| /* |
| * QEMU PowerPC PowerNV (POWER9) PHB4 model |
| * |
| * Copyright (c) 2018-2020, IBM Corporation. |
| * |
| * This code is licensed under the GPL version 2 or later. See the |
| * COPYING file in the top-level directory. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qapi/visitor.h" |
| #include "qapi/error.h" |
| #include "monitor/monitor.h" |
| #include "target/ppc/cpu.h" |
| #include "hw/pci-host/pnv_phb4_regs.h" |
| #include "hw/pci-host/pnv_phb4.h" |
| #include "hw/pci/pcie_host.h" |
| #include "hw/pci/pcie_port.h" |
| #include "hw/ppc/pnv.h" |
| #include "hw/ppc/pnv_xscom.h" |
| #include "hw/irq.h" |
| #include "hw/qdev-properties.h" |
| #include "qom/object.h" |
| #include "trace.h" |
| |
| #define phb_error(phb, fmt, ...) \ |
| qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \ |
| (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__) |
| |
| #define phb_pec_error(pec, fmt, ...) \ |
| qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n", \ |
| (pec)->chip_id, (pec)->index, ## __VA_ARGS__) |
| |
| static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb) |
| { |
| PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base); |
| uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3]; |
| uint8_t bus, devfn; |
| |
| if (!(addr >> 63)) { |
| return NULL; |
| } |
| bus = (addr >> 52) & 0xff; |
| devfn = (addr >> 44) & 0xff; |
| |
| /* We don't access the root complex this way */ |
| if (bus == 0 && devfn == 0) { |
| return NULL; |
| } |
| return pci_find_device(pci->bus, bus, devfn); |
| } |
| |
| /* |
| * The CONFIG_DATA register expects little endian accesses, but as the |
| * region is big endian, we have to swap the value. |
| */ |
| static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off, |
| unsigned size, uint64_t val) |
| { |
| uint32_t cfg_addr, limit; |
| PCIDevice *pdev; |
| |
| pdev = pnv_phb4_find_cfg_dev(phb); |
| if (!pdev) { |
| return; |
| } |
| cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; |
| cfg_addr |= off; |
| limit = pci_config_size(pdev); |
| if (limit <= cfg_addr) { |
| /* |
| * conventional pci device can be behind pcie-to-pci bridge. |
| * 256 <= addr < 4K has no effects. |
| */ |
| return; |
| } |
| switch (size) { |
| case 1: |
| break; |
| case 2: |
| val = bswap16(val); |
| break; |
| case 4: |
| val = bswap32(val); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| pci_host_config_write_common(pdev, cfg_addr, limit, val, size); |
| } |
| |
| static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off, |
| unsigned size) |
| { |
| uint32_t cfg_addr, limit; |
| PCIDevice *pdev; |
| uint64_t val; |
| |
| pdev = pnv_phb4_find_cfg_dev(phb); |
| if (!pdev) { |
| return ~0ull; |
| } |
| cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; |
| cfg_addr |= off; |
| limit = pci_config_size(pdev); |
| if (limit <= cfg_addr) { |
| /* |
| * conventional pci device can be behind pcie-to-pci bridge. |
| * 256 <= addr < 4K has no effects. |
| */ |
| return ~0ull; |
| } |
| val = pci_host_config_read_common(pdev, cfg_addr, limit, size); |
| switch (size) { |
| case 1: |
| return val; |
| case 2: |
| return bswap16(val); |
| case 4: |
| return bswap32(val); |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* |
| * Root complex register accesses are memory mapped. |
| */ |
| static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off, |
| unsigned size, uint64_t val) |
| { |
| PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base); |
| PCIDevice *pdev; |
| |
| if (size != 4) { |
| phb_error(phb, "rc_config_write invalid size %d", size); |
| return; |
| } |
| |
| pdev = pci_find_device(pci->bus, 0, 0); |
| if (!pdev) { |
| phb_error(phb, "rc_config_write device not found"); |
| return; |
| } |
| |
| pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE, |
| bswap32(val), 4); |
| } |
| |
| static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off, |
| unsigned size) |
| { |
| PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base); |
| PCIDevice *pdev; |
| uint64_t val; |
| |
| if (size != 4) { |
| phb_error(phb, "rc_config_read invalid size %d", size); |
| return ~0ull; |
| } |
| |
| pdev = pci_find_device(pci->bus, 0, 0); |
| if (!pdev) { |
| phb_error(phb, "rc_config_read device not found"); |
| return ~0ull; |
| } |
| |
| val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4); |
| return bswap32(val); |
| } |
| |
| static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index) |
| { |
| uint64_t base, start, size, mbe0, mbe1; |
| MemoryRegion *parent; |
| char name[64]; |
| |
| /* Unmap first */ |
| if (memory_region_is_mapped(&phb->mr_mmio[index])) { |
| /* Should we destroy it in RCU friendly way... ? */ |
| memory_region_del_subregion(phb->mr_mmio[index].container, |
| &phb->mr_mmio[index]); |
| } |
| |
| /* Get table entry */ |
| mbe0 = phb->ioda_MBT[(index << 1)]; |
| mbe1 = phb->ioda_MBT[(index << 1) + 1]; |
| |
| if (!(mbe0 & IODA3_MBT0_ENABLE)) { |
| return; |
| } |
| |
| /* Grab geometry from registers */ |
| base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12; |
| size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12; |
| size |= 0xff00000000000000ull; |
| size = ~size + 1; |
| |
| /* Calculate PCI side start address based on M32/M64 window type */ |
| if (mbe0 & IODA3_MBT0_TYPE_M32) { |
| start = phb->regs[PHB_M32_START_ADDR >> 3]; |
| if ((start + size) > 0x100000000ull) { |
| phb_error(phb, "M32 set beyond 4GB boundary !"); |
| size = 0x100000000 - start; |
| } |
| } else { |
| start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]); |
| } |
| |
| /* TODO: Figure out how to implement/decode AOMASK */ |
| |
| /* Check if it matches an enabled MMIO region in the PEC stack */ |
| if (memory_region_is_mapped(&phb->mmbar0) && |
| base >= phb->mmio0_base && |
| (base + size) <= (phb->mmio0_base + phb->mmio0_size)) { |
| parent = &phb->mmbar0; |
| base -= phb->mmio0_base; |
| } else if (memory_region_is_mapped(&phb->mmbar1) && |
| base >= phb->mmio1_base && |
| (base + size) <= (phb->mmio1_base + phb->mmio1_size)) { |
| parent = &phb->mmbar1; |
| base -= phb->mmio1_base; |
| } else { |
| phb_error(phb, "PHB MBAR %d out of parent bounds", index); |
| return; |
| } |
| |
| /* Create alias (better name ?) */ |
| snprintf(name, sizeof(name), "phb4-mbar%d", index); |
| memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name, |
| &phb->pci_mmio, start, size); |
| memory_region_add_subregion(parent, base, &phb->mr_mmio[index]); |
| } |
| |
| static void pnv_phb4_check_all_mbt(PnvPHB4 *phb) |
| { |
| uint64_t i; |
| uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS : |
| PNV_PHB4_MIN_MMIO_WINDOWS; |
| |
| for (i = 0; i < num_windows; i++) { |
| pnv_phb4_check_mbt(phb, i); |
| } |
| } |
| |
| static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb, |
| unsigned *out_table, unsigned *out_idx) |
| { |
| uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; |
| unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg); |
| unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg); |
| unsigned int mask; |
| uint64_t *tptr = NULL; |
| |
| switch (table) { |
| case IODA3_TBL_LIST: |
| tptr = phb->ioda_LIST; |
| mask = 7; |
| break; |
| case IODA3_TBL_MIST: |
| tptr = phb->ioda_MIST; |
| mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1); |
| mask -= 1; |
| break; |
| case IODA3_TBL_RCAM: |
| mask = phb->big_phb ? 127 : 63; |
| break; |
| case IODA3_TBL_MRT: |
| mask = phb->big_phb ? 15 : 7; |
| break; |
| case IODA3_TBL_PESTA: |
| case IODA3_TBL_PESTB: |
| mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); |
| mask -= 1; |
| break; |
| case IODA3_TBL_TVT: |
| tptr = phb->ioda_TVT; |
| mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1); |
| mask -= 1; |
| break; |
| case IODA3_TBL_TCR: |
| case IODA3_TBL_TDR: |
| mask = phb->big_phb ? 1023 : 511; |
| break; |
| case IODA3_TBL_MBT: |
| tptr = phb->ioda_MBT; |
| mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1); |
| mask -= 1; |
| break; |
| case IODA3_TBL_MDT: |
| tptr = phb->ioda_MDT; |
| mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); |
| mask -= 1; |
| break; |
| case IODA3_TBL_PEEV: |
| tptr = phb->ioda_PEEV; |
| mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1); |
| mask -= 1; |
| break; |
| default: |
| phb_error(phb, "invalid IODA table %d", table); |
| return NULL; |
| } |
| index &= mask; |
| if (out_idx) { |
| *out_idx = index; |
| } |
| if (out_table) { |
| *out_table = table; |
| } |
| if (tptr) { |
| tptr += index; |
| } |
| if (adreg & PHB_IODA_AD_AUTOINC) { |
| index = (index + 1) & mask; |
| adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index); |
| } |
| |
| phb->regs[PHB_IODA_ADDR >> 3] = adreg; |
| return tptr; |
| } |
| |
| static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb) |
| { |
| unsigned table, idx; |
| uint64_t *tptr; |
| |
| tptr = pnv_phb4_ioda_access(phb, &table, &idx); |
| if (!tptr) { |
| /* Special PESTA case */ |
| if (table == IODA3_TBL_PESTA) { |
| return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63; |
| } else if (table == IODA3_TBL_PESTB) { |
| return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62; |
| } |
| /* Return 0 on unsupported tables, not ff's */ |
| return 0; |
| } |
| return *tptr; |
| } |
| |
| static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val) |
| { |
| unsigned table, idx; |
| uint64_t *tptr; |
| |
| tptr = pnv_phb4_ioda_access(phb, &table, &idx); |
| if (!tptr) { |
| /* Special PESTA case */ |
| if (table == IODA3_TBL_PESTA) { |
| phb->ioda_PEST_AB[idx] &= ~1; |
| phb->ioda_PEST_AB[idx] |= (val >> 63) & 1; |
| } else if (table == IODA3_TBL_PESTB) { |
| phb->ioda_PEST_AB[idx] &= ~2; |
| phb->ioda_PEST_AB[idx] |= (val >> 62) & 2; |
| } |
| return; |
| } |
| |
| /* Handle side effects */ |
| switch (table) { |
| case IODA3_TBL_LIST: |
| break; |
| case IODA3_TBL_MIST: { |
| /* Special mask for MIST partial write */ |
| uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; |
| uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg); |
| uint64_t v = *tptr; |
| if (mmask == 0) { |
| mmask = 0xf; |
| } |
| if (mmask & 8) { |
| v &= 0x0000ffffffffffffull; |
| v |= 0xcfff000000000000ull & val; |
| } |
| if (mmask & 4) { |
| v &= 0xffff0000ffffffffull; |
| v |= 0x0000cfff00000000ull & val; |
| } |
| if (mmask & 2) { |
| v &= 0xffffffff0000ffffull; |
| v |= 0x00000000cfff0000ull & val; |
| } |
| if (mmask & 1) { |
| v &= 0xffffffffffff0000ull; |
| v |= 0x000000000000cfffull & val; |
| } |
| *tptr = v; |
| break; |
| } |
| case IODA3_TBL_MBT: |
| *tptr = val; |
| |
| /* Copy across the valid bit to the other half */ |
| phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull; |
| phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val; |
| |
| /* Update mappings */ |
| pnv_phb4_check_mbt(phb, idx >> 1); |
| break; |
| default: |
| *tptr = val; |
| } |
| } |
| |
| static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val) |
| { |
| PnvPhb4DMASpace *ds; |
| |
| /* Always invalidate all for now ... */ |
| QLIST_FOREACH(ds, &phb->dma_spaces, list) { |
| ds->pe_num = PHB_INVALID_PE; |
| } |
| } |
| |
| static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds) |
| { |
| uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3]; |
| |
| if (cfg & PHB_PHB4C_32BIT_MSI_EN) { |
| if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) { |
| memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), |
| 0xffff0000, &ds->msi32_mr); |
| } |
| } else { |
| if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) { |
| memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), |
| &ds->msi32_mr); |
| } |
| } |
| |
| if (cfg & PHB_PHB4C_64BIT_MSI_EN) { |
| if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) { |
| memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), |
| (1ull << 60), &ds->msi64_mr); |
| } |
| } else { |
| if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) { |
| memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), |
| &ds->msi64_mr); |
| } |
| } |
| } |
| |
| static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb) |
| { |
| PnvPhb4DMASpace *ds; |
| |
| QLIST_FOREACH(ds, &phb->dma_spaces, list) { |
| pnv_phb4_update_msi_regions(ds); |
| } |
| } |
| |
| static void pnv_phb4_update_xsrc(PnvPHB4 *phb) |
| { |
| int shift, flags, i, lsi_base; |
| XiveSource *xsrc = &phb->xsrc; |
| |
| /* The XIVE source characteristics can be set at run time */ |
| if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) { |
| shift = XIVE_ESB_64K; |
| } else { |
| shift = XIVE_ESB_4K; |
| } |
| if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) { |
| flags = XIVE_SRC_STORE_EOI; |
| } else { |
| flags = 0; |
| } |
| |
| /* |
| * When the PQ disable configuration bit is set, the check on the |
| * PQ state bits is disabled on the PHB side (for MSI only) and it |
| * is performed on the IC side instead. |
| */ |
| if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PQ_DISABLE) { |
| flags |= XIVE_SRC_PQ_DISABLE; |
| } |
| |
| phb->xsrc.esb_shift = shift; |
| phb->xsrc.esb_flags = flags; |
| |
| lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]); |
