| /* |
| * qemu main |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <unistd.h> |
| |
| #include "qemu.h" |
| |
| #include "cpu-i386.h" |
| |
| #define DEBUG_LOGFILE "/tmp/qemu.log" |
| |
| FILE *logfile = NULL; |
| int loglevel; |
| static const char *interp_prefix = CONFIG_QEMU_PREFIX; |
| |
| #ifdef __i386__ |
| /* Force usage of an ELF interpreter even if it is an ELF shared |
| object ! */ |
| const char interp[] __attribute__((section(".interp"))) = "/lib/ld-linux.so.2"; |
| |
| /* for recent libc, we add these dummies symbol which are not declared |
| when generating a linked object (bug in ld ?) */ |
| #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3) |
| long __init_array_start[0]; |
| long __init_array_end[0]; |
| long __fini_array_start[0]; |
| long __fini_array_end[0]; |
| #endif |
| |
| #endif |
| |
| /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so |
| we allocate a bigger stack. Need a better solution, for example |
| by remapping the process stack directly at the right place */ |
| unsigned long x86_stack_size = 512 * 1024; |
| |
| void gemu_log(const char *fmt, ...) |
| { |
| va_list ap; |
| |
| va_start(ap, fmt); |
| vfprintf(stderr, fmt, ap); |
| va_end(ap); |
| } |
| |
| /***********************************************************/ |
| /* CPUX86 core interface */ |
| |
| void cpu_x86_outb(CPUX86State *env, int addr, int val) |
| { |
| fprintf(stderr, "outb: port=0x%04x, data=%02x\n", addr, val); |
| } |
| |
| void cpu_x86_outw(CPUX86State *env, int addr, int val) |
| { |
| fprintf(stderr, "outw: port=0x%04x, data=%04x\n", addr, val); |
| } |
| |
| void cpu_x86_outl(CPUX86State *env, int addr, int val) |
| { |
| fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val); |
| } |
| |
| int cpu_x86_inb(CPUX86State *env, int addr) |
| { |
| fprintf(stderr, "inb: port=0x%04x\n", addr); |
| return 0; |
| } |
| |
| int cpu_x86_inw(CPUX86State *env, int addr) |
| { |
| fprintf(stderr, "inw: port=0x%04x\n", addr); |
| return 0; |
| } |
| |
| int cpu_x86_inl(CPUX86State *env, int addr) |
| { |
| fprintf(stderr, "inl: port=0x%04x\n", addr); |
| return 0; |
| } |
| |
| void write_dt(void *ptr, unsigned long addr, unsigned long limit, |
| int seg32_bit) |
| { |
| unsigned int e1, e2, limit_in_pages; |
| limit_in_pages = 0; |
| if (limit > 0xffff) { |
| limit = limit >> 12; |
| limit_in_pages = 1; |
| } |
| e1 = (addr << 16) | (limit & 0xffff); |
| e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); |
| e2 |= limit_in_pages << 23; /* byte granularity */ |
| e2 |= seg32_bit << 22; /* 32 bit segment */ |
| stl((uint8_t *)ptr, e1); |
| stl((uint8_t *)ptr + 4, e2); |
| } |
| |
| uint64_t gdt_table[6]; |
| |
| //#define DEBUG_VM86 |
| |
| static inline int is_revectored(int nr, struct target_revectored_struct *bitmap) |
| { |
| return (tswap32(bitmap->__map[nr >> 5]) >> (nr & 0x1f)) & 1; |
| } |
| |
| static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg) |
| { |
| return (uint8_t *)((seg << 4) + (reg & 0xffff)); |
| } |
| |
| static inline void pushw(CPUX86State *env, int val) |
| { |
| env->regs[R_ESP] = (env->regs[R_ESP] & ~0xffff) | |
| ((env->regs[R_ESP] - 2) & 0xffff); |
| *(uint16_t *)seg_to_linear(env->segs[R_SS], env->regs[R_ESP]) = val; |
| } |
| |
| static inline unsigned int get_vflags(CPUX86State *env) |
| { |
| unsigned int eflags; |
| eflags = env->eflags & ~(VM_MASK | RF_MASK | IF_MASK); |
| if (eflags & VIF_MASK) |
| eflags |= IF_MASK; |
| return eflags; |
