blob: 745d8c52bb52f157b7abb0c090d7b72dbe7c2c83 [file] [log] [blame]
/*
* S/390 helpers
*
* Copyright (c) 2009 Ulrich Hecht
* Copyright (c) 2011 Alexander Graf
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cpu.h"
#include "exec-all.h"
#include "gdbstub.h"
#include "qemu-common.h"
#include "qemu-timer.h"
//#define DEBUG_S390
//#define DEBUG_S390_PTE
//#define DEBUG_S390_STDOUT
#ifdef DEBUG_S390
#ifdef DEBUG_S390_STDOUT
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); \
qemu_log(fmt, ##__VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { qemu_log(fmt, ## __VA_ARGS__); } while (0)
#endif
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
#ifdef DEBUG_S390_PTE
#define PTE_DPRINTF DPRINTF
#else
#define PTE_DPRINTF(fmt, ...) \
do { } while (0)
#endif
#ifndef CONFIG_USER_ONLY
static void s390x_tod_timer(void *opaque)
{
CPUState *env = opaque;
env->pending_int |= INTERRUPT_TOD;
cpu_interrupt(env, CPU_INTERRUPT_HARD);
}
static void s390x_cpu_timer(void *opaque)
{
CPUState *env = opaque;
env->pending_int |= INTERRUPT_CPUTIMER;
cpu_interrupt(env, CPU_INTERRUPT_HARD);
}
#endif
CPUS390XState *cpu_s390x_init(const char *cpu_model)
{
CPUS390XState *env;
#if !defined (CONFIG_USER_ONLY)
struct tm tm;
#endif
static int inited = 0;
static int cpu_num = 0;
env = qemu_mallocz(sizeof(CPUS390XState));
cpu_exec_init(env);
if (!inited) {
inited = 1;
s390x_translate_init();
}
#if !defined(CONFIG_USER_ONLY)
qemu_get_timedate(&tm, 0);
env->tod_offset = TOD_UNIX_EPOCH +
(time2tod(mktimegm(&tm)) * 1000000000ULL);
env->tod_basetime = 0;
env->tod_timer = qemu_new_timer_ns(vm_clock, s390x_tod_timer, env);
env->cpu_timer = qemu_new_timer_ns(vm_clock, s390x_cpu_timer, env);
#endif
env->cpu_model_str = cpu_model;
env->cpu_num = cpu_num++;
env->ext_index = -1;
cpu_reset(env);
qemu_init_vcpu(env);
return env;
}
#if defined(CONFIG_USER_ONLY)
void do_interrupt (CPUState *env)
{
env->exception_index = -1;
}
int cpu_s390x_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
int mmu_idx, int is_softmmu)
{
/* fprintf(stderr,"%s: address 0x%lx rw %d mmu_idx %d is_softmmu %d\n",
__FUNCTION__, address, rw, mmu_idx, is_softmmu); */
env->exception_index = EXCP_ADDR;
env->__excp_addr = address; /* FIXME: find out how this works on a real machine */
return 1;
}
#endif /* CONFIG_USER_ONLY */
void cpu_reset(CPUS390XState *env)
{
if (qemu_loglevel_mask(CPU_LOG_RESET)) {
qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
log_cpu_state(env, 0);
}
memset(env, 0, offsetof(CPUS390XState, breakpoints));
/* FIXME: reset vector? */
tlb_flush(env, 1);
}
#ifndef CONFIG_USER_ONLY
/* Ensure to exit the TB after this call! */
static void trigger_pgm_exception(CPUState *env, uint32_t code, uint32_t ilc)
{
env->exception_index = EXCP_PGM;
env->int_pgm_code = code;
env->int_pgm_ilc = ilc;
}
static int trans_bits(CPUState *env, uint64_t mode)
{
int bits = 0;
switch (mode) {
case PSW_ASC_PRIMARY:
bits = 1;
break;
case PSW_ASC_SECONDARY:
bits = 2;
break;
case PSW_ASC_HOME:
bits = 3;
break;
default:
cpu_abort(env, "unknown asc mode\n");
break;
}
return bits;
}
static void trigger_prot_fault(CPUState *env, target_ulong vaddr, uint64_t mode)
{
int ilc = ILC_LATER_INC_2;
int bits = trans_bits(env, mode) | 4;
DPRINTF("%s: vaddr=%016" PRIx64 " bits=%d\n", __FUNCTION__, vaddr, bits);
stq_phys(env->psa + offsetof(LowCore, trans_exc_code), vaddr | bits);
trigger_pgm_exception(env, PGM_PROTECTION, ilc);
}
static void trigger_page_fault(CPUState *env, target_ulong vaddr, uint32_t type,
