| /* |
| * Xen HVM emulation support in KVM |
| * |
| * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. |
| * Copyright © 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/error-report.h" |
| #include "hw/xen/xen.h" |
| #include "sysemu/kvm_int.h" |
| #include "sysemu/kvm_xen.h" |
| #include "kvm/kvm_i386.h" |
| #include "exec/address-spaces.h" |
| #include "xen-emu.h" |
| #include "trace.h" |
| #include "sysemu/runstate.h" |
| |
| #include "hw/pci/msi.h" |
| #include "hw/i386/apic-msidef.h" |
| #include "hw/i386/e820_memory_layout.h" |
| #include "hw/i386/kvm/xen_overlay.h" |
| #include "hw/i386/kvm/xen_evtchn.h" |
| #include "hw/i386/kvm/xen_gnttab.h" |
| #include "hw/i386/kvm/xen_xenstore.h" |
| |
| #include "hw/xen/interface/version.h" |
| #include "hw/xen/interface/sched.h" |
| #include "hw/xen/interface/memory.h" |
| #include "hw/xen/interface/hvm/hvm_op.h" |
| #include "hw/xen/interface/hvm/params.h" |
| #include "hw/xen/interface/vcpu.h" |
| #include "hw/xen/interface/event_channel.h" |
| #include "hw/xen/interface/grant_table.h" |
| |
| #include "xen-compat.h" |
| |
| static void xen_vcpu_singleshot_timer_event(void *opaque); |
| static void xen_vcpu_periodic_timer_event(void *opaque); |
| static int vcpuop_stop_singleshot_timer(CPUState *cs); |
| |
| #ifdef TARGET_X86_64 |
| #define hypercall_compat32(longmode) (!(longmode)) |
| #else |
| #define hypercall_compat32(longmode) (false) |
| #endif |
| |
| static bool kvm_gva_to_gpa(CPUState *cs, uint64_t gva, uint64_t *gpa, |
| size_t *len, bool is_write) |
| { |
| struct kvm_translation tr = { |
| .linear_address = gva, |
| }; |
| |
| if (len) { |
| *len = TARGET_PAGE_SIZE - (gva & ~TARGET_PAGE_MASK); |
| } |
| |
| if (kvm_vcpu_ioctl(cs, KVM_TRANSLATE, &tr) || !tr.valid || |
| (is_write && !tr.writeable)) { |
| return false; |
| } |
| *gpa = tr.physical_address; |
| return true; |
| } |
| |
| static int kvm_gva_rw(CPUState *cs, uint64_t gva, void *_buf, size_t sz, |
| bool is_write) |
| { |
| uint8_t *buf = (uint8_t *)_buf; |
| uint64_t gpa; |
| size_t len; |
| |
| while (sz) { |
| if (!kvm_gva_to_gpa(cs, gva, &gpa, &len, is_write)) { |
| return -EFAULT; |
| } |
| if (len > sz) { |
| len = sz; |
| } |
| |
| cpu_physical_memory_rw(gpa, buf, len, is_write); |
| |
| buf += len; |
| sz -= len; |
| gva += len; |
| } |
| |
| return 0; |
| } |
| |
| static inline int kvm_copy_from_gva(CPUState *cs, uint64_t gva, void *buf, |
| size_t sz) |
| { |
| return kvm_gva_rw(cs, gva, buf, sz, false); |
| } |
| |
| static inline int kvm_copy_to_gva(CPUState *cs, uint64_t gva, void *buf, |
| size_t sz) |
| { |
| return kvm_gva_rw(cs, gva, buf, sz, true); |
| } |
| |
| int kvm_xen_init(KVMState *s, uint32_t hypercall_msr) |
| { |
| const int required_caps = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | |
| KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | KVM_XEN_HVM_CONFIG_SHARED_INFO; |
| struct kvm_xen_hvm_config cfg = { |
| .msr = hypercall_msr, |
| .flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL, |
| }; |
| int xen_caps, ret; |
| |
| xen_caps = kvm_check_extension(s, KVM_CAP_XEN_HVM); |
| if (required_caps & ~xen_caps) { |
| error_report("kvm: Xen HVM guest support not present or insufficient"); |
| return -ENOSYS; |
| } |
| |
| if (xen_caps & KVM_XEN_HVM_CONFIG_EVTCHN_SEND) { |
| struct kvm_xen_hvm_attr ha = { |
| .type = KVM_XEN_ATTR_TYPE_XEN_VERSION, |
| .u.xen_version = s->xen_version, |
| }; |
| (void)kvm_vm_ioctl(s, KVM_XEN_HVM_SET_ATTR, &ha); |
| |
| cfg.flags |= KVM_XEN_HVM_CONFIG_EVTCHN_SEND; |
| } |
| |
| ret = kvm_vm_ioctl(s, KVM_XEN_HVM_CONFIG, &cfg); |
| if (ret < 0) { |
| error_report("kvm: Failed to enable Xen HVM support: %s", |
| strerror(-ret)); |
| return ret; |
| } |
| |
| /* If called a second time, don't repeat the rest of the setup. */ |
| if (s->xen_caps) { |
| return 0; |
| } |
| |
| /* |
| * Event channel delivery via GSI/PCI_INTX needs to poll the vcpu_info |
| * of vCPU0 to deassert the IRQ when ->evtchn_upcall_pending is cleared. |
| * |
| * In the kernel, there's a notifier hook on the PIC/IOAPIC which allows |
| * such things to be polled at precisely the right time. We *could* do |
| * it nicely in the kernel: check vcpu_info[0]->evtchn_upcall_pending at |
| * the moment the IRQ is acked, and see if it should be reasserted. |
| * |
| * But the in-kernel irqchip is deprecated, so we're unlikely to add |
| * that support in the kernel. Insist on using the split irqchip mode |
| * instead. |
| * |
| * This leaves us polling for the level going low in QEMU, which lacks |
| * the appropriate hooks in its PIC/IOAPIC code. Even VFIO is sending a |
| * spurious 'ack' to an INTX IRQ every time there's any MMIO access to |
| * the device (for which it has to unmap the device and trap access, for |
| * some period after an IRQ!!). In the Xen case, we do it on exit from |
| * KVM_RUN, if the flag is set to say that the GSI is currently asserted. |
| * Which is kind of icky, but less so than the VFIO one. I may fix them |
| * both later... |
| */ |
| if (!kvm_kernel_irqchip_split()) { |
| error_report("kvm: Xen support requires kernel-irqchip=split"); |
| return -EINVAL; |
| } |
| |
| s->xen_caps = xen_caps; |
| |
| /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
| ret = e820_add_entry(XEN_SPECIAL_AREA_ADDR, XEN_SPECIAL_AREA_SIZE, |
| E820_RESERVED); |
| if (ret < 0) { |
| fprintf(stderr, "e820_add_entry() table is full\n"); |
| return ret; |
| } |
| |
| /* The page couldn't be overlaid until KVM was initialized */ |
| xen_xenstore_reset(); |
| |
| return 0; |
| } |
| |
| int kvm_xen_init_vcpu(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| int err; |
| |
| /* |
| * The kernel needs to know the Xen/ACPI vCPU ID because that's |
| * what the guest uses in hypercalls such as timers. It doesn't |
| * match the APIC ID which is generally used for talking to the |
| * kernel about vCPUs. And if vCPU threads race with creating |
| * their KVM vCPUs out of order, it doesn't necessarily match |
| * with the kernel's internal vCPU indices either. |
| */ |
| if (kvm_xen_has_cap(EVTCHN_SEND)) { |
| struct kvm_xen_vcpu_attr va = { |
| .type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID, |
| .u.vcpu_id = cs->cpu_index, |
| }; |
