| /* |
| * Arm IoT Kit |
| * |
| * Copyright (c) 2018 Linaro Limited |
| * Written by Peter Maydell |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 or |
| * (at your option) any later version. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qapi/error.h" |
| #include "trace.h" |
| #include "hw/sysbus.h" |
| #include "hw/registerfields.h" |
| #include "hw/arm/iotkit.h" |
| #include "hw/misc/unimp.h" |
| #include "hw/arm/arm.h" |
| |
| /* Create an alias region of @size bytes starting at @base |
| * which mirrors the memory starting at @orig. |
| */ |
| static void make_alias(IoTKit *s, MemoryRegion *mr, const char *name, |
| hwaddr base, hwaddr size, hwaddr orig) |
| { |
| memory_region_init_alias(mr, NULL, name, &s->container, orig, size); |
| /* The alias is even lower priority than unimplemented_device regions */ |
| memory_region_add_subregion_overlap(&s->container, base, mr, -1500); |
| } |
| |
| static void init_sysbus_child(Object *parent, const char *childname, |
| void *child, size_t childsize, |
| const char *childtype) |
| { |
| object_initialize(child, childsize, childtype); |
| object_property_add_child(parent, childname, OBJECT(child), &error_abort); |
| qdev_set_parent_bus(DEVICE(child), sysbus_get_default()); |
| } |
| |
| static void irq_status_forwarder(void *opaque, int n, int level) |
| { |
| qemu_irq destirq = opaque; |
| |
| qemu_set_irq(destirq, level); |
| } |
| |
| static void nsccfg_handler(void *opaque, int n, int level) |
| { |
| IoTKit *s = IOTKIT(opaque); |
| |
| s->nsccfg = level; |
| } |
| |
| static void iotkit_forward_ppc(IoTKit *s, const char *ppcname, int ppcnum) |
| { |
| /* Each of the 4 AHB and 4 APB PPCs that might be present in a |
| * system using the IoTKit has a collection of control lines which |
| * are provided by the security controller and which we want to |
| * expose as control lines on the IoTKit device itself, so the |
| * code using the IoTKit can wire them up to the PPCs. |
| */ |
| SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; |
| DeviceState *iotkitdev = DEVICE(s); |
| DeviceState *dev_secctl = DEVICE(&s->secctl); |
| DeviceState *dev_splitter = DEVICE(splitter); |
| char *name; |
| |
| name = g_strdup_printf("%s_nonsec", ppcname); |
| qdev_pass_gpios(dev_secctl, iotkitdev, name); |
| g_free(name); |
| name = g_strdup_printf("%s_ap", ppcname); |
| qdev_pass_gpios(dev_secctl, iotkitdev, name); |
| g_free(name); |
| name = g_strdup_printf("%s_irq_enable", ppcname); |
| qdev_pass_gpios(dev_secctl, iotkitdev, name); |
| g_free(name); |
| name = g_strdup_printf("%s_irq_clear", ppcname); |
| qdev_pass_gpios(dev_secctl, iotkitdev, name); |
| g_free(name); |
| |
| /* irq_status is a little more tricky, because we need to |
| * split it so we can send it both to the security controller |
| * and to our OR gate for the NVIC interrupt line. |
| * Connect up the splitter's outputs, and create a GPIO input |
| * which will pass the line state to the input splitter. |
| */ |
| name = g_strdup_printf("%s_irq_status", ppcname); |
| qdev_connect_gpio_out(dev_splitter, 0, |
| qdev_get_gpio_in_named(dev_secctl, |
| name, 0)); |
| qdev_connect_gpio_out(dev_splitter, 1, |
| qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); |
| s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); |
| qdev_init_gpio_in_named_with_opaque(iotkitdev, irq_status_forwarder, |
| s->irq_status_in[ppcnum], name, 1); |
| g_free(name); |
| } |
| |
| static void iotkit_forward_sec_resp_cfg(IoTKit *s) |
| { |
| /* Forward the 3rd output from the splitter device as a |
| * named GPIO output of the iotkit object. |
| */ |
| DeviceState *dev = DEVICE(s); |
| DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); |
| |
| qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); |
| s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, |
| s->sec_resp_cfg, 1); |
| qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); |
| } |
| |
| static void iotkit_init(Object *obj) |
| { |
| IoTKit *s = IOTKIT(obj); |
| int i; |
| |
| memory_region_init(&s->container, obj, "iotkit-container", UINT64_MAX); |
| |
| init_sysbus_child(obj, "armv7m", &s->armv7m, sizeof(s->armv7m), |
| TYPE_ARMV7M); |
| qdev_prop_set_string(DEVICE(&s->armv7m), "cpu-type", |
| ARM_CPU_TYPE_NAME("cortex-m33")); |
| |
| init_sysbus_child(obj, "secctl", &s->secctl, sizeof(s->secctl), |
| TYPE_IOTKIT_SECCTL); |
| init_sysbus_child(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0), |
| TYPE_TZ_PPC); |
| init_sysbus_child(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1), |
| TYPE_TZ_PPC); |
| init_sysbus_child(obj, "timer0", &s->timer0, sizeof(s->timer0), |
| TYPE_CMSDK_APB_TIMER); |
| init_sysbus_child(obj, "timer1", &s->timer1, sizeof(s->timer1), |
