| /* |
| * i.MX Fast Ethernet Controller emulation. |
| * |
| * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net> |
| * |
| * Based on Coldfire Fast Ethernet Controller emulation. |
| * |
| * Copyright (c) 2007 CodeSourcery. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/irq.h" |
| #include "hw/net/imx_fec.h" |
| #include "hw/qdev-properties.h" |
| #include "migration/vmstate.h" |
| #include "sysemu/dma.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "net/checksum.h" |
| #include "net/eth.h" |
| #include "trace.h" |
| |
| /* For crc32 */ |
| #include <zlib.h> |
| |
| #define IMX_MAX_DESC 1024 |
| |
| static const char *imx_default_reg_name(IMXFECState *s, uint32_t index) |
| { |
| static char tmp[20]; |
| snprintf(tmp, sizeof(tmp), "index %d", index); |
| return tmp; |
| } |
| |
| static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index) |
| { |
| switch (index) { |
| case ENET_FRBR: |
| return "FRBR"; |
| case ENET_FRSR: |
| return "FRSR"; |
| case ENET_MIIGSK_CFGR: |
| return "MIIGSK_CFGR"; |
| case ENET_MIIGSK_ENR: |
| return "MIIGSK_ENR"; |
| default: |
| return imx_default_reg_name(s, index); |
| } |
| } |
| |
| static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index) |
| { |
| switch (index) { |
| case ENET_RSFL: |
| return "RSFL"; |
| case ENET_RSEM: |
| return "RSEM"; |
| case ENET_RAEM: |
| return "RAEM"; |
| case ENET_RAFL: |
| return "RAFL"; |
| case ENET_TSEM: |
| return "TSEM"; |
| case ENET_TAEM: |
| return "TAEM"; |
| case ENET_TAFL: |
| return "TAFL"; |
| case ENET_TIPG: |
| return "TIPG"; |
| case ENET_FTRL: |
| return "FTRL"; |
| case ENET_TACC: |
| return "TACC"; |
| case ENET_RACC: |
| return "RACC"; |
| case ENET_ATCR: |
| return "ATCR"; |
| case ENET_ATVR: |
| return "ATVR"; |
| case ENET_ATOFF: |
| return "ATOFF"; |
| case ENET_ATPER: |
| return "ATPER"; |
| case ENET_ATCOR: |
| return "ATCOR"; |
| case ENET_ATINC: |
| return "ATINC"; |
| case ENET_ATSTMP: |
| return "ATSTMP"; |
| case ENET_TGSR: |
| return "TGSR"; |
| case ENET_TCSR0: |
| return "TCSR0"; |
| case ENET_TCCR0: |
| return "TCCR0"; |
| case ENET_TCSR1: |
| return "TCSR1"; |
| case ENET_TCCR1: |
| return "TCCR1"; |
| case ENET_TCSR2: |
| return "TCSR2"; |
| case ENET_TCCR2: |
| return "TCCR2"; |
| case ENET_TCSR3: |
| return "TCSR3"; |
| case ENET_TCCR3: |
| return "TCCR3"; |
| default: |
| return imx_default_reg_name(s, index); |
| } |
| } |
| |
| static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index) |
| { |
| switch (index) { |
| case ENET_EIR: |
| return "EIR"; |
| case ENET_EIMR: |
| return "EIMR"; |
| case ENET_RDAR: |
| return "RDAR"; |
| case ENET_TDAR: |
| return "TDAR"; |
| case ENET_ECR: |
| return "ECR"; |
| case ENET_MMFR: |
| return "MMFR"; |
| case ENET_MSCR: |
| return "MSCR"; |
| case ENET_MIBC: |
| return "MIBC"; |
| case ENET_RCR: |
| return "RCR"; |
| case ENET_TCR: |
| return "TCR"; |
| case ENET_PALR: |
| return "PALR"; |
| case ENET_PAUR: |
| return "PAUR"; |
| case ENET_OPD: |
| return "OPD"; |
| case ENET_IAUR: |
| return "IAUR"; |