uint64_t asc, int rw)
{
int ilc = ILC_LATER;
int bits = trans_bits(env, asc);
if (rw == 2) {
/* code has is undefined ilc */
ilc = 2;
}
DPRINTF("%s: vaddr=%016" PRIx64 " bits=%d\n", __FUNCTION__, vaddr, bits);
stq_phys(env->psa + offsetof(LowCore, trans_exc_code), vaddr | bits);
trigger_pgm_exception(env, type, ilc);
}
static int mmu_translate_asce(CPUState *env, target_ulong vaddr, uint64_t asc,
uint64_t asce, int level, target_ulong *raddr,
int *flags, int rw)
{
uint64_t offs = 0;
uint64_t origin;
uint64_t new_asce;
PTE_DPRINTF("%s: 0x%" PRIx64 "\n", __FUNCTION__, asce);
if (((level != _ASCE_TYPE_SEGMENT) && (asce & _REGION_ENTRY_INV)) ||
((level == _ASCE_TYPE_SEGMENT) && (asce & _SEGMENT_ENTRY_INV))) {
/* XXX different regions have different faults */
DPRINTF("%s: invalid region\n", __FUNCTION__);
trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw);
return -1;
}
if ((level <= _ASCE_TYPE_MASK) && ((asce & _ASCE_TYPE_MASK) != level)) {
trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw);
return -1;
}
if (asce & _ASCE_REAL_SPACE) {
/* direct mapping */
*raddr = vaddr;
return 0;
}
origin = asce & _ASCE_ORIGIN;
switch (level) {
case _ASCE_TYPE_REGION1 + 4:
offs = (vaddr >> 50) & 0x3ff8;
break;
case _ASCE_TYPE_REGION1:
offs = (vaddr >> 39) & 0x3ff8;
break;
case _ASCE_TYPE_REGION2:
offs = (vaddr >> 28) & 0x3ff8;
break;
case _ASCE_TYPE_REGION3:
offs = (vaddr >> 17) & 0x3ff8;
break;
case _ASCE_TYPE_SEGMENT:
offs = (vaddr >> 9) & 0x07f8;
origin = asce & _SEGMENT_ENTRY_ORIGIN;
break;
}
/* XXX region protection flags */
/* *flags &= ~PAGE_WRITE */
new_asce = ldq_phys(origin + offs);
PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
__FUNCTION__, origin, offs, new_asce);
if (level != _ASCE_TYPE_SEGMENT) {
/* yet another region */
return mmu_translate_asce(env, vaddr, asc, new_asce, level - 4, raddr,
flags, rw);
}
/* PTE */
if (new_asce & _PAGE_INVALID) {
DPRINTF("%s: PTE=0x%" PRIx64 " invalid\n", __FUNCTION__, new_asce);
trigger_page_fault(env, vaddr, PGM_PAGE_TRANS, asc, rw);
return -1;
}
if (new_asce & _PAGE_RO) {
*flags &= ~PAGE_WRITE;
}
*raddr = new_asce & _ASCE_ORIGIN;
PTE_DPRINTF("%s: PTE=0x%" PRIx64 "\n", __FUNCTION__, new_asce);
return 0;
}
static int mmu_translate_asc(CPUState *env, target_ulong vaddr, uint64_t asc,
target_ulong *raddr, int *flags, int rw)
{
uint64_t asce = 0;
int level, new_level;
int r;
switch (asc) {
case PSW_ASC_PRIMARY:
PTE_DPRINTF("%s: asc=primary\n", __FUNCTION__);
asce = env->cregs[1];
break;
case PSW_ASC_SECONDARY:
PTE_DPRINTF("%s: asc=secondary\n", __FUNCTION__);
asce = env->cregs[7];
break;
case PSW_ASC_HOME:
PTE_DPRINTF("%s: asc=home\n", __FUNCTION__);
asce = env->cregs[13];
break;
}
switch (asce & _ASCE_TYPE_MASK) {
case _ASCE_TYPE_REGION1:
break;
case _ASCE_TYPE_REGION2:
if (vaddr & 0xffe0000000000000ULL) {
DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
" 0xffe0000000000000ULL\n", __FUNCTION__,
vaddr);
trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw);
return -1;
}
break;
case _ASCE_TYPE_REGION3:
if (vaddr & 0xfffffc0000000000ULL) {
DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
" 0xfffffc0000000000ULL\n", __FUNCTION__,
vaddr);
trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw);
return -1;
}
break;
case _ASCE_TYPE_SEGMENT:
if (vaddr & 0xffffffff80000000ULL) {
DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
" 0xffffffff80000000ULL\n", __FUNCTION__,
vaddr);
trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw);
return -1;
}
break;
}
/* fake level above current */
