| /* |
| * QEMU KVM support |
| * |
| * Copyright IBM, Corp. 2008 |
| * Red Hat, Inc. 2008 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * Glauber Costa <gcosta@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| #include <stdarg.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu-common.h" |
| #include "qemu-barrier.h" |
| #include "sysemu.h" |
| #include "hw/hw.h" |
| #include "gdbstub.h" |
| #include "kvm.h" |
| #include "bswap.h" |
| |
| /* This check must be after config-host.h is included */ |
| #ifdef CONFIG_EVENTFD |
| #include <sys/eventfd.h> |
| #endif |
| |
| /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
| #define PAGE_SIZE TARGET_PAGE_SIZE |
| |
| //#define DEBUG_KVM |
| |
| #ifdef DEBUG_KVM |
| #define DPRINTF(fmt, ...) \ |
| do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| typedef struct KVMSlot |
| { |
| target_phys_addr_t start_addr; |
| ram_addr_t memory_size; |
| ram_addr_t phys_offset; |
| int slot; |
| int flags; |
| } KVMSlot; |
| |
| typedef struct kvm_dirty_log KVMDirtyLog; |
| |
| struct KVMState |
| { |
| KVMSlot slots[32]; |
| int fd; |
| int vmfd; |
| int coalesced_mmio; |
| #ifdef KVM_CAP_COALESCED_MMIO |
| struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
| #endif |
| int broken_set_mem_region; |
| int migration_log; |
| int vcpu_events; |
| int robust_singlestep; |
| int debugregs; |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| struct kvm_sw_breakpoint_head kvm_sw_breakpoints; |
| #endif |
| int irqchip_in_kernel; |
| int pit_in_kernel; |
| int xsave, xcrs; |
| int many_ioeventfds; |
| }; |
| |
| static KVMState *kvm_state; |
| |
| static KVMSlot *kvm_alloc_slot(KVMState *s) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| /* KVM private memory slots */ |
| if (i >= 8 && i < 12) |
| continue; |
| if (s->slots[i].memory_size == 0) |
| return &s->slots[i]; |
| } |
| |
| fprintf(stderr, "%s: no free slot available\n", __func__); |
| abort(); |
| } |
| |
| static KVMSlot *kvm_lookup_matching_slot(KVMState *s, |
| target_phys_addr_t start_addr, |
| target_phys_addr_t end_addr) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| KVMSlot *mem = &s->slots[i]; |
| |
| if (start_addr == mem->start_addr && |
| end_addr == mem->start_addr + mem->memory_size) { |
| return mem; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Find overlapping slot with lowest start address |
| */ |
| static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, |
| target_phys_addr_t start_addr, |
| target_phys_addr_t end_addr) |
| { |
| KVMSlot *found = NULL; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| KVMSlot *mem = &s->slots[i]; |
| |
| if (mem->memory_size == 0 || |
| (found && found->start_addr < mem->start_addr)) { |
| continue; |
| } |
| |
| if (end_addr > mem->start_addr && |
| start_addr < mem->start_addr + mem->memory_size) { |
| found = mem; |
| } |
| } |
| |
| return found; |
| } |
| |
| int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr, |
| target_phys_addr_t *phys_addr) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| KVMSlot *mem = &s->slots[i]; |
| |
| if (ram_addr >= mem->phys_offset && |
| ram_addr < mem->phys_offset + mem->memory_size) { |
| *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
| { |
| struct kvm_userspace_memory_region mem; |
| |
| mem.slot = slot->slot; |
| mem.guest_phys_addr = slot->start_addr; |
| mem.memory_size = slot->memory_size; |
| mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset); |
| mem.flags = slot->flags; |
| if (s->migration_log) { |
| mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; |
| } |
| return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
| } |
| |
| static void kvm_reset_vcpu(void *opaque) |
| { |
| CPUState *env = opaque; |
| |
| kvm_arch_reset_vcpu(env); |
| } |
| |
| int kvm_irqchip_in_kernel(void) |
| { |
| return kvm_state->irqchip_in_kernel; |
| } |
| |
| int kvm_pit_in_kernel(void) |
