
} else {
running = 0;
}
}
if (env->v7m.primask[M_REG_S]) {
running = 0;
}
if (env->v7m.faultmask[M_REG_NS]) {
if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
running = -1;
} else {
if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
if (running > NVIC_NS_PRIO_LIMIT) {
running = NVIC_NS_PRIO_LIMIT;
}
} else {
running = 0;
}
}
}
if (env->v7m.faultmask[M_REG_S]) {
running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
}
/* consider priority of active handler */
return MIN(running, s->exception_prio);
}
bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure)
{
/* Return true if the requested execution priority is negative
* for the specified security state, ie that security state
* has an active NMI or HardFault or has set its FAULTMASK.
* Note that this is not the same as whether the execution
* priority is actually negative (for instance AIRCR.PRIS may
* mean we don't allow FAULTMASK_NS to actually make the execution
* priority negative). Compare pseudocode IsReqExcPriNeg().
*/
if (s->cpu->env.v7m.faultmask[secure]) {
return true;
}
if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
s->vectors[ARMV7M_EXCP_HARD].active) {
return true;
}
if (s->vectors[ARMV7M_EXCP_NMI].active &&
exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
return true;
}
return false;
}
bool armv7m_nvic_can_take_pending_exception(NVICState *s)
{
return nvic_exec_prio(s) > nvic_pending_prio(s);
}
int armv7m_nvic_raw_execution_priority(NVICState *s)
{
return s->exception_prio;
}
/* caller must call nvic_irq_update() after this.
* secure indicates the bank to use for banked exceptions (we assert if
* we are passed secure=true for a non-banked exception).
*/
static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
{
assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
assert(irq < s->num_irq);
prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
if (secure) {
assert(exc_is_banked(irq));
s->sec_vectors[irq].prio = prio;
} else {
s->vectors[irq].prio = prio;
}
trace_nvic_set_prio(irq, secure, prio);
}
/* Return the current raw priority register value.
* secure indicates the bank to use for banked exceptions (we assert if
* we are passed secure=true for a non-banked exception).
*/
static int get_prio(NVICState *s, unsigned irq, bool secure)
{
assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
assert(irq < s->num_irq);
if (secure) {
assert(exc_is_banked(irq));
return s->sec_vectors[irq].prio;
} else {
return s->vectors[irq].prio;
}
}
/* Recompute state and assert irq line accordingly.
* Must be called after changes to:
* vec->active, vec->enabled, vec->pending or vec->prio for any vector
* prigroup
*/
static void nvic_irq_update(NVICState *s)
{
int lvl;
int pend_prio;
nvic_recompute_state(s);
pend_prio = nvic_pending_prio(s);
/* Raise NVIC output if this IRQ would be taken, except that we
* ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
* will be checked for in arm_v7m_cpu_exec_interrupt()); changes
* to those CPU registers don't cause us to recalculate the NVIC
* pending info.
*/
lvl = (pend_prio < s->exception_prio);
trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
qemu_set_irq(s->excpout, lvl);
}
/**
* armv7m_nvic_clear_pending: mark the specified exception as not pending
* @opaque: the NVIC
* @irq: the exception number to mark as not pending
* @secure: false for non-banked exceptions or for the nonsecure
* version of a banked exception, true for the secure version of a banked
* exception.
*
* Marks the specified exception as not pending. Note that we will assert()
* if @secure is true and @irq does not specify one of the fixed set
* of architecturally banked exceptions.
*/
static void armv7m_nvic_clear_pending(NVICState *s, int irq, bool secure)
{
VecInfo *vec;
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
if (secure) {
assert(exc_is_banked(irq));
vec = &s->sec_vectors[irq];
} else {
vec = &s->vectors[irq];
}
trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
if (vec->pending) {
vec->pending = 0;
nvic_irq_update(s);
}
}
static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
bool derived)
{
/* Pend an exception, including possibly escalating it to HardFault.
*
* This function handles both "normal" pending of interrupts and
* exceptions, and also derived exceptions (ones which occur as
* a result of trying to take some other exception).
*
* If derived == true, the caller guarantees that we are part way through
* trying to take an exception (but have not yet called
* armv7m_nvic_acknowledge_irq() to make it active), and so:
* - s->vectpending is the "original exception" we were trying to take
* - irq is the "derived exception"
* - nvic_exec_prio(s) gives the priority before exception entry
* Here we handle the prioritization logic which the pseudocode puts
* in the DerivedLateArrival() function.
*/
NVICState *s = (NVICState *)opaque;
bool banked = exc_is_banked(irq);
VecInfo *vec;
bool targets_secure;
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
assert(!secure || banked);
vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
targets_secure = banked ? secure : exc_targets_secure(s, irq);
trace_nvic_set_pending(irq, secure, targets_secure,
derived, vec->enabled, vec->prio);
if (derived) {
/* Derived exceptions are always synchronous. */
assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
if (irq == ARMV7M_EXCP_DEBUG &&
exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
/* DebugMonitorFault, but its priority is lower than the
* preempted exception priority: just ignore it.
*/
return;
}
if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
/* If this is a terminal exception (one which means we cannot
* take the original exception, like a failure to read its
* vector table entry), then we must take the derived exception.
* If the derived exception can't take priority over the
* original exception, then we go into Lockup.
*
* For QEMU, we rely on the fact that a derived exception is
* terminal if and only if it's reported to us as HardFault,
* which saves having to have an extra argument is_terminal
* that we'd only use in one place.
*/
cpu_abort(CPU(s->cpu),
"Lockup: can't take terminal derived exception "
"(original exception priority %d)\n",
s->vectpending_prio);
}
/* We now continue with the same code as for a normal pending
* exception, which will cause us to pend the derived exception.
* We'll then take either the original or the derived exception
* based on which is higher priority by the usual mechanism
* for selecting the highest priority pending interrupt.
*/
}
if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
/* If a synchronous exception is pending then it may be
* escalated to HardFault if:
* * it is equal or lower priority to current execution
* * it is disabled
* (ie we need to take it immediately but we can't do so).
* Asynchronous exceptions (and interrupts) simply remain pending.
*
* For QEMU, we don't have any imprecise (asynchronous) faults,
* so we can assume that PREFETCH_ABORT and DATA_ABORT are always
* synchronous.
* Debug exceptions are awkward because only Debug exceptions
* resulting from the BKPT instruction should be escalated,
* but we don't currently implement any Debug exceptions other
* than those that result from BKPT, so we treat all debug exceptions
* as needing escalation.
*
* This all means we can identify whether to escalate based only on
* the exception number and don't (yet) need the caller to explicitly
* tell us whether this exception is synchronous or not.