| } |
| |
| void save_v86_state(CPUX86State *env) |
| { |
| TaskState *ts = env->opaque; |
| #ifdef DEBUG_VM86 |
| printf("save_v86_state\n"); |
| #endif |
| |
| /* put the VM86 registers in the userspace register structure */ |
| ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]); |
| ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]); |
| ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]); |
| ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]); |
| ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]); |
| ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]); |
| ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]); |
| ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]); |
| ts->target_v86->regs.eip = tswap32(env->eip); |
| ts->target_v86->regs.cs = tswap16(env->segs[R_CS]); |
| ts->target_v86->regs.ss = tswap16(env->segs[R_SS]); |
| ts->target_v86->regs.ds = tswap16(env->segs[R_DS]); |
| ts->target_v86->regs.es = tswap16(env->segs[R_ES]); |
| ts->target_v86->regs.fs = tswap16(env->segs[R_FS]); |
| ts->target_v86->regs.gs = tswap16(env->segs[R_GS]); |
| ts->target_v86->regs.eflags = tswap32(env->eflags); |
| |
| /* restore 32 bit registers */ |
| env->regs[R_EAX] = ts->vm86_saved_regs.eax; |
| env->regs[R_EBX] = ts->vm86_saved_regs.ebx; |
| env->regs[R_ECX] = ts->vm86_saved_regs.ecx; |
| env->regs[R_EDX] = ts->vm86_saved_regs.edx; |
| env->regs[R_ESI] = ts->vm86_saved_regs.esi; |
| env->regs[R_EDI] = ts->vm86_saved_regs.edi; |
| env->regs[R_EBP] = ts->vm86_saved_regs.ebp; |
| env->regs[R_ESP] = ts->vm86_saved_regs.esp; |
| env->eflags = ts->vm86_saved_regs.eflags; |
| env->eip = ts->vm86_saved_regs.eip; |
| |
| cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs); |
| cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss); |
| cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds); |
| cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es); |
| cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs); |
| cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs); |
| } |
| |
| /* return from vm86 mode to 32 bit. The vm86() syscall will return |
| 'retval' */ |
| static inline void return_to_32bit(CPUX86State *env, int retval) |
| { |
| #ifdef DEBUG_VM86 |
| printf("return_to_32bit: ret=0x%x\n", retval); |
| #endif |
| save_v86_state(env); |
| env->regs[R_EAX] = retval; |
| } |
| |
| /* handle VM86 interrupt (NOTE: the CPU core currently does not |
| support TSS interrupt revectoring, so this code is always executed) */ |
| static void do_int(CPUX86State *env, int intno) |
| { |
| TaskState *ts = env->opaque; |
| uint32_t *int_ptr, segoffs; |
| |
| if (env->segs[R_CS] == TARGET_BIOSSEG) |
| goto cannot_handle; /* XXX: I am not sure this is really useful */ |
| if (is_revectored(intno, &ts->target_v86->int_revectored)) |
| goto cannot_handle; |
| if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, |
| &ts->target_v86->int21_revectored)) |
| goto cannot_handle; |
| int_ptr = (uint32_t *)(intno << 2); |
| segoffs = tswap32(*int_ptr); |
| if ((segoffs >> 16) == TARGET_BIOSSEG) |
| goto cannot_handle; |
| #ifdef DEBUG_VM86 |
| printf("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", |
| intno, segoffs >> 16, segoffs & 0xffff); |
| #endif |
| /* save old state */ |
| pushw(env, get_vflags(env)); |
| pushw(env, env->segs[R_CS]); |
| pushw(env, env->eip); |
| /* goto interrupt handler */ |
| env->eip = segoffs & 0xffff; |
| cpu_x86_load_seg(env, R_CS, segoffs >> 16); |