| { |
| return kvm_state->pit_in_kernel; |
| } |
| |
| |
| int kvm_init_vcpu(CPUState *env) |
| { |
| KVMState *s = kvm_state; |
| long mmap_size; |
| int ret; |
| |
| DPRINTF("kvm_init_vcpu\n"); |
| |
| ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
| if (ret < 0) { |
| DPRINTF("kvm_create_vcpu failed\n"); |
| goto err; |
| } |
| |
| env->kvm_fd = ret; |
| env->kvm_state = s; |
| |
| mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); |
| if (mmap_size < 0) { |
| DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
| goto err; |
| } |
| |
| env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
| env->kvm_fd, 0); |
| if (env->kvm_run == MAP_FAILED) { |
| ret = -errno; |
| DPRINTF("mmap'ing vcpu state failed\n"); |
| goto err; |
| } |
| |
| #ifdef KVM_CAP_COALESCED_MMIO |
| if (s->coalesced_mmio && !s->coalesced_mmio_ring) |
| s->coalesced_mmio_ring = (void *) env->kvm_run + |
| s->coalesced_mmio * PAGE_SIZE; |
| #endif |
| |
| ret = kvm_arch_init_vcpu(env); |
| if (ret == 0) { |
| qemu_register_reset(kvm_reset_vcpu, env); |
| kvm_arch_reset_vcpu(env); |
| } |
| err: |
| return ret; |
| } |
| |
| /* |
| * dirty pages logging control |
| */ |
| static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
| ram_addr_t size, int flags, int mask) |
| { |
| KVMState *s = kvm_state; |
| KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
| int old_flags; |
| |
| if (mem == NULL) { |
| fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
| TARGET_FMT_plx "\n", __func__, phys_addr, |
| (target_phys_addr_t)(phys_addr + size - 1)); |
| return -EINVAL; |
| } |
| |
| old_flags = mem->flags; |
| |
| flags = (mem->flags & ~mask) | flags; |
| mem->flags = flags; |
| |
| /* If nothing changed effectively, no need to issue ioctl */ |
| if (s->migration_log) { |
| flags |= KVM_MEM_LOG_DIRTY_PAGES; |
| } |
| if (flags == old_flags) { |
| return 0; |
| } |
| |
| return kvm_set_user_memory_region(s, mem); |
| } |
| |
| int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) |
| { |
| return kvm_dirty_pages_log_change(phys_addr, size, |
| KVM_MEM_LOG_DIRTY_PAGES, |
| KVM_MEM_LOG_DIRTY_PAGES); |
| } |
| |
| int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) |
| { |
| return kvm_dirty_pages_log_change(phys_addr, size, |
| 0, |
| KVM_MEM_LOG_DIRTY_PAGES); |
| } |
| |
| static int kvm_set_migration_log(int enable) |
| { |
| KVMState *s = kvm_state; |
| KVMSlot *mem; |
| int i, err; |
| |
| s->migration_log = enable; |
| |
| for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| mem = &s->slots[i]; |
| |
| if (!mem->memory_size) { |
| continue; |
| } |
| if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
| continue; |
| } |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| /* get kvm's dirty pages bitmap and update qemu's */ |
| static int kvm_get_dirty_pages_log_range(unsigned long start_addr, |
| unsigned long *bitmap, |
| unsigned long offset, |
| unsigned long mem_size) |
| { |
| unsigned int i, j; |
| unsigned long page_number, addr, addr1, c; |
| ram_addr_t ram_addr; |
| unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / |
| HOST_LONG_BITS; |
| |
| /* |
| * bitmap-traveling is faster than memory-traveling (for addr...) |
| * especially when most of the memory is not dirty. |
| */ |
| for (i = 0; i < len; i++) { |
| if (bitmap[i] != 0) { |
| c = leul_to_cpu(bitmap[i]); |
| do { |
| j = ffsl(c) - 1; |
| c &= ~(1ul << j); |
| page_number = i * HOST_LONG_BITS + j; |
| addr1 = page_number * TARGET_PAGE_SIZE; |
| addr = offset + addr1; |
| ram_addr = cpu_get_physical_page_desc(addr); |
| cpu_physical_memory_set_dirty(ram_addr); |
| } while (c != 0); |
| } |
| } |
| return 0; |
| } |
| |
| #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
| |
| /** |
| * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space |
| * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). |
| * This means all bits are set to dirty. |
| * |