*/
int running = nvic_exec_prio(s);
bool escalate = false;
if (exc_group_prio(s, vec->prio, secure) >= running) {
trace_nvic_escalate_prio(irq, vec->prio, running);
escalate = true;
} else if (!vec->enabled) {
trace_nvic_escalate_disabled(irq);
escalate = true;
}
if (escalate) {
/* We need to escalate this exception to a synchronous HardFault.
* If BFHFNMINS is set then we escalate to the banked HF for
* the target security state of the original exception; otherwise
* we take a Secure HardFault.
*/
irq = ARMV7M_EXCP_HARD;
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
(targets_secure ||
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
vec = &s->sec_vectors[irq];
} else {
vec = &s->vectors[irq];
}
if (running <= vec->prio) {
/* We want to escalate to HardFault but we can't take the
* synchronous HardFault at this point either. This is a
* Lockup condition due to a guest bug. We don't model
* Lockup, so report via cpu_abort() instead.
*/
cpu_abort(CPU(s->cpu),
"Lockup: can't escalate %d to HardFault "
"(current priority %d)\n", irq, running);
}
/* HF may be banked but there is only one shared HFSR */
s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
}
}
if (!vec->pending) {
vec->pending = 1;
nvic_irq_update(s);
}
}
void armv7m_nvic_set_pending(NVICState *s, int irq, bool secure)
{
do_armv7m_nvic_set_pending(s, irq, secure, false);
}
void armv7m_nvic_set_pending_derived(NVICState *s, int irq, bool secure)
{
do_armv7m_nvic_set_pending(s, irq, secure, true);
}
void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure)
{
/*
* Pend an exception during lazy FP stacking. This differs
* from the usual exception pending because the logic for
* whether we should escalate depends on the saved context
* in the FPCCR register, not on the current state of the CPU/NVIC.
*/
bool banked = exc_is_banked(irq);
VecInfo *vec;
bool targets_secure;
bool escalate = false;
/*
* We will only look at bits in fpccr if this is a banked exception
* (in which case 'secure' tells us whether it is the S or NS version).
* All the bits for the non-banked exceptions are in fpccr_s.
*/
uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
assert(!secure || banked);
vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
targets_secure = banked ? secure : exc_targets_secure(s, irq);
switch (irq) {
case ARMV7M_EXCP_DEBUG:
if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
/* Ignore DebugMonitor exception */
return;
}
break;
case ARMV7M_EXCP_MEM:
escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
break;
case ARMV7M_EXCP_USAGE:
escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
break;
case ARMV7M_EXCP_BUS:
escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
break;
case ARMV7M_EXCP_SECURE:
escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
break;
default:
g_assert_not_reached();
}
if (escalate) {
/*
* Escalate to HardFault: faults that initially targeted Secure
* continue to do so, even if HF normally targets NonSecure.
*/
irq = ARMV7M_EXCP_HARD;
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
(targets_secure ||
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
vec = &s->sec_vectors[irq];
} else {
vec = &s->vectors[irq];
}
}
if (!vec->enabled ||
nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
/*
* We want to escalate to HardFault but the context the
* FP state belongs to prevents the exception pre-empting.
*/
cpu_abort(CPU(s->cpu),
"Lockup: can't escalate to HardFault during "
"lazy FP register stacking\n");
}
}
if (escalate) {
s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
}
if (!vec->pending) {
vec->pending = 1;
/*
* We do not call nvic_irq_update(), because we know our caller
* is going to handle causing us to take the exception by
* raising EXCP_LAZYFP, so raising the IRQ line would be
* pointless extra work. We just need to recompute the
* priorities so that armv7m_nvic_can_take_pending_exception()
* returns the right answer.
*/
nvic_recompute_state(s);
}
}
/* Make pending IRQ active. */
void armv7m_nvic_acknowledge_irq(NVICState *s)
{
CPUARMState *env = &s->cpu->env;
const int pending = s->vectpending;
const int running = nvic_exec_prio(s);
VecInfo *vec;
assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
if (s->vectpending_is_s_banked) {
vec = &s->sec_vectors[pending];
} else {
vec = &s->vectors[pending];
}
assert(vec->enabled);
assert(vec->pending);
assert(s->vectpending_prio < running);
trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
vec->active = 1;
vec->pending = 0;
write_v7m_exception(env, s->vectpending);
nvic_irq_update(s);
}
static bool vectpending_targets_secure(NVICState *s)
{
/* Return true if s->vectpending targets Secure state */
if (s->vectpending_is_s_banked) {
return true;
}
return !exc_is_banked(s->vectpending) &&
exc_targets_secure(s, s->vectpending);
}
void armv7m_nvic_get_pending_irq_info(NVICState *s,
int *pirq, bool *ptargets_secure)
{
const int pending = s->vectpending;
bool targets_secure;
assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
targets_secure = vectpending_targets_secure(s);
trace_nvic_get_pending_irq_info(pending, targets_secure);
*ptargets_secure = targets_secure;
*pirq = pending;
}
int armv7m_nvic_complete_irq(NVICState *s, int irq, bool secure)
{
VecInfo *vec = NULL;
int ret = 0;
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
trace_nvic_complete_irq(irq, secure);
if (secure && exc_is_banked(irq)) {
vec = &s->sec_vectors[irq];
} else {
vec = &s->vectors[irq];
}
/*
* Identify illegal exception return cases. We can't immediately
* return at this point because we still need to deactivate
* (either this exception or NMI/HardFault) first.
*/
if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
/*
* Return from a configurable exception targeting the opposite
* security state from the one we're trying to complete it for.
* Clear vec because it's not really the VecInfo for this
* (irq, secstate) so we mustn't deactivate it.
*/
ret = -1;
vec = NULL;
} else if (!vec->active) {
/* Return from an inactive interrupt */
ret = -1;
} else {
/* Legal return, we will return the RETTOBASE bit value to the caller */
ret = nvic_rettobase(s);
}
/*
* For negative priorities, v8M will forcibly deactivate the appropriate
* NMI or HardFault regardless of what interrupt we're being asked to
* deactivate (compare the DeActivate() pseudocode). This is a guard
* against software returning from NMI or HardFault with a corrupted
* IPSR and leaving the CPU in a negative-priority state.
* v7M does not do this, but simply deactivates the requested interrupt.
*/
if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
switch (armv7m_nvic_raw_execution_priority(s)) {
case -1:
if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
vec = &s->vectors[ARMV7M_EXCP_HARD];
} else {
vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
}
break;
case -2:
vec = &s->vectors[ARMV7M_EXCP_NMI];
break;
case -3:
vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
break;
default:
break;
}
}
if (!vec) {
return ret;
}
vec->active = 0;
if (vec->level) {
/* Re-pend the exception if it's still held high; only
* happens for extenal IRQs
*/
assert(irq >= NVIC_FIRST_IRQ);
vec->pending = 1;
}
nvic_irq_update(s);
return ret;
}
bool armv7m_nvic_get_ready_status(NVICState *s, int irq, bool secure)
{
/*
* Return whether an exception is "ready", i.e. it is enabled and is
* configured at a priority which would allow it to interrupt the
* current execution priority.
