| /* |
| * QEMU PowerPC pSeries Logical Partition NUMA associativity handling |
| * |
| * Copyright IBM Corp. 2020 |
| * |
| * Authors: |
| * Daniel Henrique Barboza <danielhb413@gmail.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/ppc/spapr_numa.h" |
| #include "hw/pci-host/spapr.h" |
| #include "hw/ppc/fdt.h" |
| |
| /* Moved from hw/ppc/spapr_pci_nvlink2.c */ |
| #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1)) |
| |
| /* |
| * Retrieves max_dist_ref_points of the current NUMA affinity. |
| */ |
| static int get_max_dist_ref_points(SpaprMachineState *spapr) |
| { |
| if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { |
| return FORM2_DIST_REF_POINTS; |
| } |
| |
| return FORM1_DIST_REF_POINTS; |
| } |
| |
| /* |
| * Retrieves numa_assoc_size of the current NUMA affinity. |
| */ |
| static int get_numa_assoc_size(SpaprMachineState *spapr) |
| { |
| if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { |
| return FORM2_NUMA_ASSOC_SIZE; |
| } |
| |
| return FORM1_NUMA_ASSOC_SIZE; |
| } |
| |
| /* |
| * Retrieves vcpu_assoc_size of the current NUMA affinity. |
| * |
| * vcpu_assoc_size is the size of ibm,associativity array |
| * for CPUs, which has an extra element (vcpu_id) in the end. |
| */ |
| static int get_vcpu_assoc_size(SpaprMachineState *spapr) |
| { |
| return get_numa_assoc_size(spapr) + 1; |
| } |
| |
| /* |
| * Retrieves the ibm,associativity array of NUMA node 'node_id' |
| * for the current NUMA affinity. |
| */ |
| static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id) |
| { |
| if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { |
| return spapr->FORM2_assoc_array[node_id]; |
| } |
| return spapr->FORM1_assoc_array[node_id]; |
| } |
| |
| /* |
| * Wrapper that returns node distance from ms->numa_state->nodes |
| * after handling edge cases where the distance might be absent. |
| */ |
| static int get_numa_distance(MachineState *ms, int src, int dst) |
| { |
| NodeInfo *numa_info = ms->numa_state->nodes; |
| int ret = numa_info[src].distance[dst]; |
| |
| if (ret != 0) { |
| return ret; |
| } |
| |
| /* |
| * In case QEMU adds a default NUMA single node when the user |
| * did not add any, or where the user did not supply distances, |
| * the distance will be absent (zero). Return local/remote |
| * distance in this case. |
| */ |
| if (src == dst) { |
| return NUMA_DISTANCE_MIN; |
| } |
| |
| return NUMA_DISTANCE_DEFAULT; |
| } |
| |
| static bool spapr_numa_is_symmetrical(MachineState *ms) |
| { |
| int nb_numa_nodes = ms->numa_state->num_nodes; |
| int src, dst; |
| |
| for (src = 0; src < nb_numa_nodes; src++) { |
| for (dst = src; dst < nb_numa_nodes; dst++) { |
| if (get_numa_distance(ms, src, dst) != |
| get_numa_distance(ms, dst, src)) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* |
| * This function will translate the user distances into |
| * what the kernel understand as possible values: 10 |
| * (local distance), 20, 40, 80 and 160, and return the equivalent |
| * NUMA level for each. Current heuristic is: |
| * - local distance (10) returns numa_level = 0x4, meaning there is |
| * no rounding for local distance |
| * - distances between 11 and 30 inclusive -> rounded to 20, |
| * numa_level = 0x3 |
| * - distances between 31 and 60 inclusive -> rounded to 40, |
| * numa_level = 0x2 |
| * - distances between 61 and 120 inclusive -> rounded to 80, |
| * numa_level = 0x1 |
| * - everything above 120 returns numa_level = 0 to indicate that |
| * there is no match. This will be calculated as disntace = 160 |
| * by the kernel (as of v5.9) |
| */ |
| static uint8_t spapr_numa_get_numa_level(uint8_t distance) |
| { |
| if (distance == 10) { |
| return 0x4; |
| } else if (distance > 11 && distance <= 30) { |
| return 0x3; |
| } else if (distance > 31 && distance <= 60) { |
| return 0x2; |
| } else if (distance > 61 && distance <= 120) { |
| return 0x1; |
| } |
| |
| return 0; |
| } |
| |
| static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr) |
| { |
| MachineState *ms = MACHINE(spapr); |
| int nb_numa_nodes = ms->numa_state->num_nodes; |
| int src, dst, i, j; |
| |
| /* |
| * Fill all associativity domains of non-zero NUMA nodes with |