| * @start_add: start of logged region. |
| * @end_addr: end of logged region. |
| */ |
| static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
| target_phys_addr_t end_addr) |
| { |
| KVMState *s = kvm_state; |
| unsigned long size, allocated_size = 0; |
| KVMDirtyLog d; |
| KVMSlot *mem; |
| int ret = 0; |
| |
| d.dirty_bitmap = NULL; |
| while (start_addr < end_addr) { |
| mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); |
| if (mem == NULL) { |
| break; |
| } |
| |
| size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8; |
| if (!d.dirty_bitmap) { |
| d.dirty_bitmap = qemu_malloc(size); |
| } else if (size > allocated_size) { |
| d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); |
| } |
| allocated_size = size; |
| memset(d.dirty_bitmap, 0, allocated_size); |
| |
| d.slot = mem->slot; |
| |
| if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
| DPRINTF("ioctl failed %d\n", errno); |
| ret = -1; |
| break; |
| } |
| |
| kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap, |
| mem->start_addr, mem->memory_size); |
| start_addr = mem->start_addr + mem->memory_size; |
| } |
| qemu_free(d.dirty_bitmap); |
| |
| return ret; |
| } |
| |
| int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
| { |
| int ret = -ENOSYS; |
| #ifdef KVM_CAP_COALESCED_MMIO |
| KVMState *s = kvm_state; |
| |
| if (s->coalesced_mmio) { |
| struct kvm_coalesced_mmio_zone zone; |
| |
| zone.addr = start; |
| zone.size = size; |
| |
| ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
| } |
| #endif |
| |
| return ret; |
| } |
| |
| int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
| { |
| int ret = -ENOSYS; |
| #ifdef KVM_CAP_COALESCED_MMIO |
| KVMState *s = kvm_state; |
| |
| if (s->coalesced_mmio) { |
| struct kvm_coalesced_mmio_zone zone; |
| |
| zone.addr = start; |
| zone.size = size; |
| |
| ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
| } |
| #endif |
| |
| return ret; |
| } |
| |
| int kvm_check_extension(KVMState *s, unsigned int extension) |
| { |
| int ret; |
| |
| ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); |
| if (ret < 0) { |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_check_many_ioeventfds(void) |
| { |
| /* Userspace can use ioeventfd for io notification. This requires a host |
| * that supports eventfd(2) and an I/O thread; since eventfd does not |
| * support SIGIO it cannot interrupt the vcpu. |
| * |
| * Older kernels have a 6 device limit on the KVM io bus. Find out so we |
| * can avoid creating too many ioeventfds. |
| */ |
| #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD) |
| int ioeventfds[7]; |
| int i, ret = 0; |
| for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { |
| ioeventfds[i] = eventfd(0, EFD_CLOEXEC); |
| if (ioeventfds[i] < 0) { |
| break; |
| } |
| ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); |
| if (ret < 0) { |
| close(ioeventfds[i]); |
| break; |
| } |
| } |
| |
| /* Decide whether many devices are supported or not */ |
| ret = i == ARRAY_SIZE(ioeventfds); |
| |
| while (i-- > 0) { |
| kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); |
| close(ioeventfds[i]); |
| } |
| return ret; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static void kvm_set_phys_mem(target_phys_addr_t start_addr, |
| ram_addr_t size, |
| ram_addr_t phys_offset) |
| { |
| KVMState *s = kvm_state; |
| ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; |
| KVMSlot *mem, old; |
| int err; |
| |
| /* kvm works in page size chunks, but the function may be called |
| with sub-page size and unaligned start address. */ |
| size = TARGET_PAGE_ALIGN(size); |
| start_addr = TARGET_PAGE_ALIGN(start_addr); |
| |
| /* KVM does not support read-only slots */ |
| phys_offset &= ~IO_MEM_ROM; |
| |
| while (1) { |
| mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); |
| if (!mem) { |
| break; |
| } |
| |
| if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && |
| (start_addr + size <= mem->start_addr + mem->memory_size) && |
| (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { |
| /* The new slot fits into the existing one and comes with |
| * identical parameters - nothing to be done. */ |
| return; |
| } |
| |
| old = *mem; |
| |
| /* unregister the overlapping slot */ |
| mem->memory_size = 0; |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", |
| __func__, strerror(-err)); |
| abort(); |
| } |
| |
| /* Workaround for older KVM versions: we can't join slots, even not by |
| * unregistering the previous ones and then registering the larger |
| * slot. We have to maintain the existing fragmentation. Sigh. |
| * |
| * This workaround assumes that the new slot starts at the same |
| * address as the first existing one. If not or if some overlapping |
| * slot comes around later, we will fail (not seen in practice so far) |
| * - and actually require a recent KVM version. */ |
| if (s->broken_set_mem_region && |
| old.start_addr == start_addr && old.memory_size < size && |
| flags < IO_MEM_UNASSIGNED) { |
| mem = kvm_alloc_slot(s); |
| mem->memory_size = old.memory_size; |
| mem->start_addr = old.start_addr; |
| mem->phys_offset = old.phys_offset; |
| mem->flags = 0; |
| |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| fprintf(stderr, "%s: error updating slot: %s\n", __func__, |
| strerror(-err)); |
| abort(); |
| } |
| |
| start_addr += old.memory_size; |
| phys_offset += old.memory_size; |
| size -= old.memory_size; |
| continue; |
| } |
| |
| /* register prefix slot */ |
| if (old.start_addr < start_addr) { |
| mem = kvm_alloc_slot(s); |
| mem->memory_size = start_addr - old.start_addr; |
| mem->start_addr = old.start_addr; |
| mem->phys_offset = old.phys_offset; |
| mem->flags = 0; |
| |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| fprintf(stderr, "%s: error registering prefix slot: %s\n", |
| __func__, strerror(-err)); |
| abort(); |
| } |
| } |
| |
| /* register suffix slot */ |
| if (old.start_addr + old.memory_size > start_addr + size) { |
| ram_addr_t size_delta; |
| |
| mem = kvm_alloc_slot(s); |
| mem->start_addr = start_addr + size; |
| size_delta = mem->start_addr - old.start_addr; |
| mem->memory_size = old.memory_size - size_delta; |
| mem->phys_offset = old.phys_offset + size_delta; |
| mem->flags = 0; |
| |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| fprintf(stderr, "%s: error registering suffix slot: %s\n", |
| __func__, strerror(-err)); |
| abort(); |
| } |
| } |
| } |
| |
| /* in case the KVM bug workaround already "consumed" the new slot */ |
| if (!size) |
| return; |
| |
| /* KVM does not need to know about this memory */ |
| if (flags >= IO_MEM_UNASSIGNED) |
| return; |
| |
| mem = kvm_alloc_slot(s); |
| mem->memory_size = size; |
| mem->start_addr = start_addr; |
| mem->phys_offset = phys_offset; |
| mem->flags = 0; |
| |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| fprintf(stderr, "%s: error registering slot: %s\n", __func__, |
| strerror(-err)); |
| abort(); |
| } |
| } |
| |
| static void kvm_client_set_memory(struct CPUPhysMemoryClient *client, |
| target_phys_addr_t start_addr, |
| ram_addr_t size, |
| ram_addr_t phys_offset) |
| { |
| kvm_set_phys_mem(start_addr, size, phys_offset); |
| } |
| |
| static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client, |
| target_phys_addr_t start_addr, |
| target_phys_addr_t end_addr) |
| { |
| return kvm_physical_sync_dirty_bitmap(start_addr, end_addr); |
| } |
| |
| static int kvm_client_migration_log(struct CPUPhysMemoryClient *client, |
| int enable) |
| { |
| return kvm_set_migration_log(enable); |
| } |
| |
| static CPUPhysMemoryClient kvm_cpu_phys_memory_client = { |
| .set_memory = kvm_client_set_memory, |
| .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap, |
| .migration_log = kvm_client_migration_log, |
| }; |
| |
| int kvm_init(int smp_cpus) |
| { |
| static const char upgrade_note[] = |