*
* irq and secure have the same semantics as for armv7m_nvic_set_pending():
* for non-banked exceptions secure is always false; for banked exceptions
* it indicates which of the exceptions is required.
*/
bool banked = exc_is_banked(irq);
VecInfo *vec;
int running = nvic_exec_prio(s);
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
assert(!secure || banked);
/*
* HardFault is an odd special case: we always check against -1,
* even if we're secure and HardFault has priority -3; we never
* need to check for enabled state.
*/
if (irq == ARMV7M_EXCP_HARD) {
return running > -1;
}
vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
return vec->enabled &&
exc_group_prio(s, vec->prio, secure) < running;
}
/* callback when external interrupt line is changed */
static void set_irq_level(void *opaque, int n, int level)
{
NVICState *s = opaque;
VecInfo *vec;
n += NVIC_FIRST_IRQ;
assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
trace_nvic_set_irq_level(n, level);
/* The pending status of an external interrupt is
* latched on rising edge and exception handler return.
*
* Pulsing the IRQ will always run the handler
* once, and the handler will re-run until the
* level is low when the handler completes.
*/
vec = &s->vectors[n];
if (level != vec->level) {
vec->level = level;
if (level) {
armv7m_nvic_set_pending(s, n, false);
}
}
}
/* callback when external NMI line is changed */
static void nvic_nmi_trigger(void *opaque, int n, int level)
{
NVICState *s = opaque;
trace_nvic_set_nmi_level(level);
/*
* The architecture doesn't specify whether NMI should share
* the normal-interrupt behaviour of being resampled on
* exception handler return. We choose not to, so just
* set NMI pending here and don't track the current level.
*/
if (level) {
armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
}
}
static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
{
ARMCPU *cpu = s->cpu;
uint32_t val;
switch (offset) {
case 4: /* Interrupt Control Type. */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
goto bad_offset;
}
return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
case 0xc: /* CPPWR */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
/* We make the IMPDEF choice that nothing can ever go into a
* non-retentive power state, which allows us to RAZ/WI this.
*/
return 0;
case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
{
int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
int i;
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return 0;
}
val = 0;
for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
if (s->itns[startvec + i]) {
val |= (1 << i);
}
}
return val;
}
case 0xcfc:
if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
goto bad_offset;
}
return cpu->revidr;
case 0xd00: /* CPUID Base. */
return cpu->midr;
case 0xd04: /* Interrupt Control State (ICSR) */
/* VECTACTIVE */
val = cpu->env.v7m.exception;
/* VECTPENDING */
if (s->vectpending) {
/*
* From v8.1M VECTPENDING must read as 1 if accessed as
* NonSecure and the highest priority pending and enabled
* exception targets Secure.
*/
int vp = s->vectpending;
if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) &&
vectpending_targets_secure(s)) {
vp = 1;
}
val |= (vp & 0x1ff) << 12;
}
/* ISRPENDING - set if any external IRQ is pending */
if (nvic_isrpending(s)) {
val |= (1 << 22);
}
/* RETTOBASE - set if only one handler is active */
if (nvic_rettobase(s)) {
val |= (1 << 11);
}
if (attrs.secure) {
/* PENDSTSET */
if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
val |= (1 << 26);
}
/* PENDSVSET */
if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
val |= (1 << 28);
}
} else {
/* PENDSTSET */
if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
val |= (1 << 26);
}
/* PENDSVSET */
if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
val |= (1 << 28);
}
}
/* NMIPENDSET */
if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
&& s->vectors[ARMV7M_EXCP_NMI].pending) {
val |= (1 << 31);
}
/* ISRPREEMPT: RES0 when halting debug not implemented */
/* STTNS: RES0 for the Main Extension */
return val;
case 0xd08: /* Vector Table Offset. */
return cpu->env.v7m.vecbase[attrs.secure];
case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
if (attrs.secure) {
/* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
val |= cpu->env.v7m.aircr;
} else {
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
/* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
* security isn't supported then BFHFNMINS is RAO (and
* the bit in env.v7m.aircr is always set).
*/
val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
}
}
return val;
case 0xd10: /* System Control. */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
goto bad_offset;
}
return cpu->env.v7m.scr[attrs.secure];
case 0xd14: /* Configuration Control. */
/*
* Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
* and TRD (stored in the S copy of the register)
*/
val = cpu->env.v7m.ccr[attrs.secure];
val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
/* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */
if (!attrs.secure) {
if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
val &= ~R_V7M_CCR_BFHFNMIGN_MASK;
}
}
return val;
case 0xd24: /* System Handler Control and State (SHCSR) */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
goto bad_offset;
}
val = 0;
if (attrs.secure) {
if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
val |= (1 << 0);
}
if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
val |= (1 << 2);
}
if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
val |= (1 << 3);
}
if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
val |= (1 << 7);
}
if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
val |= (1 << 10);
}
if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
val |= (1 << 11);
}
if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
val |= (1 << 12);
}
if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
val |= (1 << 13);
}
if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
val |= (1 << 15);
}
if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
val |= (1 << 16);
}
if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
val |= (1 << 18);
}
if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
val |= (1 << 21);
}
/* SecureFault is not banked but is always RAZ/WI to NS */
if (s->vectors[ARMV7M_EXCP_SECURE].active) {
val |= (1 << 4);
}
if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
val |= (1 << 19);
}
if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
val |= (1 << 20);
}
} else {
if (s->vectors[ARMV7M_EXCP_MEM].active) {
val |= (1 << 0);
}
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
/* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
if (s->vectors[ARMV7M_EXCP_HARD].active) {
val |= (1 << 2);
}
if (s->vectors[ARMV7M_EXCP_HARD].pending) {
val |= (1 << 21);
}
}