| * node_id. This is required because the default value (0) is |
| * considered a match with associativity domains of node 0. |
| */ |
| for (i = 1; i < nb_numa_nodes; i++) { |
| for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { |
| spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i); |
| } |
| } |
| |
| for (src = 0; src < nb_numa_nodes; src++) { |
| for (dst = src; dst < nb_numa_nodes; dst++) { |
| /* |
| * This is how the associativity domain between A and B |
| * is calculated: |
| * |
| * - get the distance D between them |
| * - get the correspondent NUMA level 'n_level' for D |
| * - all associativity arrays were initialized with their own |
| * numa_ids, and we're calculating the distance in node_id |
| * ascending order, starting from node id 0 (the first node |
| * retrieved by numa_state). This will have a cascade effect in |
| * the algorithm because the associativity domains that node 0 |
| * defines will be carried over to other nodes, and node 1 |
| * associativities will be carried over after taking node 0 |
| * associativities into account, and so on. This happens because |
| * we'll assign assoc_src as the associativity domain of dst |
| * as well, for all NUMA levels beyond and including n_level. |
| * |
| * The PPC kernel expects the associativity domains of node 0 to |
| * be always 0, and this algorithm will grant that by default. |
| */ |
| uint8_t distance = get_numa_distance(ms, src, dst); |
| uint8_t n_level = spapr_numa_get_numa_level(distance); |
| uint32_t assoc_src; |
| |
| /* |
| * n_level = 0 means that the distance is greater than our last |
| * rounded value (120). In this case there is no NUMA level match |
| * between src and dst and we can skip the remaining of the loop. |
| * |
| * The Linux kernel will assume that the distance between src and |
| * dst, in this case of no match, is 10 (local distance) doubled |
| * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS |
| * levels (4), so this gives us 10*2*2*2*2 = 160. |
| * |
| * This logic can be seen in the Linux kernel source code, as of |
| * v5.9, in arch/powerpc/mm/numa.c, function __node_distance(). |
| */ |
| if (n_level == 0) { |
| continue; |
| } |
| |
| /* |
| * We must assign all assoc_src to dst, starting from n_level |
| * and going up to 0x1. |
| */ |
| for (i = n_level; i > 0; i--) { |
| assoc_src = spapr->FORM1_assoc_array[src][i]; |
| spapr->FORM1_assoc_array[dst][i] = assoc_src; |
| } |
| } |
| } |
| |
| } |
| |
| static void spapr_numa_FORM1_affinity_check(MachineState *machine) |
| { |
| int i; |
| |
| /* |
| * Check we don't have a memory-less/cpu-less NUMA node |
| * Firmware relies on the existing memory/cpu topology to provide the |
| * NUMA topology to the kernel. |
| * And the linux kernel needs to know the NUMA topology at start |
| * to be able to hotplug CPUs later. |
| */ |
| if (machine->numa_state->num_nodes) { |
| for (i = 0; i < machine->numa_state->num_nodes; ++i) { |
| /* check for memory-less node */ |
| if (machine->numa_state->nodes[i].node_mem == 0) { |
| CPUState *cs; |
| int found = 0; |
| /* check for cpu-less node */ |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| if (cpu->node_id == i) { |
| found = 1; |
| break; |
| } |
| } |
| /* memory-less and cpu-less node */ |
| if (!found) { |
| error_report( |
| "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i); |
| exit(EXIT_FAILURE); |
| } |
| } |
| } |
| } |
| |
| if (!spapr_numa_is_symmetrical(machine)) { |
| error_report( |
| "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA"); |
| exit(EXIT_FAILURE); |
| } |
| } |
| |
| /* |
| * Set NUMA machine state data based on FORM1 affinity semantics. |
| */ |
| static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr, |
| MachineState *machine) |
| { |
| SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); |
| int nb_numa_nodes = machine->numa_state->num_nodes; |
| int i, j; |
| |
| /* |
| * For all associativity arrays: first position is the size, |
| * position FORM1_DIST_REF_POINTS is always the numa_id, |
| * represented by the index 'i'. |
| * |
| * This will break on sparse NUMA setups, when/if QEMU starts |