| lsi_base <<= 3; |
| |
| /* TODO: handle reset values of PHB_LSI_SRC_ID */ |
| if (!lsi_base) { |
| return; |
| } |
| |
| /* TODO: need a xive_source_irq_reset_lsi() */ |
| bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs); |
| |
| for (i = 0; i < xsrc->nr_irqs; i++) { |
| bool msi = (i < lsi_base || i >= (lsi_base + 8)); |
| if (!msi) { |
| xive_source_irq_set_lsi(xsrc, i); |
| } |
| } |
| } |
| |
| static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val, |
| unsigned size) |
| { |
| PnvPHB4 *phb = PNV_PHB4(opaque); |
| bool changed; |
| |
| /* Special case outbound configuration data */ |
| if ((off & 0xfffc) == PHB_CONFIG_DATA) { |
| pnv_phb4_config_write(phb, off & 0x3, size, val); |
| return; |
| } |
| |
| /* Special case RC configuration space */ |
| if ((off & 0xf800) == PHB_RC_CONFIG_BASE) { |
| pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val); |
| return; |
| } |
| |
| /* Other registers are 64-bit only */ |
| if (size != 8 || off & 0x7) { |
| phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", |
| off, size); |
| return; |
| } |
| |
| /* Handle masking */ |
| switch (off) { |
| case PHB_LSI_SOURCE_ID: |
| val &= PHB_LSI_SRC_ID; |
| break; |
| case PHB_M64_UPPER_BITS: |
| val &= 0xff00000000000000ull; |
| break; |
| /* TCE Kill */ |
| case PHB_TCE_KILL: |
| /* Clear top 3 bits which HW does to indicate successful queuing */ |
| val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE); |
| break; |
| case PHB_Q_DMA_R: |
| /* |
| * This is enough logic to make SW happy but we aren't |
| * actually quiescing the DMAs |
| */ |
| if (val & PHB_Q_DMA_R_AUTORESET) { |
| val = 0; |
| } else { |
| val &= PHB_Q_DMA_R_QUIESCE_DMA; |
| } |
| break; |
| /* LEM stuff */ |
| case PHB_LEM_FIR_AND_MASK: |
| phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val; |
| return; |
| case PHB_LEM_FIR_OR_MASK: |
| phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val; |
| return; |
| case PHB_LEM_ERROR_AND_MASK: |
| phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val; |
| return; |
| case PHB_LEM_ERROR_OR_MASK: |
| phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val; |
| return; |
| case PHB_LEM_WOF: |
| val = 0; |
| break; |
| /* TODO: More regs ..., maybe create a table with masks... */ |
| |
| /* Read only registers */ |
| case PHB_CPU_LOADSTORE_STATUS: |
| case PHB_ETU_ERR_SUMMARY: |
| case PHB_PHB4_GEN_CAP: |
| case PHB_PHB4_TCE_CAP: |
| case PHB_PHB4_IRQ_CAP: |
| case PHB_PHB4_EEH_CAP: |
| return; |
| } |
| |
| /* Record whether it changed */ |
| changed = phb->regs[off >> 3] != val; |
| |
| /* Store in register cache first */ |
| phb->regs[off >> 3] = val; |
| |
| /* Handle side effects */ |
| switch (off) { |
| case PHB_PHB4_CONFIG: |
| if (changed) { |
| pnv_phb4_update_all_msi_regions(phb); |
| } |
| break; |
| case PHB_M32_START_ADDR: |
| case PHB_M64_UPPER_BITS: |
| if (changed) { |
| pnv_phb4_check_all_mbt(phb); |
| } |
| break; |
| |
| /* IODA table accesses */ |
| case PHB_IODA_DATA0: |
| pnv_phb4_ioda_write(phb, val); |
| break; |
| |
| /* RTC invalidation */ |
| case PHB_RTC_INVALIDATE: |
| pnv_phb4_rtc_invalidate(phb, val); |
| break; |
| |
| /* PHB Control (Affects XIVE source) */ |
| case PHB_CTRLR: |
| case PHB_LSI_SOURCE_ID: |
| pnv_phb4_update_xsrc(phb); |
| break; |
| |
| /* Silent simple writes */ |
| case PHB_ASN_CMPM: |
| case PHB_CONFIG_ADDRESS: |
| case PHB_IODA_ADDR: |
| case PHB_TCE_KILL: |
| case PHB_TCE_SPEC_CTL: |
| case PHB_PEST_BAR: |
| case PHB_PELTV_BAR: |
| case PHB_RTT_BAR: |
| case PHB_LEM_FIR_ACCUM: |
| case PHB_LEM_ERROR_MASK: |
| case PHB_LEM_ACTION0: |
| case PHB_LEM_ACTION1: |
| case PHB_TCE_TAG_ENABLE: |
| case PHB_INT_NOTIFY_ADDR: |
| case PHB_INT_NOTIFY_INDEX: |
| case PHB_DMARD_SYNC: |
| break; |
| |
| /* Noise on anything else */ |
| default: |
| qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n", |
| off, val); |
| } |
| } |
| |
| static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size) |
| { |
| PnvPHB4 *phb = PNV_PHB4(opaque); |
| uint64_t val; |
| |
| if ((off & 0xfffc) == PHB_CONFIG_DATA) { |
| return pnv_phb4_config_read(phb, off & 0x3, size); |
| } |
| |
| /* Special case RC configuration space */ |
| if ((off & 0xf800) == PHB_RC_CONFIG_BASE) { |
| return pnv_phb4_rc_config_read(phb, off & 0x7ff, size); |
| } |
| |
| /* Other registers are 64-bit only */ |
| if (size != 8 || off & 0x7) { |
| phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", |
| off, size); |
| return ~0ull; |
| } |
| |
| /* Default read from cache */ |
| val = phb->regs[off >> 3]; |
| |
| switch (off) { |
| case PHB_VERSION: |
| return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version; |
| |
| /* Read-only */ |
| case PHB_PHB4_GEN_CAP: |
| return 0xe4b8000000000000ull; |
| case PHB_PHB4_TCE_CAP: |
| return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull; |
| case PHB_PHB4_IRQ_CAP: |
| return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull; |
| case PHB_PHB4_EEH_CAP: |
| return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull; |
| |
| /* IODA table accesses */ |
| case PHB_IODA_DATA0: |
| return pnv_phb4_ioda_read(phb); |
| |
| /* Link training always appears trained */ |
| case PHB_PCIE_DLP_TRAIN_CTL: |
| /* TODO: Do something sensible with speed ? */ |
| return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT; |
| |
| /* DMA read sync: make it look like it's complete */ |
| case PHB_DMARD_SYNC: |
| return PHB_DMARD_SYNC_COMPLETE; |
| |
| /* Silent simple reads */ |
| case PHB_LSI_SOURCE_ID: |
| case PHB_CPU_LOADSTORE_STATUS: |
| case PHB_ASN_CMPM: |
| case PHB_PHB4_CONFIG: |
| case PHB_M32_START_ADDR: |
| case PHB_CONFIG_ADDRESS: |
| case PHB_IODA_ADDR: |
| case PHB_RTC_INVALIDATE: |
| case PHB_TCE_KILL: |
| case PHB_TCE_SPEC_CTL: |
| case PHB_PEST_BAR: |
| case PHB_PELTV_BAR: |
| case PHB_RTT_BAR: |
| case PHB_M64_UPPER_BITS: |
| case PHB_CTRLR: |
| case PHB_LEM_FIR_ACCUM: |
| case PHB_LEM_ERROR_MASK: |
| case PHB_LEM_ACTION0: |
| case PHB_LEM_ACTION1: |
| case PHB_TCE_TAG_ENABLE: |
| case PHB_INT_NOTIFY_ADDR: |
| case PHB_INT_NOTIFY_INDEX: |
| case PHB_Q_DMA_R: |
| case PHB_ETU_ERR_SUMMARY: |
| break; |
| |
| /* Noise on anything else */ |
| default: |
| qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n", |
| off, val); |
| } |
| return val; |
| } |
| |
| static const MemoryRegionOps pnv_phb4_reg_ops = { |
| .read = pnv_phb4_reg_read, |
| .write = pnv_phb4_reg_write, |
| .valid.min_access_size = 1, |
| .valid.max_access_size = 8, |
| .impl.min_access_size = 1, |
| .impl.max_access_size = 8, |