| env->eflags &= ~(VIF_MASK | TF_MASK); |
| return; |
| cannot_handle: |
| #ifdef DEBUG_VM86 |
| printf("VM86: return to 32 bits int 0x%x\n", intno); |
| #endif |
| return_to_32bit(env, TARGET_VM86_INTx | (intno << 8)); |
| } |
| |
| void cpu_loop(struct CPUX86State *env) |
| { |
| int trapnr; |
| uint8_t *pc; |
| target_siginfo_t info; |
| |
| for(;;) { |
| trapnr = cpu_x86_exec(env); |
| pc = env->seg_cache[R_CS].base + env->eip; |
| switch(trapnr) { |
| case EXCP0D_GPF: |
| if (env->eflags & VM_MASK) { |
| #ifdef DEBUG_VM86 |
| printf("VM86 exception %04x:%08x %02x %02x\n", |
| env->segs[R_CS], env->eip, pc[0], pc[1]); |
| #endif |
| /* VM86 mode */ |
| switch(pc[0]) { |
| case 0xcd: /* int */ |
| env->eip += 2; |
| do_int(env, pc[1]); |
| break; |
| case 0x66: |
| switch(pc[1]) { |
| case 0xfb: /* sti */ |
| case 0x9d: /* popf */ |
| case 0xcf: /* iret */ |
| env->eip += 2; |
| return_to_32bit(env, TARGET_VM86_STI); |
| break; |
| default: |
| goto vm86_gpf; |
| } |
| break; |
| case 0xfb: /* sti */ |
| case 0x9d: /* popf */ |
| case 0xcf: /* iret */ |
| env->eip++; |
| return_to_32bit(env, TARGET_VM86_STI); |
| break; |
| default: |
| vm86_gpf: |
| /* real VM86 GPF exception */ |
| return_to_32bit(env, TARGET_VM86_UNKNOWN); |
| break; |
| } |
| } else { |
| if (pc[0] == 0xcd && pc[1] == 0x80) { |
| /* syscall */ |
| env->eip += 2; |
| env->regs[R_EAX] = do_syscall(env, |
| env->regs[R_EAX], |
| env->regs[R_EBX], |
| env->regs[R_ECX], |
| env->regs[R_EDX], |
| env->regs[R_ESI], |
| env->regs[R_EDI], |
| env->regs[R_EBP]); |
| } else { |
| /* XXX: more precise info */ |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SI_KERNEL; |
| info._sifields._sigfault._addr = 0; |
| queue_signal(info.si_signo, &info); |
| } |
| } |
| break; |
| case EXCP0E_PAGE: |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| if (!(env->error_code & 1)) |
| info.si_code = TARGET_SEGV_MAPERR; |
| else |
| info.si_code = TARGET_SEGV_ACCERR; |
| info._sifields._sigfault._addr = env->cr2; |
| queue_signal(info.si_signo, &info); |
| break; |
| case EXCP00_DIVZ: |
| if (env->eflags & VM_MASK) { |
| do_int(env, trapnr); |
| } else { |
| /* division by zero */ |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| info.si_code = TARGET_FPE_INTDIV; |
| info._sifields._sigfault._addr = env->eip; |
| queue_signal(info.si_signo, &info); |
| } |
| break; |
| case EXCP04_INTO: |
| case EXCP05_BOUND: |
| if (env->eflags & VM_MASK) { |
| do_int(env, trapnr); |
| } else { |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SI_KERNEL; |
| info._sifields._sigfault._addr = 0; |
| queue_signal(info.si_signo, &info); |
| } |
| break; |
| case EXCP06_ILLOP: |
| info.si_signo = SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_ILLOPN; |
| info._sifields._sigfault._addr = env->eip; |
| queue_signal(info.si_signo, &info); |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| default: |
| fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", |
| (long)pc, trapnr); |
| abort(); |
| } |
| process_pending_signals(env); |
| } |
| } |
| |
| void usage(void) |
| { |
| printf("qemu version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n" |
| "usage: qemu [-h] [-d] [-L path] [-s size] program [arguments...]\n" |
| "Linux x86 emulator\n" |
| "\n" |
| "-h print this help\n" |
| "-d activate log (logfile=%s)\n" |
| "-L path set the x86 elf interpreter prefix (default=%s)\n" |
| "-s size set the x86 stack size in bytes (default=%ld)\n", |