| err = kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &va); |
| if (err) { |
| error_report("kvm: Failed to set Xen vCPU ID attribute: %s", |
| strerror(-err)); |
| return err; |
| } |
| } |
| |
| env->xen_vcpu_info_gpa = INVALID_GPA; |
| env->xen_vcpu_info_default_gpa = INVALID_GPA; |
| env->xen_vcpu_time_info_gpa = INVALID_GPA; |
| env->xen_vcpu_runstate_gpa = INVALID_GPA; |
| |
| qemu_mutex_init(&env->xen_timers_lock); |
| env->xen_singleshot_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, |
| xen_vcpu_singleshot_timer_event, |
| cpu); |
| if (!env->xen_singleshot_timer) { |
| return -ENOMEM; |
| } |
| env->xen_singleshot_timer->opaque = cs; |
| |
| env->xen_periodic_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, |
| xen_vcpu_periodic_timer_event, |
| cpu); |
| if (!env->xen_periodic_timer) { |
| return -ENOMEM; |
| } |
| env->xen_periodic_timer->opaque = cs; |
| |
| return 0; |
| } |
| |
| uint32_t kvm_xen_get_caps(void) |
| { |
| return kvm_state->xen_caps; |
| } |
| |
| static bool kvm_xen_hcall_xen_version(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg) |
| { |
| int err = 0; |
| |
| switch (cmd) { |
| case XENVER_get_features: { |
| struct xen_feature_info fi; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(fi) == 8); |
| |
| err = kvm_copy_from_gva(CPU(cpu), arg, &fi, sizeof(fi)); |
| if (err) { |
| break; |
| } |
| |
| fi.submap = 0; |
| if (fi.submap_idx == 0) { |
| fi.submap |= 1 << XENFEAT_writable_page_tables | |
| 1 << XENFEAT_writable_descriptor_tables | |
| 1 << XENFEAT_auto_translated_physmap | |
| 1 << XENFEAT_supervisor_mode_kernel | |
| 1 << XENFEAT_hvm_callback_vector | |
| 1 << XENFEAT_hvm_safe_pvclock | |
| 1 << XENFEAT_hvm_pirqs; |
| } |
| |
| err = kvm_copy_to_gva(CPU(cpu), arg, &fi, sizeof(fi)); |
| break; |
| } |
| |
| default: |
| return false; |
| } |
| |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static int kvm_xen_set_vcpu_attr(CPUState *cs, uint16_t type, uint64_t gpa) |
| { |
| struct kvm_xen_vcpu_attr xhsi; |
| |
| xhsi.type = type; |
| xhsi.u.gpa = gpa; |
| |
| trace_kvm_xen_set_vcpu_attr(cs->cpu_index, type, gpa); |
| |
| return kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &xhsi); |
| } |
| |
| static int kvm_xen_set_vcpu_callback_vector(CPUState *cs) |
| { |
| uint8_t vector = X86_CPU(cs)->env.xen_vcpu_callback_vector; |
| struct kvm_xen_vcpu_attr xva; |
| |
| xva.type = KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR; |
| xva.u.vector = vector; |
| |
| trace_kvm_xen_set_vcpu_callback(cs->cpu_index, vector); |
| |
| return kvm_vcpu_ioctl(cs, KVM_XEN_HVM_SET_ATTR, &xva); |
| } |
| |
| static void do_set_vcpu_callback_vector(CPUState *cs, run_on_cpu_data data) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| env->xen_vcpu_callback_vector = data.host_int; |
| |
| if (kvm_xen_has_cap(EVTCHN_SEND)) { |
| kvm_xen_set_vcpu_callback_vector(cs); |
| } |
| } |
| |
| static int set_vcpu_info(CPUState *cs, uint64_t gpa) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| MemoryRegionSection mrs = { .mr = NULL }; |
| void *vcpu_info_hva = NULL; |
| int ret; |
| |
| ret = kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO, gpa); |
| if (ret || gpa == INVALID_GPA) { |
| goto out; |
| } |
| |
| mrs = memory_region_find(get_system_memory(), gpa, |
| sizeof(struct vcpu_info)); |
| if (mrs.mr && mrs.mr->ram_block && |
| !int128_lt(mrs.size, int128_make64(sizeof(struct vcpu_info)))) { |
| vcpu_info_hva = qemu_map_ram_ptr(mrs.mr->ram_block, |
| mrs.offset_within_region); |
| } |
| if (!vcpu_info_hva) { |
| if (mrs.mr) { |
| memory_region_unref(mrs.mr); |
| mrs.mr = NULL; |
| } |
| ret = -EINVAL; |
| } |
| |
| out: |
| if (env->xen_vcpu_info_mr) { |
| memory_region_unref(env->xen_vcpu_info_mr); |
| } |
| env->xen_vcpu_info_hva = vcpu_info_hva; |
| env->xen_vcpu_info_mr = mrs.mr; |
| return ret; |
| } |
| |
| static void do_set_vcpu_info_default_gpa(CPUState *cs, run_on_cpu_data data) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| env->xen_vcpu_info_default_gpa = data.host_ulong; |
| |
| /* Changing the default does nothing if a vcpu_info was explicitly set. */ |
| if (env->xen_vcpu_info_gpa == INVALID_GPA) { |
| set_vcpu_info(cs, env->xen_vcpu_info_default_gpa); |
| } |
| } |
| |
| static void do_set_vcpu_info_gpa(CPUState *cs, run_on_cpu_data data) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| env->xen_vcpu_info_gpa = data.host_ulong; |
| |
| set_vcpu_info(cs, env->xen_vcpu_info_gpa); |
| } |
| |
| void *kvm_xen_get_vcpu_info_hva(uint32_t vcpu_id) |
| { |
| CPUState *cs = qemu_get_cpu(vcpu_id); |
| if (!cs) { |
| return NULL; |
| } |
| |
| return X86_CPU(cs)->env.xen_vcpu_info_hva; |
| } |
| |
| void kvm_xen_maybe_deassert_callback(CPUState *cs) |
| { |
| CPUX86State *env = &X86_CPU(cs)->env; |
| struct vcpu_info *vi = env->xen_vcpu_info_hva; |
| if (!vi) { |
| return; |
| } |
| |
| /* If the evtchn_upcall_pending flag is cleared, turn the GSI off. */ |
| if (!vi->evtchn_upcall_pending) { |
| qemu_mutex_lock_iothread(); |
| /* |
| * Check again now we have the lock, because it may have been |
| * asserted in the interim. And we don't want to take the lock |
| * every time because this is a fast path. |
| */ |
| if (!vi->evtchn_upcall_pending) { |
| X86_CPU(cs)->env.xen_callback_asserted = false; |
| xen_evtchn_set_callback_level(0); |
| } |
| qemu_mutex_unlock_iothread(); |
| } |
| } |
| |
| void kvm_xen_set_callback_asserted(void) |
| { |
| CPUState *cs = qemu_get_cpu(0); |
| |
| if (cs) { |
| X86_CPU(cs)->env.xen_callback_asserted = true; |
| } |
| } |
| |
| void kvm_xen_inject_vcpu_callback_vector(uint32_t vcpu_id, int type) |
| { |
| CPUState *cs = qemu_get_cpu(vcpu_id); |
| uint8_t vector; |
| |
| if (!cs) { |
| return; |
| } |
| |
| vector = X86_CPU(cs)->env.xen_vcpu_callback_vector; |
| if (vector) { |
| /* |
| * The per-vCPU callback vector injected via lapic. Just |
| * deliver it as an MSI. |
| */ |
| MSIMessage msg = { |
| .address = APIC_DEFAULT_ADDRESS | X86_CPU(cs)->apic_id, |
| .data = vector | (1UL << MSI_DATA_LEVEL_SHIFT), |
| }; |
| kvm_irqchip_send_msi(kvm_state, msg); |
| return; |
| } |
| |
| switch (type) { |
| case HVM_PARAM_CALLBACK_TYPE_VECTOR: |
| /* |
| * If the evtchn_upcall_pending field in the vcpu_info is set, then |