if (s->vectors[ARMV7M_EXCP_USAGE].active) {
val |= (1 << 3);
}
if (s->vectors[ARMV7M_EXCP_SVC].active) {
val |= (1 << 7);
}
if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
val |= (1 << 10);
}
if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
val |= (1 << 11);
}
if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
val |= (1 << 12);
}
if (s->vectors[ARMV7M_EXCP_MEM].pending) {
val |= (1 << 13);
}
if (s->vectors[ARMV7M_EXCP_SVC].pending) {
val |= (1 << 15);
}
if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
val |= (1 << 16);
}
if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
val |= (1 << 18);
}
}
if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
if (s->vectors[ARMV7M_EXCP_BUS].active) {
val |= (1 << 1);
}
if (s->vectors[ARMV7M_EXCP_BUS].pending) {
val |= (1 << 14);
}
if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
val |= (1 << 17);
}
if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
s->vectors[ARMV7M_EXCP_NMI].active) {
/* NMIACT is not present in v7M */
val |= (1 << 5);
}
}
/* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
val |= (1 << 8);
}
return val;
case 0xd2c: /* Hard Fault Status. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->env.v7m.hfsr;
case 0xd30: /* Debug Fault Status. */
return cpu->env.v7m.dfsr;
case 0xd34: /* MMFAR MemManage Fault Address */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->env.v7m.mmfar[attrs.secure];
case 0xd38: /* Bus Fault Address. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
if (!attrs.secure &&
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
return 0;
}
return cpu->env.v7m.bfar;
case 0xd3c: /* Aux Fault Status. */
/* TODO: Implement fault status registers. */
qemu_log_mask(LOG_UNIMP,
"Aux Fault status registers unimplemented\n");
return 0;
case 0xd40: /* PFR0. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_pfr0;
case 0xd44: /* PFR1. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_pfr1;
case 0xd48: /* DFR0. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_dfr0;
case 0xd4c: /* AFR0. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->id_afr0;
case 0xd50: /* MMFR0. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_mmfr0;
case 0xd54: /* MMFR1. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_mmfr1;
case 0xd58: /* MMFR2. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_mmfr2;
case 0xd5c: /* MMFR3. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_mmfr3;
case 0xd60: /* ISAR0. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_isar0;
case 0xd64: /* ISAR1. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_isar1;
case 0xd68: /* ISAR2. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_isar2;
case 0xd6c: /* ISAR3. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_isar3;
case 0xd70: /* ISAR4. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_isar4;
case 0xd74: /* ISAR5. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->isar.id_isar5;
case 0xd78: /* CLIDR */
return cpu->clidr;
case 0xd7c: /* CTR */
return cpu->ctr;
case 0xd80: /* CSSIDR */
{
int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
return cpu->ccsidr[idx];
}
case 0xd84: /* CSSELR */
return cpu->env.v7m.csselr[attrs.secure];
case 0xd88: /* CPACR */
if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
return 0;
}
return cpu->env.v7m.cpacr[attrs.secure];
case 0xd8c: /* NSACR */
if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
return 0;
}
return cpu->env.v7m.nsacr;
/* TODO: Implement debug registers. */
case 0xd90: /* MPU_TYPE */
/* Unified MPU; if the MPU is not present this value is zero */
return cpu->pmsav7_dregion << 8;
case 0xd94: /* MPU_CTRL */
return cpu->env.v7m.mpu_ctrl[attrs.secure];
case 0xd98: /* MPU_RNR */
return cpu->env.pmsav7.rnr[attrs.secure];
case 0xd9c: /* MPU_RBAR */
case 0xda4: /* MPU_RBAR_A1 */
case 0xdac: /* MPU_RBAR_A2 */
case 0xdb4: /* MPU_RBAR_A3 */
{
int region = cpu->env.pmsav7.rnr[attrs.secure];
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
/* PMSAv8M handling of the aliases is different from v7M:
* aliases A1, A2, A3 override the low two bits of the region
* number in MPU_RNR, and there is no 'region' field in the
* RBAR register.
*/
int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
if (aliasno) {
region = deposit32(region, 0, 2, aliasno);
}
if (region >= cpu->pmsav7_dregion) {
return 0;
}
return cpu->env.pmsav8.rbar[attrs.secure][region];
}
if (region >= cpu->pmsav7_dregion) {
return 0;
}
return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
}
case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
{
int region = cpu->env.pmsav7.rnr[attrs.secure];
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
/* PMSAv8M handling of the aliases is different from v7M:
* aliases A1, A2, A3 override the low two bits of the region
* number in MPU_RNR.
*/
int aliasno = (offset - 0xda0) / 8; /* 0..3 */
if (aliasno) {
region = deposit32(region, 0, 2, aliasno);
}
if (region >= cpu->pmsav7_dregion) {
return 0;
}
return cpu->env.pmsav8.rlar[attrs.secure][region];
}
if (region >= cpu->pmsav7_dregion) {
return 0;
}
return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
(cpu->env.pmsav7.drsr[region] & 0xffff);
}
case 0xdc0: /* MPU_MAIR0 */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
return cpu->env.pmsav8.mair0[attrs.secure];
case 0xdc4: /* MPU_MAIR1 */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
return cpu->env.pmsav8.mair1[attrs.secure];
case 0xdd0: /* SAU_CTRL */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return 0;
}
return cpu->env.sau.ctrl;
case 0xdd4: /* SAU_TYPE */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return 0;
}
return cpu->sau_sregion;
case 0xdd8: /* SAU_RNR */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return 0;
}
return cpu->env.sau.rnr;
case 0xddc: /* SAU_RBAR */
{
int region = cpu->env.sau.rnr;
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return 0;
}
if (region >= cpu->sau_sregion) {
return 0;
}
return cpu->env.sau.rbar[region];
}
case 0xde0: /* SAU_RLAR */
{
int region = cpu->env.sau.rnr;
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return 0;
}
if (region >= cpu->sau_sregion) {
return 0;
}
return cpu->env.sau.rlar[region];
}
case 0xde4: /* SFSR */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return 0;
}
return cpu->env.v7m.sfsr;
case 0xde8: /* SFAR */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return 0;
}
return cpu->env.v7m.sfar;
case 0xf04: /* RFSR */
if (!cpu_isar_feature(aa32_ras, cpu)) {
goto bad_offset;
}
/* We provide minimal-RAS only: RFSR is RAZ/WI */
return 0;
case 0xf34: /* FPCCR */
if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
return 0;
}
if (attrs.secure) {
return cpu->env.v7m.fpccr[M_REG_S];
} else {
/*
* NS can read LSPEN, CLRONRET and MONRDY. It can read
* BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
* other non-banked bits RAZ.
* TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
*/
uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
R_V7M_FPCCR_CLRONRET_MASK |
R_V7M_FPCCR_MONRDY_MASK;
if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
}
value &= mask;
value |= cpu->env.v7m.fpccr[M_REG_NS];
return value;
}
case 0xf38: /* FPCAR */
if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
return 0;
}
return cpu->env.v7m.fpcar[attrs.secure];
case 0xf3c: /* FPDSCR */
if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
return 0;
}
return cpu->env.v7m.fpdscr[attrs.secure];
case 0xf40: /* MVFR0 */
return cpu->isar.mvfr0;
case 0xf44: /* MVFR1 */
return cpu->isar.mvfr1;
case 0xf48: /* MVFR2 */
return cpu->isar.mvfr2;
default:
bad_offset:
qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
return 0;
}
}
static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
MemTxAttrs attrs)
{
ARMCPU *cpu = s->cpu;
switch (offset) {
case 0xc: /* CPPWR */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
/* Make the IMPDEF choice to RAZ/WI this. */
break;
case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
{
int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
int i;
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
break;
}
for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
s->itns[startvec + i] = (value >> i) & 1;
}
nvic_irq_update(s);
break;
}
case 0xd04: /* Interrupt Control State (ICSR) */
if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
if (value & (1 << 31)) {
armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
} else if (value & (1 << 30) &&
arm_feature(&cpu->env, ARM_FEATURE_V8)) {
/* PENDNMICLR didn't exist in v7M */
armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
}
}
if (value & (1 << 28)) {
armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
} else if (value & (1 << 27)) {
armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
}
if (value & (1 << 26)) {
armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
} else if (value & (1 << 25)) {
armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
}
break;
case 0xd08: /* Vector Table Offset. */
cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
break;
case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
if (attrs.secure ||
!(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
signal_sysresetreq(s);
}
}
if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
qemu_log_mask(LOG_GUEST_ERROR,
"Setting VECTCLRACTIVE when not in DEBUG mode "
"is UNPREDICTABLE\n");
}
if (value & R_V7M_AIRCR_VECTRESET_MASK) {
/* NB: this bit is RES0 in v8M */
qemu_log_mask(LOG_GUEST_ERROR,
"Setting VECTRESET when not in DEBUG mode "
"is UNPREDICTABLE\n");
}
if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
s->prigroup[attrs.secure] =
extract32(value,
R_V7M_AIRCR_PRIGROUP_SHIFT,
R_V7M_AIRCR_PRIGROUP_LENGTH);
}
/* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */
if (attrs.secure) {
/* These bits are only writable by secure */
cpu->env.v7m.aircr = value &
(R_V7M_AIRCR_SYSRESETREQS_MASK |
R_V7M_AIRCR_BFHFNMINS_MASK |
R_V7M_AIRCR_PRIS_MASK);
/* BFHFNMINS changes the priority of Secure HardFault, and
* allows a pending Non-secure HardFault to preempt (which
* we implement by marking it enabled).
*/
if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
} else {
s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
}
}
nvic_irq_update(s);
}
break;
case 0xd10: /* System Control. */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
goto bad_offset;
}
/* We don't implement deep-sleep so these bits are RAZ/WI.
* The other bits in the register are banked.
* QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
* is architecturally permitted.
*/
value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
cpu->env.v7m.scr[attrs.secure] = value;
break;
case 0xd14: /* Configuration Control. */
{
uint32_t mask;
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
/* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
mask = R_V7M_CCR_STKALIGN_MASK |
R_V7M_CCR_BFHFNMIGN_MASK |
R_V7M_CCR_DIV_0_TRP_MASK |
R_V7M_CCR_UNALIGN_TRP_MASK |
R_V7M_CCR_USERSETMPEND_MASK |
R_V7M_CCR_NONBASETHRDENA_MASK;
if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
/* TRD is always RAZ/WI from NS */
mask |= R_V7M_CCR_TRD_MASK;
}
value &= mask;
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
/* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
value |= R_V7M_CCR_NONBASETHRDENA_MASK
| R_V7M_CCR_STKALIGN_MASK;
}
if (attrs.secure) {
/* the BFHFNMIGN bit is not banked; keep that in the NS copy */
cpu->env.v7m.ccr[M_REG_NS] =
(cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
| (value & R_V7M_CCR_BFHFNMIGN_MASK);
value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
} else {
/*
* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so
* preserve the state currently in the NS element of the array
*/
if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
}
}
cpu->env.v7m.ccr[attrs.secure] = value;
break;
}
case 0xd24: /* System Handler Control and State (SHCSR) */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
goto bad_offset;
}
if (attrs.secure) {
s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
/* Secure HardFault active bit cannot be written */
s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
(value & (1 << 10)) != 0;
s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
(value & (1 << 11)) != 0;
s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
(value & (1 << 12)) != 0;
s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
(value & (1 << 18)) != 0;
s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
/* SecureFault not banked, but RAZ/WI to NS */
s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
} else {
s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
/* HARDFAULTPENDED is not present in v7M */
s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
}
s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
}
if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
}
/* NMIACT can only be written if the write is of a zero, with
* BFHFNMINS 1, and by the CPU in secure state via the NS alias.
*/
if (!attrs.secure && cpu->env.v7m.secure &&
(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
(value & (1 << 5)) == 0) {
s->vectors[ARMV7M_EXCP_NMI].active = 0;
}
/* HARDFAULTACT can only be written if the write is of a zero
* to the non-secure HardFault state by the CPU in secure state.
* The only case where we can be targeting the non-secure HF state
* when in secure state is if this is a write via the NS alias
* and BFHFNMINS is 1.
*/
if (!attrs.secure && cpu->env.v7m.secure &&
(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
(value & (1 << 2)) == 0) {
s->vectors[ARMV7M_EXCP_HARD].active = 0;
}
/* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
nvic_irq_update(s);
break;
case 0xd2c: /* Hard Fault Status. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
cpu->env.v7m.hfsr &= ~value; /* W1C */
break;
case 0xd30: /* Debug Fault Status. */
cpu->env.v7m.dfsr &= ~value; /* W1C */
break;
case 0xd34: /* Mem Manage Address. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
cpu->env.v7m.mmfar[attrs.secure] = value;
return;
case 0xd38: /* Bus Fault Address. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
if (!attrs.secure &&
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
return;
}
cpu->env.v7m.bfar = value;
return;
case 0xd3c: /* Aux Fault Status. */
qemu_log_mask(LOG_UNIMP,
"NVIC: Aux fault status registers unimplemented\n");
break;
case 0xd84: /* CSSELR */
if (!arm_v7m_csselr_razwi(cpu)) {
cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
}
break;
case 0xd88: /* CPACR */
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
/* We implement only the Floating Point extension's CP10/CP11 */
cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
}
break;
case 0xd8c: /* NSACR */
if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
/* We implement only the Floating Point extension's CP10/CP11 */
cpu->env.v7m.nsacr = value & (3 << 10);
}
break;
case 0xd90: /* MPU_TYPE */
return; /* RO */
case 0xd94: /* MPU_CTRL */
if ((value &
(R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
== R_V7M_MPU_CTRL_HFNMIENA_MASK) {
qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
"UNPREDICTABLE\n");
}
cpu->env.v7m.mpu_ctrl[attrs.secure]
= value & (R_V7M_MPU_CTRL_ENABLE_MASK |
R_V7M_MPU_CTRL_HFNMIENA_MASK |
R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
tlb_flush(CPU(cpu));
break;
case 0xd98: /* MPU_RNR */
if (value >= cpu->pmsav7_dregion) {
qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
PRIu32 "/%" PRIu32 "\n",
value, cpu->pmsav7_dregion);
} else {
cpu->env.pmsav7.rnr[attrs.secure] = value;
}
break;
case 0xd9c: /* MPU_RBAR */
case 0xda4: /* MPU_RBAR_A1 */
case 0xdac: /* MPU_RBAR_A2 */
case 0xdb4: /* MPU_RBAR_A3 */
{
int region;
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
/* PMSAv8M handling of the aliases is different from v7M:
* aliases A1, A2, A3 override the low two bits of the region
* number in MPU_RNR, and there is no 'region' field in the
* RBAR register.