level = asce & _ASCE_TYPE_MASK;
new_level = level + 4;
asce = (asce & ~_ASCE_TYPE_MASK) | (new_level & _ASCE_TYPE_MASK);
r = mmu_translate_asce(env, vaddr, asc, asce, new_level, raddr, flags, rw);
if ((rw == 1) && !(*flags & PAGE_WRITE)) {
trigger_prot_fault(env, vaddr, asc);
return -1;
}
return r;
}
int mmu_translate(CPUState *env, target_ulong vaddr, int rw, uint64_t asc,
target_ulong *raddr, int *flags)
{
int r = -1;
*flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
vaddr &= TARGET_PAGE_MASK;
if (!(env->psw.mask & PSW_MASK_DAT)) {
*raddr = vaddr;
r = 0;
goto out;
}
switch (asc) {
case PSW_ASC_PRIMARY:
case PSW_ASC_HOME:
r = mmu_translate_asc(env, vaddr, asc, raddr, flags, rw);
break;
case PSW_ASC_SECONDARY:
/*
* Instruction: Primary
* Data: Secondary
*/
if (rw == 2) {
r = mmu_translate_asc(env, vaddr, PSW_ASC_PRIMARY, raddr, flags,
rw);
*flags &= ~(PAGE_READ | PAGE_WRITE);
} else {
r = mmu_translate_asc(env, vaddr, PSW_ASC_SECONDARY, raddr, flags,
rw);
*flags &= ~(PAGE_EXEC);
}
break;
case PSW_ASC_ACCREG:
default:
hw_error("guest switched to unknown asc mode\n");
break;
}
out:
/* Convert real address -> absolute address */
if (*raddr < 0x2000) {
*raddr = *raddr + env->psa;
}
return r;
}
int cpu_s390x_handle_mmu_fault (CPUState *env, target_ulong _vaddr, int rw,
int mmu_idx, int is_softmmu)
{
uint64_t asc = env->psw.mask & PSW_MASK_ASC;
target_ulong vaddr, raddr;
int prot;
DPRINTF("%s: address 0x%" PRIx64 " rw %d mmu_idx %d is_softmmu %d\n",
__FUNCTION__, _vaddr, rw, mmu_idx, is_softmmu);
_vaddr &= TARGET_PAGE_MASK;
vaddr = _vaddr;
/* 31-Bit mode */
if (!(env->psw.mask & PSW_MASK_64)) {
vaddr &= 0x7fffffff;
}
if (mmu_translate(env, vaddr, rw, asc, &raddr, &prot)) {
/* Translation ended in exception */
return 1;
}
/* check out of RAM access */
if (raddr > (ram_size + virtio_size)) {
DPRINTF("%s: aaddr %" PRIx64 " > ram_size %" PRIx64 "\n", __FUNCTION__,
(uint64_t)aaddr, (uint64_t)ram_size);
trigger_pgm_exception(env, PGM_ADDRESSING, ILC_LATER);
return 1;
}
DPRINTF("%s: set tlb %" PRIx64 " -> %" PRIx64 " (%x)\n", __FUNCTION__,
(uint64_t)vaddr, (uint64_t)raddr, prot);
tlb_set_page(env, _vaddr, raddr, prot,
mmu_idx, TARGET_PAGE_SIZE);
return 0;
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong vaddr)
{
target_ulong raddr;
int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
int old_exc = env->exception_index;
uint64_t asc = env->psw.mask & PSW_MASK_ASC;
/* 31-Bit mode */
if (!(env->psw.mask & PSW_MASK_64)) {
vaddr &= 0x7fffffff;
}
mmu_translate(env, vaddr, 2, asc, &raddr, &prot);
env->exception_index = old_exc;
return raddr;
}
void load_psw(CPUState *env, uint64_t mask, uint64_t addr)
{
if (mask & PSW_MASK_WAIT) {
env->halted = 1;
env->exception_index = EXCP_HLT;
if (!(mask & (PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK))) {
/* XXX disabled wait state - CPU is dead */
}
}
env->psw.addr = addr;
env->psw.mask = mask;
env->cc_op = (mask >> 13) & 3;
}
static uint64_t get_psw_mask(CPUState *env)
{
uint64_t r = env->psw.mask;
env->cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr);
r &= ~(3ULL << 13);
assert(!(env->cc_op & ~3));
r |= env->cc_op << 13;
return r;
}
static void do_svc_interrupt(CPUState *env)
{
uint64_t mask, addr;
LowCore *lowcore;
target_phys_addr_t len = TARGET_PAGE_SIZE;
lowcore = cpu_physical_memory_map(env->psa, &len, 1);
lowcore->svc_code = cpu_to_be16(env->int_svc_code);
lowcore->svc_ilc = cpu_to_be16(env->int_svc_ilc);
lowcore->svc_old_psw.mask = cpu_to_be64(get_psw_mask(env));