| * KVM will automatically deliver the vector on entering the vCPU |
| * so all we have to do is kick it out. |
| */ |
| qemu_cpu_kick(cs); |
| break; |
| |
| case HVM_PARAM_CALLBACK_TYPE_GSI: |
| case HVM_PARAM_CALLBACK_TYPE_PCI_INTX: |
| if (vcpu_id == 0) { |
| xen_evtchn_set_callback_level(1); |
| } |
| break; |
| } |
| } |
| |
| /* Must always be called with xen_timers_lock held */ |
| static int kvm_xen_set_vcpu_timer(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| struct kvm_xen_vcpu_attr va = { |
| .type = KVM_XEN_VCPU_ATTR_TYPE_TIMER, |
| .u.timer.port = env->xen_virq[VIRQ_TIMER], |
| .u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL, |
| .u.timer.expires_ns = env->xen_singleshot_timer_ns, |
| }; |
| |
| return kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &va); |
| } |
| |
| static void do_set_vcpu_timer_virq(CPUState *cs, run_on_cpu_data data) |
| { |
| QEMU_LOCK_GUARD(&X86_CPU(cs)->env.xen_timers_lock); |
| kvm_xen_set_vcpu_timer(cs); |
| } |
| |
| int kvm_xen_set_vcpu_virq(uint32_t vcpu_id, uint16_t virq, uint16_t port) |
| { |
| CPUState *cs = qemu_get_cpu(vcpu_id); |
| |
| if (!cs) { |
| return -ENOENT; |
| } |
| |
| /* cpu.h doesn't include the actual Xen header. */ |
| qemu_build_assert(NR_VIRQS == XEN_NR_VIRQS); |
| |
| if (virq >= NR_VIRQS) { |
| return -EINVAL; |
| } |
| |
| if (port && X86_CPU(cs)->env.xen_virq[virq]) { |
| return -EEXIST; |
| } |
| |
| X86_CPU(cs)->env.xen_virq[virq] = port; |
| if (virq == VIRQ_TIMER && kvm_xen_has_cap(EVTCHN_SEND)) { |
| async_run_on_cpu(cs, do_set_vcpu_timer_virq, |
| RUN_ON_CPU_HOST_INT(port)); |
| } |
| return 0; |
| } |
| |
| static void do_set_vcpu_time_info_gpa(CPUState *cs, run_on_cpu_data data) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| env->xen_vcpu_time_info_gpa = data.host_ulong; |
| |
| kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO, |
| env->xen_vcpu_time_info_gpa); |
| } |
| |
| static void do_set_vcpu_runstate_gpa(CPUState *cs, run_on_cpu_data data) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| env->xen_vcpu_runstate_gpa = data.host_ulong; |
| |
| kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR, |
| env->xen_vcpu_runstate_gpa); |
| } |
| |
| static void do_vcpu_soft_reset(CPUState *cs, run_on_cpu_data data) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| env->xen_vcpu_info_gpa = INVALID_GPA; |
| env->xen_vcpu_info_default_gpa = INVALID_GPA; |
| env->xen_vcpu_time_info_gpa = INVALID_GPA; |
| env->xen_vcpu_runstate_gpa = INVALID_GPA; |
| env->xen_vcpu_callback_vector = 0; |
| memset(env->xen_virq, 0, sizeof(env->xen_virq)); |
| |
| set_vcpu_info(cs, INVALID_GPA); |
| kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO, |
| INVALID_GPA); |
| kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR, |
| INVALID_GPA); |
| if (kvm_xen_has_cap(EVTCHN_SEND)) { |
| kvm_xen_set_vcpu_callback_vector(cs); |
| |
| QEMU_LOCK_GUARD(&X86_CPU(cs)->env.xen_timers_lock); |
| env->xen_singleshot_timer_ns = 0; |
| kvm_xen_set_vcpu_timer(cs); |
| } else { |
| vcpuop_stop_singleshot_timer(cs); |
| }; |
| |
| } |
| |
| static int xen_set_shared_info(uint64_t gfn) |
| { |
| uint64_t gpa = gfn << TARGET_PAGE_BITS; |
| int i, err; |
| |
| QEMU_IOTHREAD_LOCK_GUARD(); |
| |
| /* |
| * The xen_overlay device tells KVM about it too, since it had to |
| * do that on migration load anyway (unless we're going to jump |
| * through lots of hoops to maintain the fiction that this isn't |
| * KVM-specific. |
| */ |
| err = xen_overlay_map_shinfo_page(gpa); |
| if (err) { |
| return err; |
| } |
| |
| trace_kvm_xen_set_shared_info(gfn); |
| |
| for (i = 0; i < XEN_LEGACY_MAX_VCPUS; i++) { |
| CPUState *cpu = qemu_get_cpu(i); |
| if (cpu) { |
| async_run_on_cpu(cpu, do_set_vcpu_info_default_gpa, |
| RUN_ON_CPU_HOST_ULONG(gpa)); |
| } |
| gpa += sizeof(vcpu_info_t); |
| } |
| |
| return err; |
| } |
| |
| static int add_to_physmap_one(uint32_t space, uint64_t idx, uint64_t gfn) |
| { |
| switch (space) { |
| case XENMAPSPACE_shared_info: |
| if (idx > 0) { |
| return -EINVAL; |
| } |
| return xen_set_shared_info(gfn); |
| |
| case XENMAPSPACE_grant_table: |
| return xen_gnttab_map_page(idx, gfn); |
| |
| case XENMAPSPACE_gmfn: |
| case XENMAPSPACE_gmfn_range: |
| return -ENOTSUP; |
| |
| case XENMAPSPACE_gmfn_foreign: |
| case XENMAPSPACE_dev_mmio: |
| return -EPERM; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int do_add_to_physmap(struct kvm_xen_exit *exit, X86CPU *cpu, |
| uint64_t arg) |
| { |
| struct xen_add_to_physmap xatp; |
| CPUState *cs = CPU(cpu); |
| |
| if (hypercall_compat32(exit->u.hcall.longmode)) { |
| struct compat_xen_add_to_physmap xatp32; |
| |
| qemu_build_assert(sizeof(struct compat_xen_add_to_physmap) == 16); |
| if (kvm_copy_from_gva(cs, arg, &xatp32, sizeof(xatp32))) { |
| return -EFAULT; |
| } |
| xatp.domid = xatp32.domid; |
| xatp.size = xatp32.size; |
| xatp.space = xatp32.space; |
| xatp.idx = xatp32.idx; |
| xatp.gpfn = xatp32.gpfn; |
| } else { |
| if (kvm_copy_from_gva(cs, arg, &xatp, sizeof(xatp))) { |
| return -EFAULT; |
| } |
| } |
| |
| if (xatp.domid != DOMID_SELF && xatp.domid != xen_domid) { |
| return -ESRCH; |
| } |
| |
| return add_to_physmap_one(xatp.space, xatp.idx, xatp.gpfn); |
| } |
| |
| static int do_add_to_physmap_batch(struct kvm_xen_exit *exit, X86CPU *cpu, |
| uint64_t arg) |
| { |
| struct xen_add_to_physmap_batch xatpb; |
| unsigned long idxs_gva, gpfns_gva, errs_gva; |
| CPUState *cs = CPU(cpu); |
| size_t op_sz; |
| |
| if (hypercall_compat32(exit->u.hcall.longmode)) { |
| struct compat_xen_add_to_physmap_batch xatpb32; |
| |
| qemu_build_assert(sizeof(struct compat_xen_add_to_physmap_batch) == 20); |
| if (kvm_copy_from_gva(cs, arg, &xatpb32, sizeof(xatpb32))) { |
| return -EFAULT; |
| } |
| xatpb.domid = xatpb32.domid; |
| xatpb.space = xatpb32.space; |
| xatpb.size = xatpb32.size; |
| |
| idxs_gva = xatpb32.idxs.c; |
| gpfns_gva = xatpb32.gpfns.c; |
| errs_gva = xatpb32.errs.c; |
| op_sz = sizeof(uint32_t); |
| } else { |
| if (kvm_copy_from_gva(cs, arg, &xatpb, sizeof(xatpb))) { |
| return -EFAULT; |
| } |
| op_sz = sizeof(unsigned long); |
| idxs_gva = (unsigned long)xatpb.idxs.p; |
| gpfns_gva = (unsigned long)xatpb.gpfns.p; |
| errs_gva = (unsigned long)xatpb.errs.p; |