| DEBUG_LOGFILE, |
| interp_prefix, |
| x86_stack_size); |
| _exit(1); |
| } |
| |
| /* XXX: currently only used for async signals (see signal.c) */ |
| CPUX86State *global_env; |
| /* used to free thread contexts */ |
| TaskState *first_task_state; |
| |
| int main(int argc, char **argv) |
| { |
| const char *filename; |
| struct target_pt_regs regs1, *regs = ®s1; |
| struct image_info info1, *info = &info1; |
| TaskState ts1, *ts = &ts1; |
| CPUX86State *env; |
| int optind; |
| const char *r; |
| |
| if (argc <= 1) |
| usage(); |
| |
| loglevel = 0; |
| optind = 1; |
| for(;;) { |
| if (optind >= argc) |
| break; |
| r = argv[optind]; |
| if (r[0] != '-') |
| break; |
| optind++; |
| r++; |
| if (!strcmp(r, "-")) { |
| break; |
| } else if (!strcmp(r, "d")) { |
| loglevel = 1; |
| } else if (!strcmp(r, "s")) { |
| r = argv[optind++]; |
| x86_stack_size = strtol(r, (char **)&r, 0); |
| if (x86_stack_size <= 0) |
| usage(); |
| if (*r == 'M') |
| x86_stack_size *= 1024 * 1024; |
| else if (*r == 'k' || *r == 'K') |
| x86_stack_size *= 1024; |
| } else if (!strcmp(r, "L")) { |
| interp_prefix = argv[optind++]; |
| } else { |
| usage(); |
| } |
| } |
| if (optind >= argc) |
| usage(); |
| filename = argv[optind]; |
| |
| /* init debug */ |
| if (loglevel) { |
| logfile = fopen(DEBUG_LOGFILE, "w"); |
| if (!logfile) { |
| perror(DEBUG_LOGFILE); |
| _exit(1); |
| } |
| setvbuf(logfile, NULL, _IOLBF, 0); |
| } |
| |
| /* Zero out regs */ |
| memset(regs, 0, sizeof(struct target_pt_regs)); |
| |
| /* Zero out image_info */ |
| memset(info, 0, sizeof(struct image_info)); |
| |
| /* Scan interp_prefix dir for replacement files. */ |
| init_paths(interp_prefix); |
| |
| if (elf_exec(filename, argv+optind, environ, regs, info) != 0) { |
| printf("Error loading %s\n", filename); |
| _exit(1); |
| } |
| |
| if (loglevel) { |
| fprintf(logfile, "start_brk 0x%08lx\n" , info->start_brk); |
| fprintf(logfile, "end_code 0x%08lx\n" , info->end_code); |
| fprintf(logfile, "start_code 0x%08lx\n" , info->start_code); |
| fprintf(logfile, "end_data 0x%08lx\n" , info->end_data); |
| fprintf(logfile, "start_stack 0x%08lx\n" , info->start_stack); |
| fprintf(logfile, "brk 0x%08lx\n" , info->brk); |
| fprintf(logfile, "esp 0x%08lx\n" , regs->esp); |
| fprintf(logfile, "eip 0x%08lx\n" , regs->eip); |
| } |
| |
| target_set_brk((char *)info->brk); |
| syscall_init(); |
| signal_init(); |
| |
| env = cpu_x86_init(); |
| global_env = env; |
| |
| /* build Task State */ |
| memset(ts, 0, sizeof(TaskState)); |
| env->opaque = ts; |
| ts->used = 1; |
| |
| /* linux register setup */ |
| env->regs[R_EAX] = regs->eax; |
| env->regs[R_EBX] = regs->ebx; |
| env->regs[R_ECX] = regs->ecx; |
| env->regs[R_EDX] = regs->edx; |
| env->regs[R_ESI] = regs->esi; |
| env->regs[R_EDI] = regs->edi; |
| env->regs[R_EBP] = regs->ebp; |
| env->regs[R_ESP] = regs->esp; |
| env->eip = regs->eip; |
| |
| /* linux segment setup */ |
| env->gdt.base = (void *)gdt_table; |
| env->gdt.limit = sizeof(gdt_table) - 1; |
| write_dt(&gdt_table[__USER_CS >> 3], 0, 0xffffffff, 1); |
| write_dt(&gdt_table[__USER_DS >> 3], 0, 0xffffffff, 1); |
| cpu_x86_load_seg(env, R_CS, __USER_CS); |
| cpu_x86_load_seg(env, R_DS, __USER_DS); |
| cpu_x86_load_seg(env, R_ES, __USER_DS); |
| cpu_x86_load_seg(env, R_SS, __USER_DS); |
| cpu_x86_load_seg(env, R_FS, __USER_DS); |
| cpu_x86_load_seg(env, R_GS, __USER_DS); |
| |
| cpu_loop(env); |
| /* never exits */ |
| return 0; |
| } |