| .endianness = DEVICE_BIG_ENDIAN, |
| }; |
| |
| static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| PnvPHB4 *phb = PNV_PHB4(opaque); |
| uint32_t reg = addr >> 3; |
| uint64_t val; |
| hwaddr offset; |
| |
| switch (reg) { |
| case PHB_SCOM_HV_IND_ADDR: |
| return phb->scom_hv_ind_addr_reg; |
| |
| case PHB_SCOM_HV_IND_DATA: |
| if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) { |
| phb_error(phb, "Invalid indirect address"); |
| return ~0ull; |
| } |
| size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8; |
| offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg); |
| val = pnv_phb4_reg_read(phb, offset, size); |
| if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) { |
| offset += size; |
| offset &= 0x3fff; |
| phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, |
| phb->scom_hv_ind_addr_reg, |
| offset); |
| } |
| return val; |
| case PHB_SCOM_ETU_LEM_FIR: |
| case PHB_SCOM_ETU_LEM_FIR_AND: |
| case PHB_SCOM_ETU_LEM_FIR_OR: |
| case PHB_SCOM_ETU_LEM_FIR_MSK: |
| case PHB_SCOM_ETU_LEM_ERR_MSK_AND: |
| case PHB_SCOM_ETU_LEM_ERR_MSK_OR: |
| case PHB_SCOM_ETU_LEM_ACT0: |
| case PHB_SCOM_ETU_LEM_ACT1: |
| case PHB_SCOM_ETU_LEM_WOF: |
| offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM; |
| return pnv_phb4_reg_read(phb, offset, size); |
| case PHB_SCOM_ETU_PMON_CONFIG: |
| case PHB_SCOM_ETU_PMON_CTR0: |
| case PHB_SCOM_ETU_PMON_CTR1: |
| case PHB_SCOM_ETU_PMON_CTR2: |
| case PHB_SCOM_ETU_PMON_CTR3: |
| offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG; |
| return pnv_phb4_reg_read(phb, offset, size); |
| |
| default: |
| qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr); |
| return ~0ull; |
| } |
| } |
| |
| static void pnv_phb4_xscom_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| PnvPHB4 *phb = PNV_PHB4(opaque); |
| uint32_t reg = addr >> 3; |
| hwaddr offset; |
| |
| switch (reg) { |
| case PHB_SCOM_HV_IND_ADDR: |
| phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff; |
| break; |
| case PHB_SCOM_HV_IND_DATA: |
| if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) { |
| phb_error(phb, "Invalid indirect address"); |
| break; |
| } |
| size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8; |
| offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg); |
| pnv_phb4_reg_write(phb, offset, val, size); |
| if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) { |
| offset += size; |
| offset &= 0x3fff; |
| phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, |
| phb->scom_hv_ind_addr_reg, |
| offset); |
| } |
| break; |
| case PHB_SCOM_ETU_LEM_FIR: |
| case PHB_SCOM_ETU_LEM_FIR_AND: |
| case PHB_SCOM_ETU_LEM_FIR_OR: |
| case PHB_SCOM_ETU_LEM_FIR_MSK: |
| case PHB_SCOM_ETU_LEM_ERR_MSK_AND: |
| case PHB_SCOM_ETU_LEM_ERR_MSK_OR: |
| case PHB_SCOM_ETU_LEM_ACT0: |
| case PHB_SCOM_ETU_LEM_ACT1: |
| case PHB_SCOM_ETU_LEM_WOF: |
| offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM; |
| pnv_phb4_reg_write(phb, offset, val, size); |
| break; |
| case PHB_SCOM_ETU_PMON_CONFIG: |
| case PHB_SCOM_ETU_PMON_CTR0: |
| case PHB_SCOM_ETU_PMON_CTR1: |
| case PHB_SCOM_ETU_PMON_CTR2: |
| case PHB_SCOM_ETU_PMON_CTR3: |
| offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG; |
| pnv_phb4_reg_write(phb, offset, val, size); |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx |
| "=%"PRIx64"\n", addr, val); |
| } |
| } |
| |
| const MemoryRegionOps pnv_phb4_xscom_ops = { |
| .read = pnv_phb4_xscom_read, |
| .write = pnv_phb4_xscom_write, |
| .valid.min_access_size = 8, |
| .valid.max_access_size = 8, |
| .impl.min_access_size = 8, |
| .impl.max_access_size = 8, |
| .endianness = DEVICE_BIG_ENDIAN, |
| }; |
| |
| static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| PnvPHB4 *phb = PNV_PHB4(opaque); |
| uint32_t reg = addr >> 3; |
| |
| /* All registers are read-able */ |
| return phb->nest_regs[reg]; |
| } |
| |
| /* |
| * Return the 'stack_no' of a PHB4. 'stack_no' is the order |
| * the PHB4 occupies in the PEC. This is the reverse of what |
| * pnv_phb4_pec_get_phb_id() does. |
| * |
| * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will |
| * be the second phb (stack_no = 1) of the PEC. |
| */ |
| static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb) |
| { |
| PnvPhb4PecState *pec = phb->pec; |
| PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); |
| int index = pec->index; |
| int stack_no = phb->phb_id; |
| |
| while (index--) { |
| stack_no -= pecc->num_phbs[index]; |
| } |
| |
| return stack_no; |
| } |
| |
| static void pnv_phb4_update_regions(PnvPHB4 *phb) |
| { |
| /* Unmap first always */ |
| if (memory_region_is_mapped(&phb->mr_regs)) { |
| memory_region_del_subregion(&phb->phbbar, &phb->mr_regs); |
| } |
| if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) { |
| memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio); |
| } |
| |
| /* Map registers if enabled */ |
| if (memory_region_is_mapped(&phb->phbbar)) { |
| memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs); |
| } |
| |
| /* Map ESB if enabled */ |
| if (memory_region_is_mapped(&phb->intbar)) { |
| memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio); |
| } |
| |
| /* Check/update m32 */ |
| pnv_phb4_check_all_mbt(phb); |
| } |
| |
| static void pnv_pec_phb_update_map(PnvPHB4 *phb) |
| { |
| PnvPhb4PecState *pec = phb->pec; |
| MemoryRegion *sysmem = get_system_memory(); |
| uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN]; |
| int stack_no = pnv_phb4_get_phb_stack_no(phb); |
| uint64_t bar, mask, size; |
| char name[64]; |
| |
| /* |
| * NOTE: This will really not work well if those are remapped |
| * after the PHB has created its sub regions. We could do better |
| * if we had a way to resize regions but we don't really care |
| * that much in practice as the stuff below really only happens |
| * once early during boot |
| */ |
| |
| /* Handle unmaps */ |
| if (memory_region_is_mapped(&phb->mmbar0) && |
| !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) { |
| memory_region_del_subregion(sysmem, &phb->mmbar0); |
| } |
| if (memory_region_is_mapped(&phb->mmbar1) && |
| !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) { |
| memory_region_del_subregion(sysmem, &phb->mmbar1); |
| } |
| if (memory_region_is_mapped(&phb->phbbar) && |
| !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) { |
| memory_region_del_subregion(sysmem, &phb->phbbar); |
| } |
| if (memory_region_is_mapped(&phb->intbar) && |
| !(bar_en & PEC_NEST_STK_BAR_EN_INT)) { |
| memory_region_del_subregion(sysmem, &phb->intbar); |
| } |
| |
| /* Update PHB */ |