| } |
| |
| if (xatpb.domid != DOMID_SELF && xatpb.domid != xen_domid) { |
| return -ESRCH; |
| } |
| |
| /* Explicitly invalid for the batch op. Not that we implement it anyway. */ |
| if (xatpb.space == XENMAPSPACE_gmfn_range) { |
| return -EINVAL; |
| } |
| |
| while (xatpb.size--) { |
| unsigned long idx = 0; |
| unsigned long gpfn = 0; |
| int err; |
| |
| /* For 32-bit compat this only copies the low 32 bits of each */ |
| if (kvm_copy_from_gva(cs, idxs_gva, &idx, op_sz) || |
| kvm_copy_from_gva(cs, gpfns_gva, &gpfn, op_sz)) { |
| return -EFAULT; |
| } |
| idxs_gva += op_sz; |
| gpfns_gva += op_sz; |
| |
| err = add_to_physmap_one(xatpb.space, idx, gpfn); |
| |
| if (kvm_copy_to_gva(cs, errs_gva, &err, sizeof(err))) { |
| return -EFAULT; |
| } |
| errs_gva += sizeof(err); |
| } |
| return 0; |
| } |
| |
| static bool kvm_xen_hcall_memory_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg) |
| { |
| int err; |
| |
| switch (cmd) { |
| case XENMEM_add_to_physmap: |
| err = do_add_to_physmap(exit, cpu, arg); |
| break; |
| |
| case XENMEM_add_to_physmap_batch: |
| err = do_add_to_physmap_batch(exit, cpu, arg); |
| break; |
| |
| default: |
| return false; |
| } |
| |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static bool handle_set_param(struct kvm_xen_exit *exit, X86CPU *cpu, |
| uint64_t arg) |
| { |
| CPUState *cs = CPU(cpu); |
| struct xen_hvm_param hp; |
| int err = 0; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(hp) == 16); |
| |
| if (kvm_copy_from_gva(cs, arg, &hp, sizeof(hp))) { |
| err = -EFAULT; |
| goto out; |
| } |
| |
| if (hp.domid != DOMID_SELF && hp.domid != xen_domid) { |
| err = -ESRCH; |
| goto out; |
| } |
| |
| switch (hp.index) { |
| case HVM_PARAM_CALLBACK_IRQ: |
| qemu_mutex_lock_iothread(); |
| err = xen_evtchn_set_callback_param(hp.value); |
| qemu_mutex_unlock_iothread(); |
| xen_set_long_mode(exit->u.hcall.longmode); |
| break; |
| default: |
| return false; |
| } |
| |
| out: |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static bool handle_get_param(struct kvm_xen_exit *exit, X86CPU *cpu, |
| uint64_t arg) |
| { |
| CPUState *cs = CPU(cpu); |
| struct xen_hvm_param hp; |
| int err = 0; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(hp) == 16); |
| |
| if (kvm_copy_from_gva(cs, arg, &hp, sizeof(hp))) { |
| err = -EFAULT; |
| goto out; |
| } |
| |
| if (hp.domid != DOMID_SELF && hp.domid != xen_domid) { |
| err = -ESRCH; |
| goto out; |
| } |
| |
| switch (hp.index) { |
| case HVM_PARAM_STORE_PFN: |
| hp.value = XEN_SPECIAL_PFN(XENSTORE); |
| break; |
| case HVM_PARAM_STORE_EVTCHN: |
| hp.value = xen_xenstore_get_port(); |
| break; |
| default: |
| return false; |
| } |
| |
| if (kvm_copy_to_gva(cs, arg, &hp, sizeof(hp))) { |
| err = -EFAULT; |
| } |
| out: |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static int kvm_xen_hcall_evtchn_upcall_vector(struct kvm_xen_exit *exit, |
| X86CPU *cpu, uint64_t arg) |
| { |
| struct xen_hvm_evtchn_upcall_vector up; |
| CPUState *target_cs; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(up) == 8); |
| |
| if (kvm_copy_from_gva(CPU(cpu), arg, &up, sizeof(up))) { |
| return -EFAULT; |
| } |
| |
| if (up.vector < 0x10) { |
| return -EINVAL; |
| } |
| |
| target_cs = qemu_get_cpu(up.vcpu); |
| if (!target_cs) { |
| return -EINVAL; |
| } |
| |
| async_run_on_cpu(target_cs, do_set_vcpu_callback_vector, |
| RUN_ON_CPU_HOST_INT(up.vector)); |
| return 0; |
| } |
| |
| static bool kvm_xen_hcall_hvm_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg) |
| { |
| int ret = -ENOSYS; |
| switch (cmd) { |
| case HVMOP_set_evtchn_upcall_vector: |
| ret = kvm_xen_hcall_evtchn_upcall_vector(exit, cpu, |
| exit->u.hcall.params[0]); |
| break; |
| |
| case HVMOP_pagetable_dying: |
| ret = -ENOSYS; |
| break; |
| |
| case HVMOP_set_param: |
| return handle_set_param(exit, cpu, arg); |
| |
| case HVMOP_get_param: |
| return handle_get_param(exit, cpu, arg); |
| |
| default: |
| return false; |
| } |
| |
| exit->u.hcall.result = ret; |
| return true; |
| } |
| |
| static int vcpuop_register_vcpu_info(CPUState *cs, CPUState *target, |
| uint64_t arg) |
| { |
| struct vcpu_register_vcpu_info rvi; |
| uint64_t gpa; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(rvi) == 16); |
| qemu_build_assert(sizeof(struct vcpu_info) == 64); |
| |
| if (!target) { |
| return -ENOENT; |
| } |
| |
| if (kvm_copy_from_gva(cs, arg, &rvi, sizeof(rvi))) { |
| return -EFAULT; |
| } |
| |
| if (rvi.offset > TARGET_PAGE_SIZE - sizeof(struct vcpu_info)) { |
| return -EINVAL; |
| } |
| |
| gpa = ((rvi.mfn << TARGET_PAGE_BITS) + rvi.offset); |
| async_run_on_cpu(target, do_set_vcpu_info_gpa, RUN_ON_CPU_HOST_ULONG(gpa)); |
| return 0; |
| } |
| |
| static int vcpuop_register_vcpu_time_info(CPUState *cs, CPUState *target, |
| uint64_t arg) |
| { |
| struct vcpu_register_time_memory_area tma; |
| uint64_t gpa; |
| size_t len; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(tma) == 8); |
| qemu_build_assert(sizeof(struct vcpu_time_info) == 32); |
| |
| if (!target) { |
| return -ENOENT; |
| } |
| |
| if (kvm_copy_from_gva(cs, arg, &tma, sizeof(tma))) { |
| return -EFAULT; |
| } |
| |
| /* |
| * Xen actually uses the GVA and does the translation through the guest |
| * page tables each time. But Linux/KVM uses the GPA, on the assumption |
| * that guests only ever use *global* addresses (kernel virtual addresses) |
| * for it. If Linux is changed to redo the GVA→GPA translation each time, |
| * it will offer a new vCPU attribute for that, and we'll use it instead. |
| */ |
| if (!kvm_gva_to_gpa(cs, tma.addr.p, &gpa, &len, false) || |
| len < sizeof(struct vcpu_time_info)) { |
| return -EFAULT; |
| } |
| |
| async_run_on_cpu(target, do_set_vcpu_time_info_gpa, |
| RUN_ON_CPU_HOST_ULONG(gpa)); |
| return 0; |
| } |
| |
| static int vcpuop_register_runstate_info(CPUState *cs, CPUState *target, |
| uint64_t arg) |
| { |
| struct vcpu_register_runstate_memory_area rma; |
| uint64_t gpa; |
| size_t len; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(rma) == 8); |
| /* The runstate area actually does change size, but Linux copes. */ |
| |
| if (!target) { |
| return -ENOENT; |
| } |
| |
| if (kvm_copy_from_gva(cs, arg, &rma, sizeof(rma))) { |
| return -EFAULT; |
| } |
| |