*/
int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
region = cpu->env.pmsav7.rnr[attrs.secure];
if (aliasno) {
region = deposit32(region, 0, 2, aliasno);
}
if (region >= cpu->pmsav7_dregion) {
return;
}
cpu->env.pmsav8.rbar[attrs.secure][region] = value;
tlb_flush(CPU(cpu));
return;
}
if (value & (1 << 4)) {
/* VALID bit means use the region number specified in this
* value and also update MPU_RNR.REGION with that value.
*/
region = extract32(value, 0, 4);
if (region >= cpu->pmsav7_dregion) {
qemu_log_mask(LOG_GUEST_ERROR,
"MPU region out of range %u/%" PRIu32 "\n",
region, cpu->pmsav7_dregion);
return;
}
cpu->env.pmsav7.rnr[attrs.secure] = region;
} else {
region = cpu->env.pmsav7.rnr[attrs.secure];
}
if (region >= cpu->pmsav7_dregion) {
return;
}
cpu->env.pmsav7.drbar[region] = value & ~0x1f;
tlb_flush(CPU(cpu));
break;
}
case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
{
int region = cpu->env.pmsav7.rnr[attrs.secure];
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
/* PMSAv8M handling of the aliases is different from v7M:
* aliases A1, A2, A3 override the low two bits of the region
* number in MPU_RNR.
*/
int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
region = cpu->env.pmsav7.rnr[attrs.secure];
if (aliasno) {
region = deposit32(region, 0, 2, aliasno);
}
if (region >= cpu->pmsav7_dregion) {
return;
}
cpu->env.pmsav8.rlar[attrs.secure][region] = value;
tlb_flush(CPU(cpu));
return;
}
if (region >= cpu->pmsav7_dregion) {
return;
}
cpu->env.pmsav7.drsr[region] = value & 0xff3f;
cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
tlb_flush(CPU(cpu));
break;
}
case 0xdc0: /* MPU_MAIR0 */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (cpu->pmsav7_dregion) {
/* Register is RES0 if no MPU regions are implemented */
cpu->env.pmsav8.mair0[attrs.secure] = value;
}
/* We don't need to do anything else because memory attributes
* only affect cacheability, and we don't implement caching.
*/
break;
case 0xdc4: /* MPU_MAIR1 */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (cpu->pmsav7_dregion) {
/* Register is RES0 if no MPU regions are implemented */
cpu->env.pmsav8.mair1[attrs.secure] = value;
}
/* We don't need to do anything else because memory attributes
* only affect cacheability, and we don't implement caching.
*/
break;
case 0xdd0: /* SAU_CTRL */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return;
}
cpu->env.sau.ctrl = value & 3;
break;
case 0xdd4: /* SAU_TYPE */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
break;
case 0xdd8: /* SAU_RNR */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return;
}
if (value >= cpu->sau_sregion) {
qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
PRIu32 "/%" PRIu32 "\n",
value, cpu->sau_sregion);
} else {
cpu->env.sau.rnr = value;
}
break;
case 0xddc: /* SAU_RBAR */
{
int region = cpu->env.sau.rnr;
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return;
}
if (region >= cpu->sau_sregion) {
return;
}
cpu->env.sau.rbar[region] = value & ~0x1f;
tlb_flush(CPU(cpu));
break;
}
case 0xde0: /* SAU_RLAR */
{
int region = cpu->env.sau.rnr;
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return;
}
if (region >= cpu->sau_sregion) {
return;
}
cpu->env.sau.rlar[region] = value & ~0x1c;
tlb_flush(CPU(cpu));
break;
}
case 0xde4: /* SFSR */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return;
}
cpu->env.v7m.sfsr &= ~value; /* W1C */
break;
case 0xde8: /* SFAR */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
goto bad_offset;
}
if (!attrs.secure) {
return;
}
cpu->env.v7m.sfsr = value;
break;
case 0xf00: /* Software Triggered Interrupt Register */
{
int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
if (excnum < s->num_irq) {
armv7m_nvic_set_pending(s, excnum, false);
}
break;
}
case 0xf04: /* RFSR */
if (!cpu_isar_feature(aa32_ras, cpu)) {
goto bad_offset;
}
/* We provide minimal-RAS only: RFSR is RAZ/WI */
break;
case 0xf34: /* FPCCR */
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
/* Not all bits here are banked. */
uint32_t fpccr_s;
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
/* Don't allow setting of bits not present in v7M */
value &= (R_V7M_FPCCR_LSPACT_MASK |
R_V7M_FPCCR_USER_MASK |
R_V7M_FPCCR_THREAD_MASK |
R_V7M_FPCCR_HFRDY_MASK |
R_V7M_FPCCR_MMRDY_MASK |
R_V7M_FPCCR_BFRDY_MASK |
R_V7M_FPCCR_MONRDY_MASK |
R_V7M_FPCCR_LSPEN_MASK |
R_V7M_FPCCR_ASPEN_MASK);
}
value &= ~R_V7M_FPCCR_RES0_MASK;
if (!attrs.secure) {
/* Some non-banked bits are configurably writable by NS */
fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
}
if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
}
if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
}
/* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
{
uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
}
/*
* All other non-banked bits are RAZ/WI from NS; write
* just the banked bits to fpccr[M_REG_NS].