| TYPE_CMSDK_APB_TIMER); |
| init_sysbus_child(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer), |
| TYPE_UNIMPLEMENTED_DEVICE); |
| object_initialize(&s->ppc_irq_orgate, sizeof(s->ppc_irq_orgate), |
| TYPE_OR_IRQ); |
| object_property_add_child(obj, "ppc-irq-orgate", |
| OBJECT(&s->ppc_irq_orgate), &error_abort); |
| object_initialize(&s->sec_resp_splitter, sizeof(s->sec_resp_splitter), |
| TYPE_SPLIT_IRQ); |
| object_property_add_child(obj, "sec-resp-splitter", |
| OBJECT(&s->sec_resp_splitter), &error_abort); |
| for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { |
| char *name = g_strdup_printf("ppc-irq-splitter-%d", i); |
| SplitIRQ *splitter = &s->ppc_irq_splitter[i]; |
| |
| object_initialize(splitter, sizeof(*splitter), TYPE_SPLIT_IRQ); |
| object_property_add_child(obj, name, OBJECT(splitter), &error_abort); |
| } |
| init_sysbus_child(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer), |
| TYPE_UNIMPLEMENTED_DEVICE); |
| } |
| |
| static void iotkit_exp_irq(void *opaque, int n, int level) |
| { |
| IoTKit *s = IOTKIT(opaque); |
| |
| qemu_set_irq(s->exp_irqs[n], level); |
| } |
| |
| static void iotkit_realize(DeviceState *dev, Error **errp) |
| { |
| IoTKit *s = IOTKIT(dev); |
| int i; |
| MemoryRegion *mr; |
| Error *err = NULL; |
| SysBusDevice *sbd_apb_ppc0; |
| SysBusDevice *sbd_secctl; |
| DeviceState *dev_apb_ppc0; |
| DeviceState *dev_apb_ppc1; |
| DeviceState *dev_secctl; |
| DeviceState *dev_splitter; |
| |
| if (!s->board_memory) { |
| error_setg(errp, "memory property was not set"); |
| return; |
| } |
| |
| if (!s->mainclk_frq) { |
| error_setg(errp, "MAINCLK property was not set"); |
| return; |
| } |
| |
| /* Handling of which devices should be available only to secure |
| * code is usually done differently for M profile than for A profile. |
| * Instead of putting some devices only into the secure address space, |
| * devices exist in both address spaces but with hard-wired security |
| * permissions that will cause the CPU to fault for non-secure accesses. |
| * |
| * The IoTKit has an IDAU (Implementation Defined Access Unit), |
| * which specifies hard-wired security permissions for different |
| * areas of the physical address space. For the IoTKit IDAU, the |
| * top 4 bits of the physical address are the IDAU region ID, and |
| * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS |
| * region, otherwise it is an S region. |
| * |
| * The various devices and RAMs are generally all mapped twice, |
| * once into a region that the IDAU defines as secure and once |
| * into a non-secure region. They sit behind either a Memory |
| * Protection Controller (for RAM) or a Peripheral Protection |
| * Controller (for devices), which allow a more fine grained |
| * configuration of whether non-secure accesses are permitted. |
| * |
| * (The other place that guest software can configure security |
| * permissions is in the architected SAU (Security Attribution |
| * Unit), which is entirely inside the CPU. The IDAU can upgrade |
| * the security attributes for a region to more restrictive than |
| * the SAU specifies, but cannot downgrade them.) |
| * |
| * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff |
| * 0x20000000..0x2007ffff 32KB FPGA block RAM |
| * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff |
| * 0x40000000..0x4000ffff base peripheral region 1 |
| * 0x40010000..0x4001ffff CPU peripherals (none for IoTKit) |
| * 0x40020000..0x4002ffff system control element peripherals |
| * 0x40080000..0x400fffff base peripheral region 2 |
| * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff |
| */ |
| |
| memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1); |
| |
| qdev_prop_set_uint32(DEVICE(&s->armv7m), "num-irq", s->exp_numirq + 32); |
| /* In real hardware the initial Secure VTOR is set from the INITSVTOR0 |
| * register in the IoT Kit System Control Register block, and the |
| * initial value of that is in turn specifiable by the FPGA that |
| * instantiates the IoT Kit. In QEMU we don't implement this wrinkle, |
| * and simply set the CPU's init-svtor to the IoT Kit default value. |
| */ |
| qdev_prop_set_uint32(DEVICE(&s->armv7m), "init-svtor", 0x10000000); |
| object_property_set_link(OBJECT(&s->armv7m), OBJECT(&s->container), |
| "memory", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_link(OBJECT(&s->armv7m), OBJECT(s), "idau", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| /* Connect our EXP_IRQ GPIOs to the NVIC's lines 32 and up. */ |
| s->exp_irqs = g_new(qemu_irq, s->exp_numirq); |
| for (i = 0; i < s->exp_numirq; i++) { |
| s->exp_irqs[i] = qdev_get_gpio_in(DEVICE(&s->armv7m), i + 32); |
| } |
| qdev_init_gpio_in_named(dev, iotkit_exp_irq, "EXP_IRQ", s->exp_numirq); |
| |