| /* As with vcpu_time_info, Xen actually uses the GVA but KVM doesn't. */ |
| if (!kvm_gva_to_gpa(cs, rma.addr.p, &gpa, &len, false)) { |
| return -EFAULT; |
| } |
| |
| async_run_on_cpu(target, do_set_vcpu_runstate_gpa, |
| RUN_ON_CPU_HOST_ULONG(gpa)); |
| return 0; |
| } |
| |
| static uint64_t kvm_get_current_ns(void) |
| { |
| struct kvm_clock_data data; |
| int ret; |
| |
| ret = kvm_vm_ioctl(kvm_state, KVM_GET_CLOCK, &data); |
| if (ret < 0) { |
| fprintf(stderr, "KVM_GET_CLOCK failed: %s\n", strerror(ret)); |
| abort(); |
| } |
| |
| return data.clock; |
| } |
| |
| static void xen_vcpu_singleshot_timer_event(void *opaque) |
| { |
| CPUState *cpu = opaque; |
| CPUX86State *env = &X86_CPU(cpu)->env; |
| uint16_t port = env->xen_virq[VIRQ_TIMER]; |
| |
| if (likely(port)) { |
| xen_evtchn_set_port(port); |
| } |
| |
| qemu_mutex_lock(&env->xen_timers_lock); |
| env->xen_singleshot_timer_ns = 0; |
| qemu_mutex_unlock(&env->xen_timers_lock); |
| } |
| |
| static void xen_vcpu_periodic_timer_event(void *opaque) |
| { |
| CPUState *cpu = opaque; |
| CPUX86State *env = &X86_CPU(cpu)->env; |
| uint16_t port = env->xen_virq[VIRQ_TIMER]; |
| int64_t qemu_now; |
| |
| if (likely(port)) { |
| xen_evtchn_set_port(port); |
| } |
| |
| qemu_mutex_lock(&env->xen_timers_lock); |
| |
| qemu_now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| timer_mod_ns(env->xen_periodic_timer, |
| qemu_now + env->xen_periodic_timer_period); |
| |
| qemu_mutex_unlock(&env->xen_timers_lock); |
| } |
| |
| static int do_set_periodic_timer(CPUState *target, uint64_t period_ns) |
| { |
| CPUX86State *tenv = &X86_CPU(target)->env; |
| int64_t qemu_now; |
| |
| timer_del(tenv->xen_periodic_timer); |
| |
| qemu_mutex_lock(&tenv->xen_timers_lock); |
| |
| qemu_now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| timer_mod_ns(tenv->xen_periodic_timer, qemu_now + period_ns); |
| tenv->xen_periodic_timer_period = period_ns; |
| |
| qemu_mutex_unlock(&tenv->xen_timers_lock); |
| return 0; |
| } |
| |
| #define MILLISECS(_ms) ((int64_t)((_ms) * 1000000ULL)) |
| #define MICROSECS(_us) ((int64_t)((_us) * 1000ULL)) |
| #define STIME_MAX ((time_t)((int64_t)~0ull >> 1)) |
| /* Chosen so (NOW() + delta) won't overflow without an uptime of 200 years */ |
| #define STIME_DELTA_MAX ((int64_t)((uint64_t)~0ull >> 2)) |
| |
| static int vcpuop_set_periodic_timer(CPUState *cs, CPUState *target, |
| uint64_t arg) |
| { |
| struct vcpu_set_periodic_timer spt; |
| |
| qemu_build_assert(sizeof(spt) == 8); |
| if (kvm_copy_from_gva(cs, arg, &spt, sizeof(spt))) { |
| return -EFAULT; |
| } |
| |
| if (spt.period_ns < MILLISECS(1) || spt.period_ns > STIME_DELTA_MAX) { |
| return -EINVAL; |
| } |
| |
| return do_set_periodic_timer(target, spt.period_ns); |
| } |
| |
| static int vcpuop_stop_periodic_timer(CPUState *target) |
| { |
| CPUX86State *tenv = &X86_CPU(target)->env; |
| |
| qemu_mutex_lock(&tenv->xen_timers_lock); |
| |
| timer_del(tenv->xen_periodic_timer); |
| tenv->xen_periodic_timer_period = 0; |
| |
| qemu_mutex_unlock(&tenv->xen_timers_lock); |
| return 0; |
| } |
| |
| /* |
| * Userspace handling of timer, for older kernels. |
| * Must always be called with xen_timers_lock held. |
| */ |
| static int do_set_singleshot_timer(CPUState *cs, uint64_t timeout_abs, |
| bool future, bool linux_wa) |
| { |
| CPUX86State *env = &X86_CPU(cs)->env; |
| int64_t now = kvm_get_current_ns(); |
| int64_t qemu_now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| int64_t delta = timeout_abs - now; |
| |
| if (future && timeout_abs < now) { |
| return -ETIME; |
| } |
| |
| if (linux_wa && unlikely((int64_t)timeout_abs < 0 || |
| (delta > 0 && (uint32_t)(delta >> 50) != 0))) { |
| /* |
| * Xen has a 'Linux workaround' in do_set_timer_op() which checks |
| * for negative absolute timeout values (caused by integer |
| * overflow), and for values about 13 days in the future (2^50ns) |
| * which would be caused by jiffies overflow. For those cases, it |
| * sets the timeout 100ms in the future (not *too* soon, since if |
| * a guest really did set a long timeout on purpose we don't want |
| * to keep churning CPU time by waking it up). |
| */ |
| delta = (100 * SCALE_MS); |
| timeout_abs = now + delta; |
| } |
| |
| timer_mod_ns(env->xen_singleshot_timer, qemu_now + delta); |
| env->xen_singleshot_timer_ns = now + delta; |
| return 0; |
| } |
| |
| static int vcpuop_set_singleshot_timer(CPUState *cs, uint64_t arg) |
| { |
| struct vcpu_set_singleshot_timer sst = { 0 }; |
| |
| /* |
| * The struct is a uint64_t followed by a uint32_t. On 32-bit that |
| * makes it 12 bytes. On 64-bit it gets padded to 16. The parts |
| * that get used are identical, and there's four bytes of padding |
| * unused at the end. For true Xen compatibility we should attempt |
| * to copy the full 16 bytes from 64-bit guests, and return -EFAULT |
| * if we can't get the padding too. But that's daft. Just copy what |
| * we need. |
| */ |
| qemu_build_assert(offsetof(struct vcpu_set_singleshot_timer, flags) == 8); |
| qemu_build_assert(sizeof(sst) >= 12); |
| |
| if (kvm_copy_from_gva(cs, arg, &sst, 12)) { |
| return -EFAULT; |
| } |
| |
| QEMU_LOCK_GUARD(&X86_CPU(cs)->env.xen_timers_lock); |
| return do_set_singleshot_timer(cs, sst.timeout_abs_ns, |
| !!(sst.flags & VCPU_SSHOTTMR_future), |
| false); |
| } |
| |
| static int vcpuop_stop_singleshot_timer(CPUState *cs) |
| { |
| CPUX86State *env = &X86_CPU(cs)->env; |
| |
| qemu_mutex_lock(&env->xen_timers_lock); |
| |
| timer_del(env->xen_singleshot_timer); |
| env->xen_singleshot_timer_ns = 0; |
| |
| qemu_mutex_unlock(&env->xen_timers_lock); |
| return 0; |
| } |
| |
| static bool kvm_xen_hcall_set_timer_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| uint64_t timeout) |
| { |
| int err; |
| |
| if (unlikely(timeout == 0)) { |
| err = vcpuop_stop_singleshot_timer(CPU(cpu)); |
| } else { |
| QEMU_LOCK_GUARD(&X86_CPU(cpu)->env.xen_timers_lock); |
| err = do_set_singleshot_timer(CPU(cpu), timeout, false, true); |
| } |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static bool kvm_xen_hcall_vcpu_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, int vcpu_id, uint64_t arg) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUState *dest = cs->cpu_index == vcpu_id ? cs : qemu_get_cpu(vcpu_id); |