| * to support it, because there will be no more guarantee that |
| * 'i' will be a valid node_id set by the user. |
| */ |
| for (i = 0; i < nb_numa_nodes; i++) { |
| spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); |
| spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); |
| } |
| |
| for (i = nb_numa_nodes; i < nb_numa_nodes; i++) { |
| spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); |
| |
| for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { |
| uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ? |
| SPAPR_GPU_NUMA_ID : cpu_to_be32(i); |
| spapr->FORM1_assoc_array[i][j] = gpu_assoc; |
| } |
| |
| spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); |
| } |
| |
| /* |
| * Guests pseries-5.1 and older uses zeroed associativity domains, |
| * i.e. no domain definition based on NUMA distance input. |
| * |
| * Same thing with guests that have only one NUMA node. |
| */ |
| if (smc->pre_5_2_numa_associativity || |
| machine->numa_state->num_nodes <= 1) { |
| return; |
| } |
| |
| spapr_numa_define_FORM1_domains(spapr); |
| } |
| |
| /* |
| * Init NUMA FORM2 machine state data |
| */ |
| static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr) |
| { |
| int i; |
| |
| /* |
| * For all resources but CPUs, FORM2 associativity arrays will |
| * be a size 2 array with the following format: |
| * |
| * ibm,associativity = {1, numa_id} |
| * |
| * CPUs will write an additional 'vcpu_id' on top of the arrays |
| * being initialized here. 'numa_id' is represented by the |
| * index 'i' of the loop. |
| */ |
| for (i = 0; i < NUMA_NODES_MAX_NUM; i++) { |
| spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1); |
| spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i); |
| } |
| } |
| |
| void spapr_numa_associativity_init(SpaprMachineState *spapr, |
| MachineState *machine) |
| { |
| spapr_numa_FORM1_affinity_init(spapr, machine); |
| spapr_numa_FORM2_affinity_init(spapr); |
| } |
| |
| void spapr_numa_associativity_check(SpaprMachineState *spapr) |
| { |
| /* |
| * FORM2 does not have any restrictions we need to handle |
| * at CAS time, for now. |
| */ |
| if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { |
| return; |
| } |
| |
| spapr_numa_FORM1_affinity_check(MACHINE(spapr)); |
| } |
| |
| void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt, |
| int offset, int nodeid) |
| { |
| const uint32_t *associativity = get_associativity(spapr, nodeid); |
| |
| _FDT((fdt_setprop(fdt, offset, "ibm,associativity", |
| associativity, |
| get_numa_assoc_size(spapr) * sizeof(uint32_t)))); |
| } |
| |
| static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr, |
| PowerPCCPU *cpu) |
| { |
| const uint32_t *associativity = get_associativity(spapr, cpu->node_id); |
| int max_distance_ref_points = get_max_dist_ref_points(spapr); |
| int vcpu_assoc_size = get_vcpu_assoc_size(spapr); |
| uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size); |
| int index = spapr_get_vcpu_id(cpu); |
| |
| /* |
| * VCPUs have an extra 'cpu_id' value in ibm,associativity |
| * compared to other resources. Increment the size at index |
| * 0, put cpu_id last, then copy the remaining associativity |
| * domains. |
| */ |
| vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1); |
| vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index); |
| memcpy(vcpu_assoc + 1, associativity + 1, |
| (vcpu_assoc_size - 2) * sizeof(uint32_t)); |
| |
| return vcpu_assoc; |
| } |
| |
| int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt, |
| int offset, PowerPCCPU *cpu) |
| { |
| g_autofree uint32_t *vcpu_assoc = NULL; |
| int vcpu_assoc_size = get_vcpu_assoc_size(spapr); |
| |
| vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu); |
| |
| /* Advertise NUMA via ibm,associativity */ |
| return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc, |
| vcpu_assoc_size * sizeof(uint32_t)); |
| } |
| |
| |
| int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt, |
| int offset) |
| { |
| MachineState *machine = MACHINE(spapr); |
| int max_distance_ref_points = get_max_dist_ref_points(spapr); |
| int nb_numa_nodes = machine->numa_state->num_nodes; |