| pnv_phb4_update_regions(phb); |
| |
| /* Handle maps */ |
| if (!memory_region_is_mapped(&phb->mmbar0) && |
| (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) { |
| bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8; |
| mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK]; |
| size = ((~mask) >> 8) + 1; |
| snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0", |
| pec->chip_id, pec->index, stack_no); |
| memory_region_init(&phb->mmbar0, OBJECT(phb), name, size); |
| memory_region_add_subregion(sysmem, bar, &phb->mmbar0); |
| phb->mmio0_base = bar; |
| phb->mmio0_size = size; |
| } |
| if (!memory_region_is_mapped(&phb->mmbar1) && |
| (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) { |
| bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8; |
| mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK]; |
| size = ((~mask) >> 8) + 1; |
| snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1", |
| pec->chip_id, pec->index, stack_no); |
| memory_region_init(&phb->mmbar1, OBJECT(phb), name, size); |
| memory_region_add_subregion(sysmem, bar, &phb->mmbar1); |
| phb->mmio1_base = bar; |
| phb->mmio1_size = size; |
| } |
| if (!memory_region_is_mapped(&phb->phbbar) && |
| (bar_en & PEC_NEST_STK_BAR_EN_PHB)) { |
| bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8; |
| size = PNV_PHB4_NUM_REGS << 3; |
| snprintf(name, sizeof(name), "pec-%d.%d-phb-%d", |
| pec->chip_id, pec->index, stack_no); |
| memory_region_init(&phb->phbbar, OBJECT(phb), name, size); |
| memory_region_add_subregion(sysmem, bar, &phb->phbbar); |
| } |
| if (!memory_region_is_mapped(&phb->intbar) && |
| (bar_en & PEC_NEST_STK_BAR_EN_INT)) { |
| bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8; |
| size = PNV_PHB4_MAX_INTs << 16; |
| snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int", |
| phb->pec->chip_id, phb->pec->index, stack_no); |
| memory_region_init(&phb->intbar, OBJECT(phb), name, size); |
| memory_region_add_subregion(sysmem, bar, &phb->intbar); |
| } |
| |
| /* Update PHB */ |
| pnv_phb4_update_regions(phb); |
| } |
| |
| static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| PnvPHB4 *phb = PNV_PHB4(opaque); |
| PnvPhb4PecState *pec = phb->pec; |
| uint32_t reg = addr >> 3; |
| |
| switch (reg) { |
| case PEC_NEST_STK_PCI_NEST_FIR: |
| phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val & PPC_BITMASK(0, 27); |
| break; |
| case PEC_NEST_STK_PCI_NEST_FIR_CLR: |
| phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val; |
| break; |
| case PEC_NEST_STK_PCI_NEST_FIR_SET: |
| phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val; |
| break; |
| case PEC_NEST_STK_PCI_NEST_FIR_MSK: |
| phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val & |
| PPC_BITMASK(0, 27); |
| break; |
| case PEC_NEST_STK_PCI_NEST_FIR_MSKC: |
| phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val; |
| break; |
| case PEC_NEST_STK_PCI_NEST_FIR_MSKS: |
| phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val; |
| break; |
| case PEC_NEST_STK_PCI_NEST_FIR_ACT0: |
| case PEC_NEST_STK_PCI_NEST_FIR_ACT1: |
| phb->nest_regs[reg] = val & PPC_BITMASK(0, 27); |
| break; |
| case PEC_NEST_STK_PCI_NEST_FIR_WOF: |
| phb->nest_regs[reg] = 0; |
| break; |
| case PEC_NEST_STK_ERR_REPORT_0: |
| case PEC_NEST_STK_ERR_REPORT_1: |
| case PEC_NEST_STK_PBCQ_GNRL_STATUS: |
| /* Flag error ? */ |
| break; |
| case PEC_NEST_STK_PBCQ_MODE: |
| phb->nest_regs[reg] = val & PPC_BITMASK(0, 7); |
| break; |
| case PEC_NEST_STK_MMIO_BAR0: |
| case PEC_NEST_STK_MMIO_BAR0_MASK: |
| case PEC_NEST_STK_MMIO_BAR1: |
| case PEC_NEST_STK_MMIO_BAR1_MASK: |
| if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & |
| (PEC_NEST_STK_BAR_EN_MMIO0 | |
| PEC_NEST_STK_BAR_EN_MMIO1)) { |
| phb_pec_error(pec, "Changing enabled BAR unsupported"); |
| } |
| phb->nest_regs[reg] = val & PPC_BITMASK(0, 39); |
| break; |
| case PEC_NEST_STK_PHB_REGS_BAR: |
| if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) { |
| phb_pec_error(pec, "Changing enabled BAR unsupported"); |
| } |
| phb->nest_regs[reg] = val & PPC_BITMASK(0, 41); |
| break; |
| case PEC_NEST_STK_INT_BAR: |
| if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) { |
| phb_pec_error(pec, "Changing enabled BAR unsupported"); |
| } |
| phb->nest_regs[reg] = val & PPC_BITMASK(0, 27); |
| break; |
| case PEC_NEST_STK_BAR_EN: |
| phb->nest_regs[reg] = val & PPC_BITMASK(0, 3); |
| pnv_pec_phb_update_map(phb); |
| break; |
| case PEC_NEST_STK_DATA_FRZ_TYPE: |
| /* Not used for now */ |
| phb->nest_regs[reg] = val & PPC_BITMASK(0, 27); |
| break; |
| case PEC_NEST_STK_PBCQ_SPARSE_PAGE: |
| phb->nest_regs[reg] = val & PPC_BITMASK(3, 5); |
| break; |
| case PEC_NEST_STK_PBCQ_CACHE_INJ: |
| phb->nest_regs[reg] = val & PPC_BITMASK(0, 7); |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx |
| "=%"PRIx64"\n", addr, val); |
| } |
| } |
| |
| static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = { |
| .read = pnv_pec_stk_nest_xscom_read, |
| .write = pnv_pec_stk_nest_xscom_write, |
| .valid.min_access_size = 8, |
| .valid.max_access_size = 8, |
| .impl.min_access_size = 8, |
| .impl.max_access_size = 8, |
| .endianness = DEVICE_BIG_ENDIAN, |
| }; |
| |
| static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| PnvPHB4 *phb = PNV_PHB4(opaque); |
| uint32_t reg = addr >> 3; |
| |
| /* All registers are read-able */ |
| return phb->pci_regs[reg]; |
| } |
| |
| static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| PnvPHB4 *phb = PNV_PHB4(opaque); |
| uint32_t reg = addr >> 3; |
| switch (reg) { |
| case PEC_PCI_STK_PCI_FIR: |
| phb->pci_regs[reg] = val & PPC_BITMASK(0, 5); |
| break; |
| case PEC_PCI_STK_PCI_FIR_CLR: |
| phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val; |
| break; |
| case PEC_PCI_STK_PCI_FIR_SET: |
| phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val; |
| break; |
| case PEC_PCI_STK_PCI_FIR_MSK: |
| phb->pci_regs[reg] = val & PPC_BITMASK(0, 5); |
| break; |
| case PEC_PCI_STK_PCI_FIR_MSKC: |
| phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val; |
| break; |
| case PEC_PCI_STK_PCI_FIR_MSKS: |
| phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val; |
| break; |
| case PEC_PCI_STK_PCI_FIR_ACT0: |
| case PEC_PCI_STK_PCI_FIR_ACT1: |
| phb->pci_regs[reg] = val & PPC_BITMASK(0, 5); |
| break; |
| case PEC_PCI_STK_PCI_FIR_WOF: |
| phb->pci_regs[reg] = 0; |
| break; |
| case PEC_PCI_STK_ETU_RESET: |
| phb->pci_regs[reg] = val & PPC_BIT(0); |
| /* TODO: Implement reset */ |
| break; |
| case PEC_PCI_STK_PBAIB_ERR_REPORT: |
| break; |