*/
value &= R_V7M_FPCCR_BANKED_MASK;
cpu->env.v7m.fpccr[M_REG_NS] = value;
} else {
fpccr_s = value;
}
cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
}
break;
case 0xf38: /* FPCAR */
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
value &= ~7;
cpu->env.v7m.fpcar[attrs.secure] = value;
}
break;
case 0xf3c: /* FPDSCR */
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
if (cpu_isar_feature(any_fp16, cpu)) {
mask |= FPCR_FZ16;
}
value &= mask;
if (cpu_isar_feature(aa32_lob, cpu)) {
value |= 4 << FPCR_LTPSIZE_SHIFT;
}
cpu->env.v7m.fpdscr[attrs.secure] = value;
}
break;
case 0xf50: /* ICIALLU */
case 0xf58: /* ICIMVAU */
case 0xf5c: /* DCIMVAC */
case 0xf60: /* DCISW */
case 0xf64: /* DCCMVAU */
case 0xf68: /* DCCMVAC */
case 0xf6c: /* DCCSW */
case 0xf70: /* DCCIMVAC */
case 0xf74: /* DCCISW */
case 0xf78: /* BPIALL */
/* Cache and branch predictor maintenance: for QEMU these always NOP */
break;
default:
bad_offset:
qemu_log_mask(LOG_GUEST_ERROR,
"NVIC: Bad write offset 0x%x\n", offset);
}
}
static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
{
/* Return true if unprivileged access to this register is permitted. */
switch (offset) {
case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
/* For access via STIR_NS it is the NS CCR.USERSETMPEND that
* controls access even though the CPU is in Secure state (I_QDKX).
*/
return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
default:
/* All other user accesses cause a BusFault unconditionally */
return false;
}
}
static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
{
/* Behaviour for the SHPR register field for this exception:
* return M_REG_NS to use the nonsecure vector (including for
* non-banked exceptions), M_REG_S for the secure version of
* a banked exception, and -1 if this field should RAZ/WI.
*/
switch (exc) {
case ARMV7M_EXCP_MEM:
case ARMV7M_EXCP_USAGE:
case ARMV7M_EXCP_SVC:
case ARMV7M_EXCP_PENDSV:
case ARMV7M_EXCP_SYSTICK:
/* Banked exceptions */
return attrs.secure;
case ARMV7M_EXCP_BUS:
/* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
if (!attrs.secure &&
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
return -1;
}
return M_REG_NS;
case ARMV7M_EXCP_SECURE:
/* Not banked, RAZ/WI from nonsecure */
if (!attrs.secure) {
return -1;
}
return M_REG_NS;
case ARMV7M_EXCP_DEBUG:
/* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
return M_REG_NS;
case 8 ... 10:
case 13:
/* RES0 */
return -1;
default:
/* Not reachable due to decode of SHPR register addresses */
g_assert_not_reached();
}
}
static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
NVICState *s = (NVICState *)opaque;
uint32_t offset = addr;
unsigned i, startvec, end;
uint32_t val;
if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
/* Generate BusFault for unprivileged accesses */
return MEMTX_ERROR;
}
switch (offset) {
/* reads of set and clear both return the status */
case 0x100 ... 0x13f: /* NVIC Set enable */
offset += 0x80;
/* fall through */
case 0x180 ... 0x1bf: /* NVIC Clear enable */
val = 0;
startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
if (s->vectors[startvec + i].enabled &&
(attrs.secure || s->itns[startvec + i])) {
val |= (1 << i);
}
}
break;
case 0x200 ... 0x23f: /* NVIC Set pend */
offset += 0x80;
/* fall through */
case 0x280 ... 0x2bf: /* NVIC Clear pend */
val = 0;
startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
if (s->vectors[startvec + i].pending &&
(attrs.secure || s->itns[startvec + i])) {
val |= (1 << i);
}
}
break;
case 0x300 ... 0x33f: /* NVIC Active */
val = 0;
if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
break;
}
startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
if (s->vectors[startvec + i].active &&
(attrs.secure || s->itns[startvec + i])) {
val |= (1 << i);
}
}
break;
case 0x400 ... 0x5ef: /* NVIC Priority */
val = 0;
startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
for (i = 0; i < size && startvec + i < s->num_irq; i++) {
if (attrs.secure || s->itns[startvec + i]) {
val |= s->vectors[startvec + i].prio << (8 * i);
}
}
break;
case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
val = 0;
break;
}
/* fall through */
case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
val = 0;
for (i = 0; i < size; i++) {
unsigned hdlidx = (offset - 0xd14) + i;
int sbank = shpr_bank(s, hdlidx, attrs);
if (sbank < 0) {
continue;
}
val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
}
break;
case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
val = 0;
break;
};
/*
* The BFSR bits [15:8] are shared between security states
* and we store them in the NS copy. They are RAZ/WI for
* NS code if AIRCR.BFHFNMINS is 0.
*/
val = s->cpu->env.v7m.cfsr[attrs.secure];
if (!attrs.secure &&
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
val &= ~R_V7M_CFSR_BFSR_MASK;
} else {
val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
}
val = extract32(val, (offset - 0xd28) * 8, size * 8);
break;
case 0xfe0 ... 0xfff: /* ID. */
if (offset & 3) {
val = 0;
} else {
val = nvic_id[(offset - 0xfe0) >> 2];
}
break;
default:
if (size == 4) {
val = nvic_readl(s, offset, attrs);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"NVIC: Bad read of size %d at offset 0x%x\n",
size, offset);
val = 0;
}
}
trace_nvic_sysreg_read(addr, val, size);
*data = val;
return MEMTX_OK;
}
static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
NVICState *s = (NVICState *)opaque;
uint32_t offset = addr;
unsigned i, startvec, end;
unsigned setval = 0;
trace_nvic_sysreg_write(addr, value, size);
if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
/* Generate BusFault for unprivileged accesses */
return MEMTX_ERROR;
}
switch (offset) {
case 0x100 ... 0x13f: /* NVIC Set enable */
offset += 0x80;
setval = 1;
/* fall through */
case 0x180 ... 0x1bf: /* NVIC Clear enable */
startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
if (value & (1 << i) &&
(attrs.secure || s->itns[startvec + i])) {
s->vectors[startvec + i].enabled = setval;
}
}
nvic_irq_update(s);
goto exit_ok;
case 0x200 ... 0x23f: /* NVIC Set pend */
/* the special logic in armv7m_nvic_set_pending()
* is not needed since IRQs are never escalated
*/
offset += 0x80;
setval = 1;
/* fall through */
case 0x280 ... 0x2bf: /* NVIC Clear pend */
startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
/*
* Note that if the input line is still held high and the interrupt
* is not active then rule R_CVJS requires that the Pending state
* remains set; in that case we mustn't let it be cleared.