| int err; |
| |
| if (!dest) { |
| err = -ENOENT; |
| goto out; |
| } |
| |
| switch (cmd) { |
| case VCPUOP_register_runstate_memory_area: |
| err = vcpuop_register_runstate_info(cs, dest, arg); |
| break; |
| case VCPUOP_register_vcpu_time_memory_area: |
| err = vcpuop_register_vcpu_time_info(cs, dest, arg); |
| break; |
| case VCPUOP_register_vcpu_info: |
| err = vcpuop_register_vcpu_info(cs, dest, arg); |
| break; |
| case VCPUOP_set_singleshot_timer: { |
| if (cs->cpu_index == vcpu_id) { |
| err = vcpuop_set_singleshot_timer(dest, arg); |
| } else { |
| err = -EINVAL; |
| } |
| break; |
| } |
| case VCPUOP_stop_singleshot_timer: |
| if (cs->cpu_index == vcpu_id) { |
| err = vcpuop_stop_singleshot_timer(dest); |
| } else { |
| err = -EINVAL; |
| } |
| break; |
| case VCPUOP_set_periodic_timer: { |
| err = vcpuop_set_periodic_timer(cs, dest, arg); |
| break; |
| } |
| case VCPUOP_stop_periodic_timer: |
| err = vcpuop_stop_periodic_timer(dest); |
| break; |
| |
| default: |
| return false; |
| } |
| |
| out: |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static bool kvm_xen_hcall_evtchn_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg) |
| { |
| CPUState *cs = CPU(cpu); |
| int err = -ENOSYS; |
| |
| switch (cmd) { |
| case EVTCHNOP_init_control: |
| case EVTCHNOP_expand_array: |
| case EVTCHNOP_set_priority: |
| /* We do not support FIFO channels at this point */ |
| err = -ENOSYS; |
| break; |
| |
| case EVTCHNOP_status: { |
| struct evtchn_status status; |
| |
| qemu_build_assert(sizeof(status) == 24); |
| if (kvm_copy_from_gva(cs, arg, &status, sizeof(status))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_status_op(&status); |
| if (!err && kvm_copy_to_gva(cs, arg, &status, sizeof(status))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case EVTCHNOP_close: { |
| struct evtchn_close close; |
| |
| qemu_build_assert(sizeof(close) == 4); |
| if (kvm_copy_from_gva(cs, arg, &close, sizeof(close))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_close_op(&close); |
| break; |
| } |
| case EVTCHNOP_unmask: { |
| struct evtchn_unmask unmask; |
| |
| qemu_build_assert(sizeof(unmask) == 4); |
| if (kvm_copy_from_gva(cs, arg, &unmask, sizeof(unmask))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_unmask_op(&unmask); |
| break; |
| } |
| case EVTCHNOP_bind_virq: { |
| struct evtchn_bind_virq virq; |
| |
| qemu_build_assert(sizeof(virq) == 12); |
| if (kvm_copy_from_gva(cs, arg, &virq, sizeof(virq))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_bind_virq_op(&virq); |
| if (!err && kvm_copy_to_gva(cs, arg, &virq, sizeof(virq))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case EVTCHNOP_bind_pirq: { |
| struct evtchn_bind_pirq pirq; |
| |
| qemu_build_assert(sizeof(pirq) == 12); |
| if (kvm_copy_from_gva(cs, arg, &pirq, sizeof(pirq))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_bind_pirq_op(&pirq); |
| if (!err && kvm_copy_to_gva(cs, arg, &pirq, sizeof(pirq))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case EVTCHNOP_bind_ipi: { |
| struct evtchn_bind_ipi ipi; |
| |
| qemu_build_assert(sizeof(ipi) == 8); |
| if (kvm_copy_from_gva(cs, arg, &ipi, sizeof(ipi))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_bind_ipi_op(&ipi); |
| if (!err && kvm_copy_to_gva(cs, arg, &ipi, sizeof(ipi))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case EVTCHNOP_send: { |
| struct evtchn_send send; |
| |
| qemu_build_assert(sizeof(send) == 4); |
| if (kvm_copy_from_gva(cs, arg, &send, sizeof(send))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_send_op(&send); |
| break; |
| } |
| case EVTCHNOP_alloc_unbound: { |
| struct evtchn_alloc_unbound alloc; |
| |
| qemu_build_assert(sizeof(alloc) == 8); |
| if (kvm_copy_from_gva(cs, arg, &alloc, sizeof(alloc))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_alloc_unbound_op(&alloc); |
| if (!err && kvm_copy_to_gva(cs, arg, &alloc, sizeof(alloc))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case EVTCHNOP_bind_interdomain: { |
| struct evtchn_bind_interdomain interdomain; |
| |
| qemu_build_assert(sizeof(interdomain) == 12); |
| if (kvm_copy_from_gva(cs, arg, &interdomain, sizeof(interdomain))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_bind_interdomain_op(&interdomain); |
| if (!err && |
| kvm_copy_to_gva(cs, arg, &interdomain, sizeof(interdomain))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case EVTCHNOP_bind_vcpu: { |
| struct evtchn_bind_vcpu vcpu; |
| |
| qemu_build_assert(sizeof(vcpu) == 8); |
| if (kvm_copy_from_gva(cs, arg, &vcpu, sizeof(vcpu))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_bind_vcpu_op(&vcpu); |
| break; |
| } |
| case EVTCHNOP_reset: { |
| struct evtchn_reset reset; |
| |
| qemu_build_assert(sizeof(reset) == 2); |
| if (kvm_copy_from_gva(cs, arg, &reset, sizeof(reset))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_evtchn_reset_op(&reset); |
| break; |
| } |
| default: |
| return false; |
| } |
| |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| int kvm_xen_soft_reset(void) |
| { |
| CPUState *cpu; |
| int err; |
| |
| assert(qemu_mutex_iothread_locked()); |
| |
| trace_kvm_xen_soft_reset(); |
| |
| err = xen_evtchn_soft_reset(); |
| if (err) { |
| return err; |
| } |
| |
| /* |
| * Zero is the reset/startup state for HVM_PARAM_CALLBACK_IRQ. Strictly, |
| * it maps to HVM_PARAM_CALLBACK_TYPE_GSI with GSI#0, but Xen refuses to |
| * to deliver to the timer interrupt and treats that as 'disabled'. |
| */ |
| err = xen_evtchn_set_callback_param(0); |
| if (err) { |
| return err; |
| } |
| |
| CPU_FOREACH(cpu) { |
| async_run_on_cpu(cpu, do_vcpu_soft_reset, RUN_ON_CPU_NULL); |
| } |
| |
| err = xen_overlay_map_shinfo_page(INVALID_GFN); |
| if (err) { |
| return err; |
| } |
| |
| err = xen_gnttab_reset(); |
| if (err) { |
| return err; |
| } |
| |
| err = xen_xenstore_reset(); |
| if (err) { |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int schedop_shutdown(CPUState *cs, uint64_t arg) |
| { |
| struct sched_shutdown shutdown; |
| int ret = 0; |
| |
| /* No need for 32/64 compat handling */ |
| qemu_build_assert(sizeof(shutdown) == 4); |
| |
| if (kvm_copy_from_gva(cs, arg, &shutdown, sizeof(shutdown))) { |
| return -EFAULT; |
| } |
| |