| int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; |
| g_autofree uint32_t *int_buf = NULL; |
| uint32_t *cur_index; |
| int i; |
| |
| /* ibm,associativity-lookup-arrays */ |
| int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2); |
| cur_index = int_buf; |
| int_buf[0] = cpu_to_be32(nr_nodes); |
| /* Number of entries per associativity list */ |
| int_buf[1] = cpu_to_be32(max_distance_ref_points); |
| cur_index += 2; |
| for (i = 0; i < nr_nodes; i++) { |
| /* |
| * For the lookup-array we use the ibm,associativity array of the |
| * current NUMA affinity, without the first element (size). |
| */ |
| const uint32_t *associativity = get_associativity(spapr, i); |
| memcpy(cur_index, ++associativity, |
| sizeof(uint32_t) * max_distance_ref_points); |
| cur_index += max_distance_ref_points; |
| } |
| |
| return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", |
| int_buf, (cur_index - int_buf) * sizeof(uint32_t)); |
| } |
| |
| static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr, |
| void *fdt, int rtas) |
| { |
| MachineState *ms = MACHINE(spapr); |
| SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); |
| uint32_t refpoints[] = { |
| cpu_to_be32(0x4), |
| cpu_to_be32(0x3), |
| cpu_to_be32(0x2), |
| cpu_to_be32(0x1), |
| }; |
| uint32_t nr_refpoints = ARRAY_SIZE(refpoints); |
| uint32_t maxdomain = ms->numa_state->num_nodes; |
| uint32_t maxdomains[] = { |
| cpu_to_be32(4), |
| cpu_to_be32(maxdomain), |
| cpu_to_be32(maxdomain), |
| cpu_to_be32(maxdomain), |
| cpu_to_be32(maxdomain) |
| }; |
| |
| if (smc->pre_5_2_numa_associativity || |
| ms->numa_state->num_nodes <= 1) { |
| uint32_t legacy_refpoints[] = { |
| cpu_to_be32(0x4), |
| cpu_to_be32(0x4), |
| cpu_to_be32(0x2), |
| }; |
| uint32_t legacy_maxdomains[] = { |
| cpu_to_be32(4), |
| cpu_to_be32(0), |
| cpu_to_be32(0), |
| cpu_to_be32(0), |
| cpu_to_be32(maxdomain ? maxdomain : 1), |
| }; |
| |
| G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints)); |
| G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains)); |
| |
| nr_refpoints = 3; |
| |
| memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints)); |
| memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains)); |
| |
| /* pseries-5.0 and older reference-points array is {0x4, 0x4} */ |
| if (smc->pre_5_1_assoc_refpoints) { |
| nr_refpoints = 2; |
| } |
| } |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", |
| refpoints, nr_refpoints * sizeof(refpoints[0]))); |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", |
| maxdomains, sizeof(maxdomains))); |
| } |
| |
| static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr, |
| void *fdt, int rtas) |
| { |
| MachineState *ms = MACHINE(spapr); |
| int nb_numa_nodes = ms->numa_state->num_nodes; |
| int distance_table_entries = nb_numa_nodes * nb_numa_nodes; |
| g_autofree uint32_t *lookup_index_table = NULL; |
| g_autofree uint8_t *distance_table = NULL; |
| int src, dst, i, distance_table_size; |
| |
| /* |
| * ibm,numa-lookup-index-table: array with length and a |
| * list of NUMA ids present in the guest. |
| */ |
| lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1); |
| lookup_index_table[0] = cpu_to_be32(nb_numa_nodes); |
| |
| for (i = 0; i < nb_numa_nodes; i++) { |
| lookup_index_table[i + 1] = cpu_to_be32(i); |
| } |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table", |
| lookup_index_table, |
| (nb_numa_nodes + 1) * sizeof(uint32_t))); |
| |
| /* |
| * ibm,numa-distance-table: contains all node distances. First |
| * element is the size of the table as uint32, followed up |
| * by all the uint8 distances from the first NUMA node, then all |
| * distances from the second NUMA node and so on. |
| * |
| * ibm,numa-lookup-index-table is used by guest to navigate this |
| * array because NUMA ids can be sparse (node 0 is the first, |
| * node 8 is the second ...). |
| */ |
| distance_table_size = distance_table_entries * sizeof(uint8_t) + |
| sizeof(uint32_t); |
| distance_table = g_new0(uint8_t, distance_table_size); |
| stl_be_p(distance_table, distance_table_entries); |
| |
| /* Skip the uint32_t array length at the start */ |
| i = sizeof(uint32_t); |
| |