| "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" |
| "(see http://sourceforge.net/projects/kvm).\n"; |
| KVMState *s; |
| int ret; |
| int i; |
| |
| s = qemu_mallocz(sizeof(KVMState)); |
| |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| QTAILQ_INIT(&s->kvm_sw_breakpoints); |
| #endif |
| for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
| s->slots[i].slot = i; |
| |
| s->vmfd = -1; |
| s->fd = qemu_open("/dev/kvm", O_RDWR); |
| if (s->fd == -1) { |
| fprintf(stderr, "Could not access KVM kernel module: %m\n"); |
| ret = -errno; |
| goto err; |
| } |
| |
| ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); |
| if (ret < KVM_API_VERSION) { |
| if (ret > 0) |
| ret = -EINVAL; |
| fprintf(stderr, "kvm version too old\n"); |
| goto err; |
| } |
| |
| if (ret > KVM_API_VERSION) { |
| ret = -EINVAL; |
| fprintf(stderr, "kvm version not supported\n"); |
| goto err; |
| } |
| |
| s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
| if (s->vmfd < 0) { |
| #ifdef TARGET_S390X |
| fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " |
| "your host kernel command line\n"); |
| #endif |
| goto err; |
| } |
| |
| /* initially, KVM allocated its own memory and we had to jump through |
| * hooks to make phys_ram_base point to this. Modern versions of KVM |
| * just use a user allocated buffer so we can use regular pages |
| * unmodified. Make sure we have a sufficiently modern version of KVM. |
| */ |
| if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) { |
| ret = -EINVAL; |
| fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s", |
| upgrade_note); |
| goto err; |
| } |
| |
| /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
| * destroyed properly. Since we rely on this capability, refuse to work |
| * with any kernel without this capability. */ |
| if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) { |
| ret = -EINVAL; |
| |
| fprintf(stderr, |
| "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s", |
| upgrade_note); |
| goto err; |
| } |
| |
| s->coalesced_mmio = 0; |
| #ifdef KVM_CAP_COALESCED_MMIO |
| s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
| s->coalesced_mmio_ring = NULL; |
| #endif |
| |
| s->broken_set_mem_region = 1; |
| #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS |
| ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
| if (ret > 0) { |
| s->broken_set_mem_region = 0; |
| } |
| #endif |
| |
| s->vcpu_events = 0; |
| #ifdef KVM_CAP_VCPU_EVENTS |
| s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); |
| #endif |
| |
| s->robust_singlestep = 0; |
| #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP |
| s->robust_singlestep = |
| kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); |
| #endif |
| |
| s->debugregs = 0; |
| #ifdef KVM_CAP_DEBUGREGS |
| s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); |
| #endif |
| |
| s->xsave = 0; |
| #ifdef KVM_CAP_XSAVE |
| s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); |
| #endif |
| |
| s->xcrs = 0; |
| #ifdef KVM_CAP_XCRS |
| s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); |
| #endif |
| |
| ret = kvm_arch_init(s, smp_cpus); |
| if (ret < 0) |
| goto err; |
| |
| kvm_state = s; |
| cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client); |
| |
| s->many_ioeventfds = kvm_check_many_ioeventfds(); |
| |
| return 0; |
| |
| err: |
| if (s) { |
| if (s->vmfd != -1) |
| close(s->vmfd); |
| if (s->fd != -1) |
| close(s->fd); |
| } |
| qemu_free(s); |
| |
| return ret; |
| } |
| |
| static int kvm_handle_io(uint16_t port, void *data, int direction, int size, |
| uint32_t count) |
| { |
| int i; |
| uint8_t *ptr = data; |
| |
| for (i = 0; i < count; i++) { |
| if (direction == KVM_EXIT_IO_IN) { |
| switch (size) { |
| case 1: |
| stb_p(ptr, cpu_inb(port)); |
| break; |
| case 2: |
| stw_p(ptr, cpu_inw(port)); |
| break; |
| case 4: |
| stl_p(ptr, cpu_inl(port)); |
| break; |
| } |