| /* Set up the big aliases first */ |
| make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000); |
| make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000); |
| /* The 0x50000000..0x5fffffff region is not a pure alias: it has |
| * a few extra devices that only appear there (generally the |
| * control interfaces for the protection controllers). |
| * We implement this by mapping those devices over the top of this |
| * alias MR at a higher priority. |
| */ |
| make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000); |
| |
| /* This RAM should be behind a Memory Protection Controller, but we |
| * don't implement that yet. |
| */ |
| memory_region_init_ram(&s->sram0, NULL, "iotkit.sram0", 0x00008000, &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| memory_region_add_subregion(&s->container, 0x20000000, &s->sram0); |
| |
| /* Security controller */ |
| object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sbd_secctl = SYS_BUS_DEVICE(&s->secctl); |
| dev_secctl = DEVICE(&s->secctl); |
| sysbus_mmio_map(sbd_secctl, 0, 0x50080000); |
| sysbus_mmio_map(sbd_secctl, 1, 0x40080000); |
| |
| s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); |
| qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); |
| |
| /* The sec_resp_cfg output from the security controller must be split into |
| * multiple lines, one for each of the PPCs within the IoTKit and one |
| * that will be an output from the IoTKit to the system. |
| */ |
| object_property_set_int(OBJECT(&s->sec_resp_splitter), 3, |
| "num-lines", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(OBJECT(&s->sec_resp_splitter), true, |
| "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| dev_splitter = DEVICE(&s->sec_resp_splitter); |
| qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, |
| qdev_get_gpio_in(dev_splitter, 0)); |
| |
| /* Devices behind APB PPC0: |
| * 0x40000000: timer0 |
| * 0x40001000: timer1 |
| * 0x40002000: dual timer |
| * We must configure and realize each downstream device and connect |
| * it to the appropriate PPC port; then we can realize the PPC and |
| * map its upstream ends to the right place in the container. |
| */ |
| qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq); |
| object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0, |
| qdev_get_gpio_in(DEVICE(&s->armv7m), 3)); |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0); |
| object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq); |
| object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0, |
| qdev_get_gpio_in(DEVICE(&s->armv7m), 3)); |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0); |
| object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| qdev_prop_set_string(DEVICE(&s->dualtimer), "name", "Dual timer"); |
| qdev_prop_set_uint64(DEVICE(&s->dualtimer), "size", 0x1000); |
| object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0); |
| object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0); |
| dev_apb_ppc0 = DEVICE(&s->apb_ppc0); |
| |
| mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0); |
| memory_region_add_subregion(&s->container, 0x40000000, mr); |
| mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1); |
| memory_region_add_subregion(&s->container, 0x40001000, mr); |
| mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2); |
| memory_region_add_subregion(&s->container, 0x40002000, mr); |
| for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, |
| qdev_get_gpio_in_named(dev_apb_ppc0, |
| "cfg_nonsec", i)); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, |
| qdev_get_gpio_in_named(dev_apb_ppc0, |
| "cfg_ap", i)); |
| } |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc0, |
| "irq_enable", 0)); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc0, |
| "irq_clear", 0)); |
| qdev_connect_gpio_out(dev_splitter, 0, |
| qdev_get_gpio_in_named(dev_apb_ppc0, |
| "cfg_sec_resp", 0)); |
| |
| /* All the PPC irq lines (from the 2 internal PPCs and the 8 external |
| * ones) are sent individually to the security controller, and also |
| * ORed together to give a single combined PPC interrupt to the NVIC. |
| */ |
| object_property_set_int(OBJECT(&s->ppc_irq_orgate), |
| NUM_PPCS, "num-lines", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true, |
| "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, |
| qdev_get_gpio_in(DEVICE(&s->armv7m), 10)); |
| |
| /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */ |
| |
| /* 0x40020000 .. 0x4002ffff : IoTKit system control peripheral region */ |
| /* Devices behind APB PPC1: |
| * 0x4002f000: S32K timer |
| */ |
| qdev_prop_set_string(DEVICE(&s->s32ktimer), "name", "S32KTIMER"); |
| qdev_prop_set_uint64(DEVICE(&s->s32ktimer), "size", 0x1000); |