| case PEC_PCI_STK_PBAIB_TX_CMD_CRED: |
| phb->pci_regs[reg] = val & |
| ((PPC_BITMASK(0, 2) | PPC_BITMASK(10, 18) |
| | PPC_BITMASK(26, 34) | PPC_BITMASK(41, 50) |
| | PPC_BITMASK(58, 63))); |
| break; |
| case PEC_PCI_STK_PBAIB_TX_DAT_CRED: |
| phb->pci_regs[reg] = val & (PPC_BITMASK(33, 34) | PPC_BITMASK(44, 47)); |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx |
| "=%"PRIx64"\n", addr, val); |
| } |
| } |
| |
| static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = { |
| .read = pnv_pec_stk_pci_xscom_read, |
| .write = pnv_pec_stk_pci_xscom_write, |
| .valid.min_access_size = 8, |
| .valid.max_access_size = 8, |
| .impl.min_access_size = 8, |
| .impl.max_access_size = 8, |
| .endianness = DEVICE_BIG_ENDIAN, |
| }; |
| |
| static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num) |
| { |
| /* Check that out properly ... */ |
| return irq_num & 3; |
| } |
| |
| static void pnv_phb4_set_irq(void *opaque, int irq_num, int level) |
| { |
| PnvPHB4 *phb = PNV_PHB4(opaque); |
| uint32_t lsi_base; |
| |
| /* LSI only ... */ |
| if (irq_num > 3) { |
| phb_error(phb, "IRQ %x is not an LSI", irq_num); |
| } |
| lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]); |
| lsi_base <<= 3; |
| qemu_set_irq(phb->qirqs[lsi_base + irq_num], level); |
| } |
| |
| static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds) |
| { |
| uint64_t rtt, addr; |
| uint16_t rte; |
| int bus_num; |
| int num_PEs; |
| |
| /* Already resolved ? */ |
| if (ds->pe_num != PHB_INVALID_PE) { |
| return true; |
| } |
| |
| /* We need to lookup the RTT */ |
| rtt = ds->phb->regs[PHB_RTT_BAR >> 3]; |
| if (!(rtt & PHB_RTT_BAR_ENABLE)) { |
| phb_error(ds->phb, "DMA with RTT BAR disabled !"); |
| /* Set error bits ? fence ? ... */ |
| return false; |
| } |
| |
| /* Read RTE */ |
| bus_num = pci_bus_num(ds->bus); |
| addr = rtt & PHB_RTT_BASE_ADDRESS_MASK; |
| addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn); |
| if (dma_memory_read(&address_space_memory, addr, &rte, |
| sizeof(rte), MEMTXATTRS_UNSPECIFIED)) { |
| phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr); |
| /* Set error bits ? fence ? ... */ |
| return false; |
| } |
| rte = be16_to_cpu(rte); |
| |
| /* Fail upon reading of invalid PE# */ |
| num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); |
| if (rte >= num_PEs) { |
| phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte); |
| rte &= num_PEs - 1; |
| } |
| ds->pe_num = rte; |
| return true; |
| } |
| |
| static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr, |
| bool is_write, uint64_t tve, |
| IOMMUTLBEntry *tlb) |
| { |
| uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve); |
| int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve); |
| uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve); |
| uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve); |
| |
| /* Invalid levels */ |
| if (lev > 4) { |
| phb_error(ds->phb, "Invalid #levels in TVE %d", lev); |
| return; |
| } |
| |
| /* Invalid entry */ |
| if (tts == 0) { |
| phb_error(ds->phb, "Access to invalid TVE"); |
| return; |
| } |
| |
| /* IO Page Size of 0 means untranslated, else use TCEs */ |
| if (tps == 0) { |
| /* TODO: Handle boundaries */ |
| |
| /* Use 4k pages like q35 ... for now */ |
| tlb->iova = addr & 0xfffffffffffff000ull; |
| tlb->translated_addr = addr & 0x0003fffffffff000ull; |
| tlb->addr_mask = 0xfffull; |
| tlb->perm = IOMMU_RW; |
| } else { |
| uint32_t tce_shift, tbl_shift, sh; |
| uint64_t base, taddr, tce, tce_mask; |
| |
| /* Address bits per bottom level TCE entry */ |
| tce_shift = tps + 11; |
| |
| /* Address bits per table level */ |
| tbl_shift = tts + 8; |
| |
| /* Top level table base address */ |
| base = tta << 12; |
| |
| /* Total shift to first level */ |
| sh = tbl_shift * lev + tce_shift; |
| |
| /* TODO: Limit to support IO page sizes */ |
| |
| /* TODO: Multi-level untested */ |
| do { |
| lev--; |
| |
| /* Grab the TCE address */ |
| taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3); |
| if (dma_memory_read(&address_space_memory, taddr, &tce, |
| sizeof(tce), MEMTXATTRS_UNSPECIFIED)) { |
| phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr); |
| return; |
| } |
| tce = be64_to_cpu(tce); |
| |
| /* Check permission for indirect TCE */ |
| if ((lev >= 0) && !(tce & 3)) { |
| phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr); |
| phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, |
| is_write ? 'W' : 'R', tve); |
| phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", |
| tta, lev, tts, tps); |
| return; |
| } |
| sh -= tbl_shift; |
| base = tce & ~0xfffull; |
| } while (lev >= 0); |
| |
| /* We exit the loop with TCE being the final TCE */ |
| if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) { |
| phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr); |
| phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, |
| is_write ? 'W' : 'R', tve); |
| phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", |
| tta, lev, tts, tps); |
| return; |
| } |
| tce_mask = ~((1ull << tce_shift) - 1); |
| tlb->iova = addr & tce_mask; |
| tlb->translated_addr = tce & tce_mask; |
| tlb->addr_mask = ~tce_mask; |
| tlb->perm = tce & 3; |
| } |
| } |
| |
| static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu, |
| hwaddr addr, |
| IOMMUAccessFlags flag, |
| int iommu_idx) |
| { |
| PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr); |
| int tve_sel; |
| uint64_t tve, cfg; |
| IOMMUTLBEntry ret = { |
| .target_as = &address_space_memory, |
| .iova = addr, |
| .translated_addr = 0, |
| .addr_mask = ~(hwaddr)0, |
| .perm = IOMMU_NONE, |
| }; |
| |
| /* Resolve PE# */ |
| if (!pnv_phb4_resolve_pe(ds)) { |
| phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", |
| ds->bus, pci_bus_num(ds->bus), ds->devfn); |
| return ret; |
| } |
| |
| /* Check top bits */ |
| switch (addr >> 60) { |
| case 00: |
| /* DMA or 32-bit MSI ? */ |
| cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3]; |
| if ((cfg & PHB_PHB4C_32BIT_MSI_EN) && |
| ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) { |
| phb_error(ds->phb, "xlate on 32-bit MSI region"); |
| return ret; |
| } |
| /* Choose TVE XXX Use PHB4 Control Register */ |
| tve_sel = (addr >> 59) & 1; |
| tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel]; |
| pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret); |
| break; |
| case 01: |
| phb_error(ds->phb, "xlate on 64-bit MSI region"); |
| break; |
| default: |
| phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr); |
| } |
| return ret; |
| } |
| |