| } else { |
| switch (size) { |
| case 1: |
| cpu_outb(port, ldub_p(ptr)); |
| break; |
| case 2: |
| cpu_outw(port, lduw_p(ptr)); |
| break; |
| case 4: |
| cpu_outl(port, ldl_p(ptr)); |
| break; |
| } |
| } |
| |
| ptr += size; |
| } |
| |
| return 1; |
| } |
| |
| #ifdef KVM_CAP_INTERNAL_ERROR_DATA |
| static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run) |
| { |
| |
| if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
| int i; |
| |
| fprintf(stderr, "KVM internal error. Suberror: %d\n", |
| run->internal.suberror); |
| |
| for (i = 0; i < run->internal.ndata; ++i) { |
| fprintf(stderr, "extra data[%d]: %"PRIx64"\n", |
| i, (uint64_t)run->internal.data[i]); |
| } |
| } |
| cpu_dump_state(env, stderr, fprintf, 0); |
| if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
| fprintf(stderr, "emulation failure\n"); |
| if (!kvm_arch_stop_on_emulation_error(env)) |
| return; |
| } |
| /* FIXME: Should trigger a qmp message to let management know |
| * something went wrong. |
| */ |
| vm_stop(0); |
| } |
| #endif |
| |
| void kvm_flush_coalesced_mmio_buffer(void) |
| { |
| #ifdef KVM_CAP_COALESCED_MMIO |
| KVMState *s = kvm_state; |
| if (s->coalesced_mmio_ring) { |
| struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; |
| while (ring->first != ring->last) { |
| struct kvm_coalesced_mmio *ent; |
| |
| ent = &ring->coalesced_mmio[ring->first]; |
| |
| cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); |
| smp_wmb(); |
| ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
| } |
| } |
| #endif |
| } |
| |
| static void do_kvm_cpu_synchronize_state(void *_env) |
| { |
| CPUState *env = _env; |
| |
| if (!env->kvm_vcpu_dirty) { |
| kvm_arch_get_registers(env); |
| env->kvm_vcpu_dirty = 1; |
| } |
| } |
| |
| void kvm_cpu_synchronize_state(CPUState *env) |
| { |
| if (!env->kvm_vcpu_dirty) |
| run_on_cpu(env, do_kvm_cpu_synchronize_state, env); |
| } |
| |
| void kvm_cpu_synchronize_post_reset(CPUState *env) |
| { |
| kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); |
| env->kvm_vcpu_dirty = 0; |
| } |
| |
| void kvm_cpu_synchronize_post_init(CPUState *env) |
| { |
| kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); |
| env->kvm_vcpu_dirty = 0; |
| } |
| |
| int kvm_cpu_exec(CPUState *env) |
| { |
| struct kvm_run *run = env->kvm_run; |
| int ret; |
| |
| DPRINTF("kvm_cpu_exec()\n"); |
| |
| do { |
| #ifndef CONFIG_IOTHREAD |
| if (env->exit_request) { |
| DPRINTF("interrupt exit requested\n"); |
| ret = 0; |
| break; |
| } |
| #endif |
| |
| if (kvm_arch_process_irqchip_events(env)) { |
| ret = 0; |
| break; |
| } |
| |
| if (env->kvm_vcpu_dirty) { |
| kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); |
| env->kvm_vcpu_dirty = 0; |
| } |
| |
| kvm_arch_pre_run(env, run); |
| cpu_single_env = NULL; |
| qemu_mutex_unlock_iothread(); |
| ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
| qemu_mutex_lock_iothread(); |
| cpu_single_env = env; |
| kvm_arch_post_run(env, run); |
| |
| if (ret == -EINTR || ret == -EAGAIN) { |
| cpu_exit(env); |
| DPRINTF("io window exit\n"); |
| ret = 0; |
| break; |
| } |
| |
| if (ret < 0) { |
| DPRINTF("kvm run failed %s\n", strerror(-ret)); |
| abort(); |
| } |
| |
| kvm_flush_coalesced_mmio_buffer(); |
| |
| ret = 0; /* exit loop */ |
| switch (run->exit_reason) { |
| case KVM_EXIT_IO: |
| DPRINTF("handle_io\n"); |
| ret = kvm_handle_io(run->io.port, |
| (uint8_t *)run + run->io.data_offset, |
| run->io.direction, |
| run->io.size, |
| run->io.count); |
| break; |
| case KVM_EXIT_MMIO: |
| DPRINTF("handle_mmio\n"); |
| cpu_physical_memory_rw(run->mmio.phys_addr, |
| run->mmio.data, |
| run->mmio.len, |
| run->mmio.is_write); |
| ret = 1; |
| break; |
| case KVM_EXIT_IRQ_WINDOW_OPEN: |
| DPRINTF("irq_window_open\n"); |
| break; |
| case KVM_EXIT_SHUTDOWN: |
| DPRINTF("shutdown\n"); |
| qemu_system_reset_request(); |
| ret = 1; |
| break; |
| case KVM_EXIT_UNKNOWN: |