| object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0); |
| object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0); |
| memory_region_add_subregion(&s->container, 0x4002f000, mr); |
| |
| dev_apb_ppc1 = DEVICE(&s->apb_ppc1); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc1, |
| "cfg_nonsec", 0)); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc1, |
| "cfg_ap", 0)); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc1, |
| "irq_enable", 0)); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc1, |
| "irq_clear", 0)); |
| qdev_connect_gpio_out(dev_splitter, 1, |
| qdev_get_gpio_in_named(dev_apb_ppc1, |
| "cfg_sec_resp", 0)); |
| |
| /* Using create_unimplemented_device() maps the stub into the |
| * system address space rather than into our container, but the |
| * overall effect to the guest is the same. |
| */ |
| create_unimplemented_device("SYSINFO", 0x40020000, 0x1000); |
| |
| create_unimplemented_device("SYSCONTROL", 0x50021000, 0x1000); |
| create_unimplemented_device("S32KWATCHDOG", 0x5002e000, 0x1000); |
| |
| /* 0x40080000 .. 0x4008ffff : IoTKit second Base peripheral region */ |
| |
| create_unimplemented_device("NS watchdog", 0x40081000, 0x1000); |
| create_unimplemented_device("S watchdog", 0x50081000, 0x1000); |
| |
| create_unimplemented_device("SRAM0 MPC", 0x50083000, 0x1000); |
| |
| for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { |
| Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); |
| |
| object_property_set_int(splitter, 2, "num-lines", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(splitter, true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| } |
| |
| for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { |
| char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); |
| |
| iotkit_forward_ppc(s, ppcname, i); |
| g_free(ppcname); |
| } |
| |
| for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { |
| char *ppcname = g_strdup_printf("apb_ppcexp%d", i); |
| |
| iotkit_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); |
| g_free(ppcname); |
| } |
| |
| for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { |
| /* Wire up IRQ splitter for internal PPCs */ |
| DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); |
| char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", |
| i - NUM_EXTERNAL_PPCS); |
| TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1; |
| |
| qdev_connect_gpio_out(devs, 0, |
| qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); |
| qdev_connect_gpio_out(devs, 1, |
| qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); |
| qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, |
| qdev_get_gpio_in(devs, 0)); |
| } |
| |
| iotkit_forward_sec_resp_cfg(s); |
| |
| system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq; |
| } |
| |
| static void iotkit_idau_check(IDAUInterface *ii, uint32_t address, |
| int *iregion, bool *exempt, bool *ns, bool *nsc) |
| { |
| /* For IoTKit systems the IDAU responses are simple logical functions |
| * of the address bits. The NSC attribute is guest-adjustable via the |
| * NSCCFG register in the security controller. |
| */ |
| IoTKit *s = IOTKIT(ii); |
| int region = extract32(address, 28, 4); |
| |
| *ns = !(region & 1); |
| *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); |
| /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ |
| *exempt = (address & 0xeff00000) == 0xe0000000; |
| *iregion = region; |
| } |
| |
| static const VMStateDescription iotkit_vmstate = { |
| .name = "iotkit", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(nsccfg, IoTKit), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static Property iotkit_properties[] = { |
| DEFINE_PROP_LINK("memory", IoTKit, board_memory, TYPE_MEMORY_REGION, |
| MemoryRegion *), |
| DEFINE_PROP_UINT32("EXP_NUMIRQ", IoTKit, exp_numirq, 64), |
| DEFINE_PROP_UINT32("MAINCLK", IoTKit, mainclk_frq, 0), |
| DEFINE_PROP_END_OF_LIST() |
| }; |
| |
| static void iotkit_reset(DeviceState *dev) |
| { |
| IoTKit *s = IOTKIT(dev); |
| |
| s->nsccfg = 0; |
| } |
| |
| static void iotkit_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); |
| |
| dc->realize = iotkit_realize; |
| dc->vmsd = &iotkit_vmstate; |
| dc->props = iotkit_properties; |
| dc->reset = iotkit_reset; |
| iic->check = iotkit_idau_check; |
| } |
| |
| static const TypeInfo iotkit_info = { |
| .name = TYPE_IOTKIT, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(IoTKit), |
| .instance_init = iotkit_init, |
| .class_init = iotkit_class_init, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_IDAU_INTERFACE }, |
| { } |
| } |
| }; |
| |
| static void iotkit_register_types(void) |
| { |
| type_register_static(&iotkit_info); |
| } |
| |
| type_init(iotkit_register_types); |