| for (src = 0; src < nb_numa_nodes; src++) { |
| for (dst = 0; dst < nb_numa_nodes; dst++) { |
| distance_table[i++] = get_numa_distance(ms, src, dst); |
| } |
| } |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table", |
| distance_table, distance_table_size)); |
| } |
| |
| /* |
| * This helper could be compressed in a single function with |
| * FORM1 logic since we're setting the same DT values, with the |
| * difference being a call to spapr_numa_FORM2_write_rtas_tables() |
| * in the end. The separation was made to avoid clogging FORM1 code |
| * which already has to deal with compat modes from previous |
| * QEMU machine types. |
| */ |
| static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr, |
| void *fdt, int rtas) |
| { |
| MachineState *ms = MACHINE(spapr); |
| |
| /* |
| * In FORM2, ibm,associativity-reference-points will point to |
| * the element in the ibm,associativity array that contains the |
| * primary domain index (for FORM2, the first element). |
| * |
| * This value (in our case, the numa-id) is then used as an index |
| * to retrieve all other attributes of the node (distance, |
| * bandwidth, latency) via ibm,numa-lookup-index-table and other |
| * ibm,numa-*-table properties. |
| */ |
| uint32_t refpoints[] = { cpu_to_be32(1) }; |
| |
| uint32_t maxdomain = ms->numa_state->num_nodes; |
| uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) }; |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", |
| refpoints, sizeof(refpoints))); |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", |
| maxdomains, sizeof(maxdomains))); |
| |
| spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas); |
| } |
| |
| /* |
| * Helper that writes ibm,associativity-reference-points and |
| * max-associativity-domains in the RTAS pointed by @rtas |
| * in the DT @fdt. |
| */ |
| void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas) |
| { |
| if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { |
| spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas); |
| return; |
| } |
| |
| spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas); |
| } |
| |
| static target_ulong h_home_node_associativity(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| g_autofree uint32_t *vcpu_assoc = NULL; |
| target_ulong flags = args[0]; |
| target_ulong procno = args[1]; |
| PowerPCCPU *tcpu; |
| int idx, assoc_idx; |
| int vcpu_assoc_size = get_vcpu_assoc_size(spapr); |
| |
| /* only support procno from H_REGISTER_VPA */ |
| if (flags != 0x1) { |
| return H_FUNCTION; |
| } |
| |
| tcpu = spapr_find_cpu(procno); |
| if (tcpu == NULL) { |
| return H_P2; |
| } |
| |
| /* |
| * Given that we want to be flexible with the sizes and indexes, |
| * we must consider that there is a hard limit of how many |
| * associativities domain we can fit in R4 up to R9, which would be |
| * 12 associativity domains for vcpus. Assert and bail if that's |
| * not the case. |
| */ |
| g_assert((vcpu_assoc_size - 1) <= 12); |
| |
| vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu); |
| /* assoc_idx starts at 1 to skip associativity size */ |
| assoc_idx = 1; |
| |
| #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ |
| ((uint64_t)(b) & 0xffffffff)) |
| |
| for (idx = 0; idx < 6; idx++) { |
| int32_t a, b; |
| |
| /* |
| * vcpu_assoc[] will contain the associativity domains for tcpu, |
| * including tcpu->node_id and procno, meaning that we don't |
| * need to use these variables here. |
| * |
| * We'll read 2 values at a time to fill up the ASSOCIATIVITY() |
| * macro. The ternary will fill the remaining registers with -1 |
| * after we went through vcpu_assoc[]. |
| */ |
| a = assoc_idx < vcpu_assoc_size ? |
| be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; |
| b = assoc_idx < vcpu_assoc_size ? |
| be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; |
| |
| args[idx] = ASSOCIATIVITY(a, b); |
| } |
| #undef ASSOCIATIVITY |
| |
| return H_SUCCESS; |
| } |
| |
| static void spapr_numa_register_types(void) |
| { |
| /* Virtual Processor Home Node */ |
| spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, |
| h_home_node_associativity); |
| } |
| |
| type_init(spapr_numa_register_types) |