| #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region" |
| DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION, |
| TYPE_PNV_PHB4_IOMMU_MEMORY_REGION) |
| |
| static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass, |
| void *data) |
| { |
| IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); |
| |
| imrc->translate = pnv_phb4_translate_iommu; |
| } |
| |
| static const TypeInfo pnv_phb4_iommu_memory_region_info = { |
| .parent = TYPE_IOMMU_MEMORY_REGION, |
| .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION, |
| .class_init = pnv_phb4_iommu_memory_region_class_init, |
| }; |
| |
| /* |
| * Return the index/phb-id of a PHB4 that belongs to a |
| * pec->stacks[stack_index] stack. |
| */ |
| int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index) |
| { |
| PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); |
| int index = pec->index; |
| int offset = 0; |
| |
| while (index--) { |
| offset += pecc->num_phbs[index]; |
| } |
| |
| return offset + stack_index; |
| } |
| |
| /* |
| * MSI/MSIX memory region implementation. |
| * The handler handles both MSI and MSIX. |
| */ |
| static void pnv_phb4_msi_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| PnvPhb4DMASpace *ds = opaque; |
| PnvPHB4 *phb = ds->phb; |
| |
| uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f); |
| |
| /* Resolve PE# */ |
| if (!pnv_phb4_resolve_pe(ds)) { |
| phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", |
| ds->bus, pci_bus_num(ds->bus), ds->devfn); |
| return; |
| } |
| |
| /* TODO: Check it doesn't collide with LSIs */ |
| if (src >= phb->xsrc.nr_irqs) { |
| phb_error(phb, "MSI %d out of bounds", src); |
| return; |
| } |
| |
| /* TODO: check PE/MSI assignment */ |
| |
| qemu_irq_pulse(phb->qirqs[src]); |
| } |
| |
| /* There is no .read as the read result is undefined by PCI spec */ |
| static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| PnvPhb4DMASpace *ds = opaque; |
| |
| phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr); |
| return -1; |
| } |
| |
| static const MemoryRegionOps pnv_phb4_msi_ops = { |
| .read = pnv_phb4_msi_read, |
| .write = pnv_phb4_msi_write, |
| .endianness = DEVICE_LITTLE_ENDIAN |
| }; |
| |
| static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn) |
| { |
| PnvPhb4DMASpace *ds; |
| |
| QLIST_FOREACH(ds, &phb->dma_spaces, list) { |
| if (ds->bus == bus && ds->devfn == devfn) { |
| break; |
| } |
| } |
| return ds; |
| } |
| |
| static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn) |
| { |
| PnvPHB4 *phb = opaque; |
| PnvPhb4DMASpace *ds; |
| char name[32]; |
| |
| ds = pnv_phb4_dma_find(phb, bus, devfn); |
| |
| if (ds == NULL) { |
| ds = g_new0(PnvPhb4DMASpace, 1); |
| ds->bus = bus; |
| ds->devfn = devfn; |
| ds->pe_num = PHB_INVALID_PE; |
| ds->phb = phb; |
| snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id, |
| phb->phb_id); |
| memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr), |
| TYPE_PNV_PHB4_IOMMU_MEMORY_REGION, |
| OBJECT(phb), name, UINT64_MAX); |
| address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr), |
| name); |
| memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops, |
| ds, "msi32", 0x10000); |
| memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops, |
| ds, "msi64", 0x100000); |
| pnv_phb4_update_msi_regions(ds); |
| |
| QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list); |
| } |
| return &ds->dma_as; |
| } |
| |
| static void pnv_phb4_xscom_realize(PnvPHB4 *phb) |
| { |
| PnvPhb4PecState *pec = phb->pec; |
| PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); |
| int stack_no = pnv_phb4_get_phb_stack_no(phb); |
| uint32_t pec_nest_base; |
| uint32_t pec_pci_base; |
| char name[64]; |
| |
| assert(pec); |
| |
| /* Initialize the XSCOM regions for the stack registers */ |
| snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d", |
| pec->chip_id, pec->index, stack_no); |
| pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb), |
| &pnv_pec_stk_nest_xscom_ops, phb, name, |
| PHB4_PEC_NEST_STK_REGS_COUNT); |
| |
| snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d", |
| pec->chip_id, pec->index, stack_no); |
| pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb), |
| &pnv_pec_stk_pci_xscom_ops, phb, name, |
| PHB4_PEC_PCI_STK_REGS_COUNT); |
| |
| /* PHB pass-through */ |
| snprintf(name, sizeof(name), "xscom-pec-%d.%d-phb-%d", |
| pec->chip_id, pec->index, stack_no); |
| pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb), |
| &pnv_phb4_xscom_ops, phb, name, 0x40); |
| |
| pec_nest_base = pecc->xscom_nest_base(pec); |
| pec_pci_base = pecc->xscom_pci_base(pec); |
| |
| /* Populate the XSCOM address space. */ |
| pnv_xscom_add_subregion(pec->chip, |
| pec_nest_base + 0x40 * (stack_no + 1), |
| &phb->nest_regs_mr); |
| pnv_xscom_add_subregion(pec->chip, |
| pec_pci_base + 0x40 * (stack_no + 1), |
| &phb->pci_regs_mr); |
| pnv_xscom_add_subregion(pec->chip, |
| pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 + |
| 0x40 * stack_no, |
| &phb->phb_regs_mr); |
| } |
| |
| static PCIIOMMUOps pnv_phb4_iommu_ops = { |
| .get_address_space = pnv_phb4_dma_iommu, |
| }; |
| |
| static void pnv_phb4_instance_init(Object *obj) |
| { |
| PnvPHB4 *phb = PNV_PHB4(obj); |
| |
| QLIST_INIT(&phb->dma_spaces); |
| |
| /* XIVE interrupt source object */ |
| object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE); |
| } |
| |
| void pnv_phb4_bus_init(DeviceState *dev, PnvPHB4 *phb) |
| { |
| PCIHostState *pci = PCI_HOST_BRIDGE(dev); |
| char name[32]; |
| |
| /* |
| * PHB4 doesn't support IO space. However, qemu gets very upset if |
| * we don't have an IO region to anchor IO BARs onto so we just |
| * initialize one which we never hook up to anything |
| */ |
| snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id, |
| phb->phb_id); |
| memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000); |
| |
| snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id, |
| phb->phb_id); |
| memory_region_init(&phb->pci_mmio, OBJECT(phb), name, |
| PCI_MMIO_TOTAL_SIZE); |
| |
| pci->bus = pci_register_root_bus(dev, dev->id ? dev->id : NULL, |
| pnv_phb4_set_irq, pnv_phb4_map_irq, phb, |
| &phb->pci_mmio, &phb->pci_io, |
| 0, 4, TYPE_PNV_PHB4_ROOT_BUS); |
| |
| object_property_set_int(OBJECT(pci->bus), "phb-id", phb->phb_id, |
| &error_abort); |
| object_property_set_int(OBJECT(pci->bus), "chip-id", phb->chip_id, |
| &error_abort); |
| |
| pci_setup_iommu(pci->bus, &pnv_phb4_iommu_ops, phb); |
| pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; |
| } |
| |