| DPRINTF("kvm_exit_unknown\n"); |
| break; |
| case KVM_EXIT_FAIL_ENTRY: |
| DPRINTF("kvm_exit_fail_entry\n"); |
| break; |
| case KVM_EXIT_EXCEPTION: |
| DPRINTF("kvm_exit_exception\n"); |
| break; |
| #ifdef KVM_CAP_INTERNAL_ERROR_DATA |
| case KVM_EXIT_INTERNAL_ERROR: |
| kvm_handle_internal_error(env, run); |
| break; |
| #endif |
| case KVM_EXIT_DEBUG: |
| DPRINTF("kvm_exit_debug\n"); |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| if (kvm_arch_debug(&run->debug.arch)) { |
| env->exception_index = EXCP_DEBUG; |
| return 0; |
| } |
| /* re-enter, this exception was guest-internal */ |
| ret = 1; |
| #endif /* KVM_CAP_SET_GUEST_DEBUG */ |
| break; |
| default: |
| DPRINTF("kvm_arch_handle_exit\n"); |
| ret = kvm_arch_handle_exit(env, run); |
| break; |
| } |
| } while (ret > 0); |
| |
| if (env->exit_request) { |
| env->exit_request = 0; |
| env->exception_index = EXCP_INTERRUPT; |
| } |
| |
| return ret; |
| } |
| |
| int kvm_ioctl(KVMState *s, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| ret = ioctl(s->fd, type, arg); |
| if (ret == -1) |
| ret = -errno; |
| |
| return ret; |
| } |
| |
| int kvm_vm_ioctl(KVMState *s, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| ret = ioctl(s->vmfd, type, arg); |
| if (ret == -1) |
| ret = -errno; |
| |
| return ret; |
| } |
| |
| int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| ret = ioctl(env->kvm_fd, type, arg); |
| if (ret == -1) |
| ret = -errno; |
| |
| return ret; |
| } |
| |
| int kvm_has_sync_mmu(void) |
| { |
| #ifdef KVM_CAP_SYNC_MMU |
| KVMState *s = kvm_state; |
| |
| return kvm_check_extension(s, KVM_CAP_SYNC_MMU); |
| #else |
| return 0; |
| #endif |
| } |
| |
| int kvm_has_vcpu_events(void) |
| { |
| return kvm_state->vcpu_events; |
| } |
| |
| int kvm_has_robust_singlestep(void) |
| { |
| return kvm_state->robust_singlestep; |
| } |
| |
| int kvm_has_debugregs(void) |
| { |
| return kvm_state->debugregs; |
| } |
| |
| int kvm_has_xsave(void) |
| { |
| return kvm_state->xsave; |
| } |
| |
| int kvm_has_xcrs(void) |
| { |
| return kvm_state->xcrs; |
| } |
| |
| int kvm_has_many_ioeventfds(void) |
| { |
| if (!kvm_enabled()) { |
| return 0; |
| } |
| return kvm_state->many_ioeventfds; |
| } |
| |
| void kvm_setup_guest_memory(void *start, size_t size) |
| { |
| if (!kvm_has_sync_mmu()) { |
| int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
| |
| if (ret) { |
| perror("qemu_madvise"); |
| fprintf(stderr, |
| "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); |
| exit(1); |
| } |
| } |
| } |
| |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, |
| target_ulong pc) |
| { |
| struct kvm_sw_breakpoint *bp; |
| |
| QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
| if (bp->pc == pc) |
| return bp; |
| } |
| return NULL; |
| } |
| |
| int kvm_sw_breakpoints_active(CPUState *env) |
| { |
| return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
| } |
| |
| struct kvm_set_guest_debug_data { |
| struct kvm_guest_debug dbg; |
| CPUState *env; |
| int err; |
| }; |
| |
| static void kvm_invoke_set_guest_debug(void *data) |
| { |
| struct kvm_set_guest_debug_data *dbg_data = data; |
| CPUState *env = dbg_data->env; |
| |
| dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); |
| } |
| |
| int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
| { |
| struct kvm_set_guest_debug_data data; |
| |
| data.dbg.control = reinject_trap; |
| |
| if (env->singlestep_enabled) { |
| data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
| } |
| kvm_arch_update_guest_debug(env, &data.dbg); |
| data.env = env; |
| |
| run_on_cpu(env, kvm_invoke_set_guest_debug, &data); |
| return data.err; |
| } |
| |
| int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, |
| target_ulong len, int type) |
| { |
| struct kvm_sw_breakpoint *bp; |
| CPUState *env; |
| int err; |
| |
| if (type == GDB_BREAKPOINT_SW) { |
| bp = kvm_find_sw_breakpoint(current_env, addr); |