| switch (shutdown.reason) { |
| case SHUTDOWN_crash: |
| cpu_dump_state(cs, stderr, CPU_DUMP_CODE); |
| qemu_system_guest_panicked(NULL); |
| break; |
| |
| case SHUTDOWN_reboot: |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| break; |
| |
| case SHUTDOWN_poweroff: |
| qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); |
| break; |
| |
| case SHUTDOWN_soft_reset: |
| qemu_mutex_lock_iothread(); |
| ret = kvm_xen_soft_reset(); |
| qemu_mutex_unlock_iothread(); |
| break; |
| |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static bool kvm_xen_hcall_sched_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg) |
| { |
| CPUState *cs = CPU(cpu); |
| int err = -ENOSYS; |
| |
| switch (cmd) { |
| case SCHEDOP_shutdown: |
| err = schedop_shutdown(cs, arg); |
| break; |
| |
| case SCHEDOP_poll: |
| /* |
| * Linux will panic if this doesn't work. Just yield; it's not |
| * worth overthinking it because with event channel handling |
| * in KVM, the kernel will intercept this and it will never |
| * reach QEMU anyway. The semantics of the hypercall explicltly |
| * permit spurious wakeups. |
| */ |
| case SCHEDOP_yield: |
| sched_yield(); |
| err = 0; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static bool kvm_xen_hcall_gnttab_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg, int count) |
| { |
| CPUState *cs = CPU(cpu); |
| int err; |
| |
| switch (cmd) { |
| case GNTTABOP_set_version: { |
| struct gnttab_set_version set; |
| |
| qemu_build_assert(sizeof(set) == 4); |
| if (kvm_copy_from_gva(cs, arg, &set, sizeof(set))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_gnttab_set_version_op(&set); |
| if (!err && kvm_copy_to_gva(cs, arg, &set, sizeof(set))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case GNTTABOP_get_version: { |
| struct gnttab_get_version get; |
| |
| qemu_build_assert(sizeof(get) == 8); |
| if (kvm_copy_from_gva(cs, arg, &get, sizeof(get))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_gnttab_get_version_op(&get); |
| if (!err && kvm_copy_to_gva(cs, arg, &get, sizeof(get))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case GNTTABOP_query_size: { |
| struct gnttab_query_size size; |
| |
| qemu_build_assert(sizeof(size) == 16); |
| if (kvm_copy_from_gva(cs, arg, &size, sizeof(size))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_gnttab_query_size_op(&size); |
| if (!err && kvm_copy_to_gva(cs, arg, &size, sizeof(size))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case GNTTABOP_setup_table: |
| case GNTTABOP_copy: |
| case GNTTABOP_map_grant_ref: |
| case GNTTABOP_unmap_grant_ref: |
| case GNTTABOP_swap_grant_ref: |
| return false; |
| |
| default: |
| /* Xen explicitly returns -ENOSYS to HVM guests for all others */ |
| err = -ENOSYS; |
| break; |
| } |
| |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static bool kvm_xen_hcall_physdev_op(struct kvm_xen_exit *exit, X86CPU *cpu, |
| int cmd, uint64_t arg) |
| { |
| CPUState *cs = CPU(cpu); |
| int err; |
| |
| switch (cmd) { |
| case PHYSDEVOP_map_pirq: { |
| struct physdev_map_pirq map; |
| |
| if (hypercall_compat32(exit->u.hcall.longmode)) { |
| struct compat_physdev_map_pirq *map32 = (void *)↦ |
| |
| if (kvm_copy_from_gva(cs, arg, map32, sizeof(*map32))) { |
| return -EFAULT; |
| } |
| |
| /* |
| * The only thing that's different is the alignment of the |
| * uint64_t table_base at the end, which gets padding to make |
| * it 64-bit aligned in the 64-bit version. |
| */ |
| qemu_build_assert(sizeof(*map32) == 36); |
| qemu_build_assert(offsetof(struct physdev_map_pirq, entry_nr) == |
| offsetof(struct compat_physdev_map_pirq, entry_nr)); |
| memmove(&map.table_base, &map32->table_base, sizeof(map.table_base)); |
| } else { |
| if (kvm_copy_from_gva(cs, arg, &map, sizeof(map))) { |
| err = -EFAULT; |
| break; |
| } |
| } |
| err = xen_physdev_map_pirq(&map); |
| /* |
| * Since table_base is an IN parameter and won't be changed, just |
| * copy the size of the compat structure back to the guest. |
| */ |
| if (!err && kvm_copy_to_gva(cs, arg, &map, |
| sizeof(struct compat_physdev_map_pirq))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case PHYSDEVOP_unmap_pirq: { |
| struct physdev_unmap_pirq unmap; |
| |
| qemu_build_assert(sizeof(unmap) == 8); |
| if (kvm_copy_from_gva(cs, arg, &unmap, sizeof(unmap))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_physdev_unmap_pirq(&unmap); |
| if (!err && kvm_copy_to_gva(cs, arg, &unmap, sizeof(unmap))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case PHYSDEVOP_eoi: { |
| struct physdev_eoi eoi; |
| |
| qemu_build_assert(sizeof(eoi) == 4); |
| if (kvm_copy_from_gva(cs, arg, &eoi, sizeof(eoi))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_physdev_eoi_pirq(&eoi); |
| if (!err && kvm_copy_to_gva(cs, arg, &eoi, sizeof(eoi))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case PHYSDEVOP_irq_status_query: { |
| struct physdev_irq_status_query query; |
| |
| qemu_build_assert(sizeof(query) == 8); |
| if (kvm_copy_from_gva(cs, arg, &query, sizeof(query))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_physdev_query_pirq(&query); |
| if (!err && kvm_copy_to_gva(cs, arg, &query, sizeof(query))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case PHYSDEVOP_get_free_pirq: { |
| struct physdev_get_free_pirq get; |
| |
| qemu_build_assert(sizeof(get) == 8); |
| if (kvm_copy_from_gva(cs, arg, &get, sizeof(get))) { |
| err = -EFAULT; |
| break; |
| } |
| |
| err = xen_physdev_get_free_pirq(&get); |
| if (!err && kvm_copy_to_gva(cs, arg, &get, sizeof(get))) { |
| err = -EFAULT; |
| } |
| break; |
| } |
| case PHYSDEVOP_pirq_eoi_gmfn_v2: /* FreeBSD 13 makes this hypercall */ |
| err = -ENOSYS; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| exit->u.hcall.result = err; |
| return true; |
| } |
| |
| static bool do_kvm_xen_handle_exit(X86CPU *cpu, struct kvm_xen_exit *exit) |
| { |
| uint16_t code = exit->u.hcall.input; |
| |
| if (exit->u.hcall.cpl > 0) { |
| exit->u.hcall.result = -EPERM; |
| return true; |
| } |
| |
| switch (code) { |
| case __HYPERVISOR_set_timer_op: |
| if (exit->u.hcall.longmode) { |
| return kvm_xen_hcall_set_timer_op(exit, cpu, |
| exit->u.hcall.params[0]); |
| } else { |
| /* In 32-bit mode, the 64-bit timer value is in two args. */ |