lowcore->svc_old_psw.addr = cpu_to_be64(env->psw.addr + (env->int_svc_ilc));
mask = be64_to_cpu(lowcore->svc_new_psw.mask);
addr = be64_to_cpu(lowcore->svc_new_psw.addr);
cpu_physical_memory_unmap(lowcore, len, 1, len);
load_psw(env, mask, addr);
}
static void do_program_interrupt(CPUState *env)
{
uint64_t mask, addr;
LowCore *lowcore;
target_phys_addr_t len = TARGET_PAGE_SIZE;
int ilc = env->int_pgm_ilc;
switch (ilc) {
case ILC_LATER:
ilc = get_ilc(ldub_code(env->psw.addr));
break;
case ILC_LATER_INC:
ilc = get_ilc(ldub_code(env->psw.addr));
env->psw.addr += ilc * 2;
break;
case ILC_LATER_INC_2:
ilc = get_ilc(ldub_code(env->psw.addr)) * 2;
env->psw.addr += ilc;
break;
}
qemu_log("%s: code=0x%x ilc=%d\n", __FUNCTION__, env->int_pgm_code, ilc);
lowcore = cpu_physical_memory_map(env->psa, &len, 1);
lowcore->pgm_ilc = cpu_to_be16(ilc);
lowcore->pgm_code = cpu_to_be16(env->int_pgm_code);
lowcore->program_old_psw.mask = cpu_to_be64(get_psw_mask(env));
lowcore->program_old_psw.addr = cpu_to_be64(env->psw.addr);
mask = be64_to_cpu(lowcore->program_new_psw.mask);
addr = be64_to_cpu(lowcore->program_new_psw.addr);
cpu_physical_memory_unmap(lowcore, len, 1, len);
DPRINTF("%s: %x %x %" PRIx64 " %" PRIx64 "\n", __FUNCTION__,
env->int_pgm_code, ilc, env->psw.mask,
env->psw.addr);
load_psw(env, mask, addr);
}
#define VIRTIO_SUBCODE_64 0x0D00
static void do_ext_interrupt(CPUState *env)
{
uint64_t mask, addr;
LowCore *lowcore;
target_phys_addr_t len = TARGET_PAGE_SIZE;
ExtQueue *q;
if (!(env->psw.mask & PSW_MASK_EXT)) {
cpu_abort(env, "Ext int w/o ext mask\n");
}
if (env->ext_index < 0 || env->ext_index > MAX_EXT_QUEUE) {
cpu_abort(env, "Ext queue overrun: %d\n", env->ext_index);
}
q = &env->ext_queue[env->ext_index];
lowcore = cpu_physical_memory_map(env->psa, &len, 1);
lowcore->ext_int_code = cpu_to_be16(q->code);
lowcore->ext_params = cpu_to_be32(q->param);
lowcore->ext_params2 = cpu_to_be64(q->param64);
lowcore->external_old_psw.mask = cpu_to_be64(get_psw_mask(env));
lowcore->external_old_psw.addr = cpu_to_be64(env->psw.addr);
lowcore->cpu_addr = cpu_to_be16(env->cpu_num | VIRTIO_SUBCODE_64);
mask = be64_to_cpu(lowcore->external_new_psw.mask);
addr = be64_to_cpu(lowcore->external_new_psw.addr);
cpu_physical_memory_unmap(lowcore, len, 1, len);
env->ext_index--;
if (env->ext_index == -1) {
env->pending_int &= ~INTERRUPT_EXT;
}
DPRINTF("%s: %" PRIx64 " %" PRIx64 "\n", __FUNCTION__,
env->psw.mask, env->psw.addr);
load_psw(env, mask, addr);
}
void do_interrupt (CPUState *env)
{
qemu_log("%s: %d at pc=%" PRIx64 "\n", __FUNCTION__, env->exception_index,
env->psw.addr);
/* handle external interrupts */
if ((env->psw.mask & PSW_MASK_EXT) &&
env->exception_index == -1) {
if (env->pending_int & INTERRUPT_EXT) {
/* code is already in env */
env->exception_index = EXCP_EXT;
} else if (env->pending_int & INTERRUPT_TOD) {
cpu_inject_ext(env, 0x1004, 0, 0);
env->exception_index = EXCP_EXT;
env->pending_int &= ~INTERRUPT_EXT;
env->pending_int &= ~INTERRUPT_TOD;
} else if (env->pending_int & INTERRUPT_CPUTIMER) {
cpu_inject_ext(env, 0x1005, 0, 0);
env->exception_index = EXCP_EXT;
env->pending_int &= ~INTERRUPT_EXT;
env->pending_int &= ~INTERRUPT_TOD;
}
}
switch (env->exception_index) {
case EXCP_PGM:
do_program_interrupt(env);
break;
case EXCP_SVC:
do_svc_interrupt(env);
break;
case EXCP_EXT:
do_ext_interrupt(env);
break;
}
env->exception_index = -1;
if (!env->pending_int) {
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
}
}
#endif /* CONFIG_USER_ONLY */