| if (bp) { |
| bp->use_count++; |
| return 0; |
| } |
| |
| bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); |
| if (!bp) |
| return -ENOMEM; |
| |
| bp->pc = addr; |
| bp->use_count = 1; |
| err = kvm_arch_insert_sw_breakpoint(current_env, bp); |
| if (err) { |
| free(bp); |
| return err; |
| } |
| |
| QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
| bp, entry); |
| } else { |
| err = kvm_arch_insert_hw_breakpoint(addr, len, type); |
| if (err) |
| return err; |
| } |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| err = kvm_update_guest_debug(env, 0); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, |
| target_ulong len, int type) |
| { |
| struct kvm_sw_breakpoint *bp; |
| CPUState *env; |
| int err; |
| |
| if (type == GDB_BREAKPOINT_SW) { |
| bp = kvm_find_sw_breakpoint(current_env, addr); |
| if (!bp) |
| return -ENOENT; |
| |
| if (bp->use_count > 1) { |
| bp->use_count--; |
| return 0; |
| } |
| |
| err = kvm_arch_remove_sw_breakpoint(current_env, bp); |
| if (err) |
| return err; |
| |
| QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
| qemu_free(bp); |
| } else { |
| err = kvm_arch_remove_hw_breakpoint(addr, len, type); |
| if (err) |
| return err; |
| } |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| err = kvm_update_guest_debug(env, 0); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| void kvm_remove_all_breakpoints(CPUState *current_env) |
| { |
| struct kvm_sw_breakpoint *bp, *next; |
| KVMState *s = current_env->kvm_state; |
| CPUState *env; |
| |
| QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
| if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
| /* Try harder to find a CPU that currently sees the breakpoint. */ |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) |
| break; |
| } |
| } |
| } |
| kvm_arch_remove_all_hw_breakpoints(); |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) |
| kvm_update_guest_debug(env, 0); |
| } |
| |
| #else /* !KVM_CAP_SET_GUEST_DEBUG */ |
| |
| int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, |
| target_ulong len, int type) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, |
| target_ulong len, int type) |
| { |
| return -EINVAL; |
| } |
| |
| void kvm_remove_all_breakpoints(CPUState *current_env) |
| { |
| } |
| #endif /* !KVM_CAP_SET_GUEST_DEBUG */ |
| |
| int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) |
| { |
| struct kvm_signal_mask *sigmask; |
| int r; |
| |
| if (!sigset) |
| return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); |
| |
| sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
| |
| sigmask->len = 8; |
| memcpy(sigmask->sigset, sigset, sizeof(*sigset)); |
| r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); |
| free(sigmask); |
| |
| return r; |
| } |
| |
| int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign) |
| { |
| #ifdef KVM_IOEVENTFD |
| int ret; |
| struct kvm_ioeventfd iofd; |
| |
| iofd.datamatch = val; |
| iofd.addr = addr; |
| iofd.len = 4; |
| iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; |
| iofd.fd = fd; |
| |
| if (!kvm_enabled()) { |
| return -ENOSYS; |
| } |
| |
| if (!assign) { |
| iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
| } |
| |
| ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); |
| |
| if (ret < 0) { |
| return -errno; |
| } |
| |
| return 0; |
| #else |
| return -ENOSYS; |
| #endif |
| } |
| |
| int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) |
| { |
| #ifdef KVM_IOEVENTFD |
| struct kvm_ioeventfd kick = { |
| .datamatch = val, |
| .addr = addr, |
| .len = 2, |
| .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, |
| .fd = fd, |
| }; |
| int r; |
| if (!kvm_enabled()) |
| return -ENOSYS; |
| if (!assign) |
| kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
| r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
| if (r < 0) |
| return r; |
| return 0; |
| #else |
| return -ENOSYS; |
| #endif |
| } |