*/
if (value & (1 << i) &&
(attrs.secure || s->itns[startvec + i]) &&
!(setval == 0 && s->vectors[startvec + i].level &&
!s->vectors[startvec + i].active)) {
s->vectors[startvec + i].pending = setval;
}
}
nvic_irq_update(s);
goto exit_ok;
case 0x300 ... 0x33f: /* NVIC Active */
goto exit_ok; /* R/O */
case 0x400 ... 0x5ef: /* NVIC Priority */
startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
for (i = 0; i < size && startvec + i < s->num_irq; i++) {
if (attrs.secure || s->itns[startvec + i]) {
set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
}
}
nvic_irq_update(s);
goto exit_ok;
case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
goto exit_ok;
}
/* fall through */
case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
for (i = 0; i < size; i++) {
unsigned hdlidx = (offset - 0xd14) + i;
int newprio = extract32(value, i * 8, 8);
int sbank = shpr_bank(s, hdlidx, attrs);
if (sbank < 0) {
continue;
}
set_prio(s, hdlidx, sbank, newprio);
}
nvic_irq_update(s);
goto exit_ok;
case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
goto exit_ok;
}
/* All bits are W1C, so construct 32 bit value with 0s in
* the parts not written by the access size
*/
value <<= ((offset - 0xd28) * 8);
if (!attrs.secure &&
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
/* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
value &= ~R_V7M_CFSR_BFSR_MASK;
}
s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
if (attrs.secure) {
/* The BFSR bits [15:8] are shared between security states
* and we store them in the NS copy.
*/
s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
}
goto exit_ok;
}
if (size == 4) {
nvic_writel(s, offset, value, attrs);
goto exit_ok;
}
qemu_log_mask(LOG_GUEST_ERROR,
"NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
/* This is UNPREDICTABLE; treat as RAZ/WI */
exit_ok:
if (tcg_enabled()) {
/* Ensure any changes made are reflected in the cached hflags. */
arm_rebuild_hflags(&s->cpu->env);
}
return MEMTX_OK;
}
static const MemoryRegionOps nvic_sysreg_ops = {
.read_with_attrs = nvic_sysreg_read,
.write_with_attrs = nvic_sysreg_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int nvic_post_load(void *opaque, int version_id)
{
NVICState *s = opaque;
unsigned i;
int resetprio;
/* Check for out of range priority settings */
resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
return 1;
}
for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
if (s->vectors[i].prio & ~0xff) {
return 1;
}
}
nvic_recompute_state(s);
return 0;
}
static const VMStateDescription vmstate_VecInfo = {
.name = "armv7m_nvic_info",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_INT16(prio, VecInfo),
VMSTATE_UINT8(enabled, VecInfo),
VMSTATE_UINT8(pending, VecInfo),
VMSTATE_UINT8(active, VecInfo),
VMSTATE_UINT8(level, VecInfo),
VMSTATE_END_OF_LIST()
}
};
static bool nvic_security_needed(void *opaque)
{
NVICState *s = opaque;
return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
}
static int nvic_security_post_load(void *opaque, int version_id)
{
NVICState *s = opaque;
int i;
/* Check for out of range priority settings */
if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
&& s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
/* We can't cross-check against AIRCR.BFHFNMINS as we don't know
* if the CPU state has been migrated yet; a mismatch won't
* cause the emulation to blow up, though.
*/
return 1;
}
for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
if (s->sec_vectors[i].prio & ~0xff) {
return 1;
}
}
return 0;
}
static const VMStateDescription vmstate_nvic_security = {
.name = "armv7m_nvic/m-security",
.version_id = 1,
.minimum_version_id = 1,
.needed = nvic_security_needed,
.post_load = &nvic_security_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
vmstate_VecInfo, VecInfo),
VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_nvic = {
.name = "armv7m_nvic",
.version_id = 4,
.minimum_version_id = 4,
.post_load = &nvic_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
vmstate_VecInfo, VecInfo),
VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_nvic_security,
NULL
}
};
static Property props_nvic[] = {
/* Number of external IRQ lines (so excluding the 16 internal exceptions) */
DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
DEFINE_PROP_END_OF_LIST()
};
static void armv7m_nvic_reset(DeviceState *dev)
{
int resetprio;
NVICState *s = NVIC(dev);
memset(s->vectors, 0, sizeof(s->vectors));
memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
s->prigroup[M_REG_NS] = 0;
s->prigroup[M_REG_S] = 0;
s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
/* MEM, BUS, and USAGE are enabled through
* the System Handler Control register
*/
s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
/* DebugMonitor is enabled via DEMCR.MON_EN */
s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
s->vectors[ARMV7M_EXCP_NMI].prio = -2;
s->vectors[ARMV7M_EXCP_HARD].prio = -1;
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
/* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
/* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
} else {
s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
}
/* Strictly speaking the reset handler should be enabled.
* However, we don't simulate soft resets through the NVIC,
* and the reset vector should never be pended.
* So we leave it disabled to catch logic errors.
*/
s->exception_prio = NVIC_NOEXC_PRIO;
s->vectpending = 0;
s->vectpending_is_s_banked = false;
s->vectpending_prio = NVIC_NOEXC_PRIO;
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
memset(s->itns, 0, sizeof(s->itns));
} else {
/* This state is constant and not guest accessible in a non-security
* NVIC; we set the bits to true to avoid having to do a feature
* bit check in the NVIC enable/pend/etc register accessors.
*/
int i;
for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
s->itns[i] = true;
}
}
if (tcg_enabled()) {
/*
* We updated state that affects the CPU's MMUidx and thus its
* hflags; and we can't guarantee that we run before the CPU
* reset function.
*/
arm_rebuild_hflags(&s->cpu->env);
}
}
static void nvic_systick_trigger(void *opaque, int n, int level)
{
NVICState *s = opaque;
if (level) {
/* SysTick just asked us to pend its exception.
* (This is different from an external interrupt line's
* behaviour.)
* n == 0 : NonSecure systick
* n == 1 : Secure systick
*/
armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
}
}
static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
{
NVICState *s = NVIC(dev);
/* The armv7m container object will have set our CPU pointer */
if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
return;
}
if (s->num_irq > NVIC_MAX_IRQ) {
error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
return;
}
qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
/* include space for internal exception vectors */
s->num_irq += NVIC_FIRST_IRQ;
s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
/*
* This device provides a single memory region which covers the
* sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the
* exception of the systick timer registers 0xE000E010 .. 0xE000E0FF.
*/
memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
"nvic_sysregs", 0x1000);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem);
}
static void armv7m_nvic_instance_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
NVICState *nvic = NVIC(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
sysbus_init_irq(sbd, &nvic->excpout);
qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
M_REG_NUM_BANKS);
qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
}
static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_nvic;
device_class_set_props(dc, props_nvic);
dc->reset = armv7m_nvic_reset;
dc->realize = armv7m_nvic_realize;
}
static const TypeInfo armv7m_nvic_info = {
.name = TYPE_NVIC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = armv7m_nvic_instance_init,
.instance_size = sizeof(NVICState),
.class_init = armv7m_nvic_class_init,
.class_size = sizeof(SysBusDeviceClass),
};
static void armv7m_nvic_register_types(void)
{
type_register_static(&armv7m_nvic_info);
}
type_init(armv7m_nvic_register_types)