| uint64_t val = ((uint64_t)exit->u.hcall.params[1]) << 32 | |
| (uint32_t)exit->u.hcall.params[0]; |
| return kvm_xen_hcall_set_timer_op(exit, cpu, val); |
| } |
| case __HYPERVISOR_grant_table_op: |
| return kvm_xen_hcall_gnttab_op(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1], |
| exit->u.hcall.params[2]); |
| case __HYPERVISOR_sched_op: |
| return kvm_xen_hcall_sched_op(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1]); |
| case __HYPERVISOR_event_channel_op: |
| return kvm_xen_hcall_evtchn_op(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1]); |
| case __HYPERVISOR_vcpu_op: |
| return kvm_xen_hcall_vcpu_op(exit, cpu, |
| exit->u.hcall.params[0], |
| exit->u.hcall.params[1], |
| exit->u.hcall.params[2]); |
| case __HYPERVISOR_hvm_op: |
| return kvm_xen_hcall_hvm_op(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1]); |
| case __HYPERVISOR_memory_op: |
| return kvm_xen_hcall_memory_op(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1]); |
| case __HYPERVISOR_physdev_op: |
| return kvm_xen_hcall_physdev_op(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1]); |
| case __HYPERVISOR_xen_version: |
| return kvm_xen_hcall_xen_version(exit, cpu, exit->u.hcall.params[0], |
| exit->u.hcall.params[1]); |
| default: |
| return false; |
| } |
| } |
| |
| int kvm_xen_handle_exit(X86CPU *cpu, struct kvm_xen_exit *exit) |
| { |
| if (exit->type != KVM_EXIT_XEN_HCALL) { |
| return -1; |
| } |
| |
| /* |
| * The kernel latches the guest 32/64 mode when the MSR is used to fill |
| * the hypercall page. So if we see a hypercall in a mode that doesn't |
| * match our own idea of the guest mode, fetch the kernel's idea of the |
| * "long mode" to remain in sync. |
| */ |
| if (exit->u.hcall.longmode != xen_is_long_mode()) { |
| xen_sync_long_mode(); |
| } |
| |
| if (!do_kvm_xen_handle_exit(cpu, exit)) { |
| /* |
| * Some hypercalls will be deliberately "implemented" by returning |
| * -ENOSYS. This case is for hypercalls which are unexpected. |
| */ |
| exit->u.hcall.result = -ENOSYS; |
| qemu_log_mask(LOG_UNIMP, "Unimplemented Xen hypercall %" |
| PRId64 " (0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 ")\n", |
| (uint64_t)exit->u.hcall.input, |
| (uint64_t)exit->u.hcall.params[0], |
| (uint64_t)exit->u.hcall.params[1], |
| (uint64_t)exit->u.hcall.params[2]); |
| } |
| |
| trace_kvm_xen_hypercall(CPU(cpu)->cpu_index, exit->u.hcall.cpl, |
| exit->u.hcall.input, exit->u.hcall.params[0], |
| exit->u.hcall.params[1], exit->u.hcall.params[2], |
| exit->u.hcall.result); |
| return 0; |
| } |
| |
| uint16_t kvm_xen_get_gnttab_max_frames(void) |
| { |
| KVMState *s = KVM_STATE(current_accel()); |
| return s->xen_gnttab_max_frames; |
| } |
| |
| uint16_t kvm_xen_get_evtchn_max_pirq(void) |
| { |
| KVMState *s = KVM_STATE(current_accel()); |
| return s->xen_evtchn_max_pirq; |
| } |
| |
| int kvm_put_xen_state(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| uint64_t gpa; |
| int ret; |
| |
| gpa = env->xen_vcpu_info_gpa; |
| if (gpa == INVALID_GPA) { |
| gpa = env->xen_vcpu_info_default_gpa; |
| } |
| |
| if (gpa != INVALID_GPA) { |
| ret = set_vcpu_info(cs, gpa); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| gpa = env->xen_vcpu_time_info_gpa; |
| if (gpa != INVALID_GPA) { |
| ret = kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO, |
| gpa); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| gpa = env->xen_vcpu_runstate_gpa; |
| if (gpa != INVALID_GPA) { |
| ret = kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR, |
| gpa); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| if (env->xen_periodic_timer_period) { |
| ret = do_set_periodic_timer(cs, env->xen_periodic_timer_period); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| if (!kvm_xen_has_cap(EVTCHN_SEND)) { |
| /* |
| * If the kernel has EVTCHN_SEND support then it handles timers too, |
| * so the timer will be restored by kvm_xen_set_vcpu_timer() below. |
| */ |
| QEMU_LOCK_GUARD(&env->xen_timers_lock); |
| if (env->xen_singleshot_timer_ns) { |
| ret = do_set_singleshot_timer(cs, env->xen_singleshot_timer_ns, |
| false, false); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| if (env->xen_vcpu_callback_vector) { |
| ret = kvm_xen_set_vcpu_callback_vector(cs); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| if (env->xen_virq[VIRQ_TIMER]) { |
| do_set_vcpu_timer_virq(cs, |
| RUN_ON_CPU_HOST_INT(env->xen_virq[VIRQ_TIMER])); |
| } |
| return 0; |
| } |
| |
| int kvm_get_xen_state(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| uint64_t gpa; |
| int ret; |
| |
| /* |
| * The kernel does not mark vcpu_info as dirty when it delivers interrupts |
| * to it. It's up to userspace to *assume* that any page shared thus is |
| * always considered dirty. The shared_info page is different since it's |
| * an overlay and migrated separately anyway. |
| */ |
| gpa = env->xen_vcpu_info_gpa; |
| if (gpa == INVALID_GPA) { |
| gpa = env->xen_vcpu_info_default_gpa; |
| } |
| if (gpa != INVALID_GPA) { |
| MemoryRegionSection mrs = memory_region_find(get_system_memory(), |
| gpa, |
| sizeof(struct vcpu_info)); |
| if (mrs.mr && |
| !int128_lt(mrs.size, int128_make64(sizeof(struct vcpu_info)))) { |
| memory_region_set_dirty(mrs.mr, mrs.offset_within_region, |
| sizeof(struct vcpu_info)); |
| } |
| } |
| |
| if (!kvm_xen_has_cap(EVTCHN_SEND)) { |
| return 0; |
| } |
| |
| /* |
| * If the kernel is accelerating timers, read out the current value of the |
| * singleshot timer deadline. |
| */ |
| if (env->xen_virq[VIRQ_TIMER]) { |
| struct kvm_xen_vcpu_attr va = { |
| .type = KVM_XEN_VCPU_ATTR_TYPE_TIMER, |
| }; |
| ret = kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_GET_ATTR, &va); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| /* |
| * This locking is fairly pointless, and is here to appease Coverity. |
| * There is an unavoidable race condition if a different vCPU sets a |
| * timer for this vCPU after the value has been read out. But that's |
| * OK in practice because *all* the vCPUs need to be stopped before |
| * we set about migrating their state. |
| */ |
| QEMU_LOCK_GUARD(&X86_CPU(cs)->env.xen_timers_lock); |
| env->xen_singleshot_timer_ns = va.u.timer.expires_ns; |
| } |
| |
| return 0; |
| } |