| static void pnv_phb4_realize(DeviceState *dev, Error **errp) |
| { |
| PnvPHB4 *phb = PNV_PHB4(dev); |
| XiveSource *xsrc = &phb->xsrc; |
| int nr_irqs; |
| char name[32]; |
| |
| /* Set the "big_phb" flag */ |
| phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3; |
| |
| /* Controller Registers */ |
| snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id, |
| phb->phb_id); |
| memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb, |
| name, 0x2000); |
| |
| /* Setup XIVE Source */ |
| if (phb->big_phb) { |
| nr_irqs = PNV_PHB4_MAX_INTs; |
| } else { |
| nr_irqs = PNV_PHB4_MAX_INTs >> 1; |
| } |
| object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal); |
| object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal); |
| if (!qdev_realize(DEVICE(xsrc), NULL, errp)) { |
| return; |
| } |
| |
| pnv_phb4_update_xsrc(phb); |
| |
| phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs); |
| |
| pnv_phb4_xscom_realize(phb); |
| } |
| |
| /* |
| * Address base trigger mode (POWER10) |
| * |
| * Trigger directly the IC ESB page |
| */ |
| static void pnv_phb4_xive_notify_abt(PnvPHB4 *phb, uint32_t srcno, |
| bool pq_checked) |
| { |
| uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3]; |
| uint64_t data = 0; /* trigger data : don't care */ |
| hwaddr addr; |
| MemTxResult result; |
| int esb_shift; |
| |
| if (notif_port & PHB_INT_NOTIFY_ADDR_64K) { |
| esb_shift = 16; |
| } else { |
| esb_shift = 12; |
| } |
| |
| /* Compute the address of the IC ESB management page */ |
| addr = (notif_port & ~PHB_INT_NOTIFY_ADDR_64K); |
| addr |= (1ull << (esb_shift + 1)) * srcno; |
| addr |= (1ull << esb_shift); |
| |
| /* |
| * When the PQ state bits are checked on the PHB, the associated |
| * PQ state bits on the IC should be ignored. Use the unconditional |
| * trigger offset to inject a trigger on the IC. This is always |
| * the case for LSIs |
| */ |
| if (pq_checked) { |
| addr |= XIVE_ESB_INJECT; |
| } |
| |
| trace_pnv_phb4_xive_notify_ic(addr, data); |
| |
| address_space_stq_be(&address_space_memory, addr, data, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", addr); |
| return; |
| } |
| } |
| |
| static void pnv_phb4_xive_notify_ic(PnvPHB4 *phb, uint32_t srcno, |
| bool pq_checked) |
| { |
| uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3]; |
| uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3]; |
| uint64_t data = offset | srcno; |
| MemTxResult result; |
| |
| if (pq_checked) { |
| data |= XIVE_TRIGGER_PQ; |
| } |
| |
| trace_pnv_phb4_xive_notify_ic(notif_port, data); |
| |
| address_space_stq_be(&address_space_memory, notif_port, data, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port); |
| return; |
| } |
| } |
| |
| static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno, |
| bool pq_checked) |
| { |
| PnvPHB4 *phb = PNV_PHB4(xf); |
| |
| if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE) { |
| pnv_phb4_xive_notify_abt(phb, srcno, pq_checked); |
| } else { |
| pnv_phb4_xive_notify_ic(phb, srcno, pq_checked); |
| } |
| } |
| |
| static Property pnv_phb4_properties[] = { |
| DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0), |
| DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0), |
| DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC, |
| PnvPhb4PecState *), |
| DEFINE_PROP_LINK("phb-base", PnvPHB4, phb_base, TYPE_PNV_PHB, PnvPHB *), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void pnv_phb4_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass); |
| |
| dc->realize = pnv_phb4_realize; |
| device_class_set_props(dc, pnv_phb4_properties); |
| dc->user_creatable = false; |
| |
| xfc->notify = pnv_phb4_xive_notify; |
| } |
| |
| static const TypeInfo pnv_phb4_type_info = { |
| .name = TYPE_PNV_PHB4, |
| .parent = TYPE_DEVICE, |
| .instance_init = pnv_phb4_instance_init, |
| .instance_size = sizeof(PnvPHB4), |
| .class_init = pnv_phb4_class_init, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_XIVE_NOTIFIER }, |
| { }, |
| } |
| }; |
| |
| static const TypeInfo pnv_phb5_type_info = { |
| .name = TYPE_PNV_PHB5, |
| .parent = TYPE_PNV_PHB4, |
| .instance_size = sizeof(PnvPHB4), |
| }; |
| |
| static void pnv_phb4_root_bus_get_prop(Object *obj, Visitor *v, |
| const char *name, |
| void *opaque, Error **errp) |
| { |
| PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj); |
| uint64_t value = 0; |
| |
| if (strcmp(name, "phb-id") == 0) { |
| value = bus->phb_id; |
| } else { |
| value = bus->chip_id; |
| } |
| |
| visit_type_size(v, name, &value, errp); |
| } |
| |
| static void pnv_phb4_root_bus_set_prop(Object *obj, Visitor *v, |
| const char *name, |
| void *opaque, Error **errp) |
| |
| { |
| PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj); |
| uint64_t value; |
| |
| if (!visit_type_size(v, name, &value, errp)) { |
| return; |
| } |
| |
| if (strcmp(name, "phb-id") == 0) { |
| bus->phb_id = value; |
| } else { |
| bus->chip_id = value; |
| } |
| } |
| |
| static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data) |
| { |
| BusClass *k = BUS_CLASS(klass); |
| |
| object_class_property_add(klass, "phb-id", "int", |
| pnv_phb4_root_bus_get_prop, |
| pnv_phb4_root_bus_set_prop, |
| NULL, NULL); |
| |
| object_class_property_add(klass, "chip-id", "int", |
| pnv_phb4_root_bus_get_prop, |
| pnv_phb4_root_bus_set_prop, |
| NULL, NULL); |
| |
| /* |
| * PHB4 has only a single root complex. Enforce the limit on the |
| * parent bus |
| */ |
| k->max_dev = 1; |
| } |
| |
| static const TypeInfo pnv_phb4_root_bus_info = { |
| .name = TYPE_PNV_PHB4_ROOT_BUS, |
| .parent = TYPE_PCIE_BUS, |
| .instance_size = sizeof(PnvPHB4RootBus), |
| .class_init = pnv_phb4_root_bus_class_init, |
| }; |
| |
| static void pnv_phb4_register_types(void) |
| { |
| type_register_static(&pnv_phb4_root_bus_info); |
| type_register_static(&pnv_phb4_type_info); |
| type_register_static(&pnv_phb5_type_info); |
| type_register_static(&pnv_phb4_iommu_memory_region_info); |
| } |
| |
| type_init(pnv_phb4_register_types); |
| |
| void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon) |
| { |
| uint64_t notif_port = |
| phb->regs[PHB_INT_NOTIFY_ADDR >> 3] & ~PHB_INT_NOTIFY_ADDR_64K; |
| uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3]; |
| bool abt = !!(phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE); |
| |
| monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x %s @%"HWADDR_PRIx"\n", |
| phb->chip_id, phb->phb_id, |
| offset, offset + phb->xsrc.nr_irqs - 1, |
| abt ? "ABT" : "", |
| notif_port); |
| xive_source_pic_print_info(&phb->xsrc, 0, mon); |
| } |