| case ENET_IALR: |
| return "IALR"; |
| case ENET_GAUR: |
| return "GAUR"; |
| case ENET_GALR: |
| return "GALR"; |
| case ENET_TFWR: |
| return "TFWR"; |
| case ENET_RDSR: |
| return "RDSR"; |
| case ENET_TDSR: |
| return "TDSR"; |
| case ENET_MRBR: |
| return "MRBR"; |
| default: |
| if (s->is_fec) { |
| return imx_fec_reg_name(s, index); |
| } else { |
| return imx_enet_reg_name(s, index); |
| } |
| } |
| } |
| |
| /* |
| * Versions of this device with more than one TX descriptor save the |
| * 2nd and 3rd descriptors in a subsection, to maintain migration |
| * compatibility with previous versions of the device that only |
| * supported a single descriptor. |
| */ |
| static bool imx_eth_is_multi_tx_ring(void *opaque) |
| { |
| IMXFECState *s = IMX_FEC(opaque); |
| |
| return s->tx_ring_num > 1; |
| } |
| |
| static const VMStateDescription vmstate_imx_eth_txdescs = { |
| .name = "imx.fec/txdescs", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = imx_eth_is_multi_tx_ring, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT32(tx_descriptor[1], IMXFECState), |
| VMSTATE_UINT32(tx_descriptor[2], IMXFECState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_imx_eth = { |
| .name = TYPE_IMX_FEC, |
| .version_id = 2, |
| .minimum_version_id = 2, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX), |
| VMSTATE_UINT32(rx_descriptor, IMXFECState), |
| VMSTATE_UINT32(tx_descriptor[0], IMXFECState), |
| VMSTATE_UINT32(phy_status, IMXFECState), |
| VMSTATE_UINT32(phy_control, IMXFECState), |
| VMSTATE_UINT32(phy_advertise, IMXFECState), |
| VMSTATE_UINT32(phy_int, IMXFECState), |
| VMSTATE_UINT32(phy_int_mask, IMXFECState), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription * const []) { |
| &vmstate_imx_eth_txdescs, |
| NULL |
| }, |
| }; |
| |
| #define PHY_INT_ENERGYON (1 << 7) |
| #define PHY_INT_AUTONEG_COMPLETE (1 << 6) |
| #define PHY_INT_FAULT (1 << 5) |
| #define PHY_INT_DOWN (1 << 4) |
| #define PHY_INT_AUTONEG_LP (1 << 3) |
| #define PHY_INT_PARFAULT (1 << 2) |
| #define PHY_INT_AUTONEG_PAGE (1 << 1) |
| |
| static void imx_eth_update(IMXFECState *s); |
| |
| /* |
| * The MII phy could raise a GPIO to the processor which in turn |
| * could be handled as an interrpt by the OS. |
| * For now we don't handle any GPIO/interrupt line, so the OS will |
| * have to poll for the PHY status. |
| */ |
| static void imx_phy_update_irq(IMXFECState *s) |
| { |
| imx_eth_update(s); |
| } |
| |
| static void imx_phy_update_link(IMXFECState *s) |
| { |
| /* Autonegotiation status mirrors link status. */ |
| if (qemu_get_queue(s->nic)->link_down) { |
| trace_imx_phy_update_link("down"); |
| s->phy_status &= ~0x0024; |
| s->phy_int |= PHY_INT_DOWN; |
| } else { |
| trace_imx_phy_update_link("up"); |
| s->phy_status |= 0x0024; |
| s->phy_int |= PHY_INT_ENERGYON; |
| s->phy_int |= PHY_INT_AUTONEG_COMPLETE; |
| } |
| imx_phy_update_irq(s); |
| } |
| |
| static void imx_eth_set_link(NetClientState *nc) |
| { |
| imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc))); |
| } |
| |
| static void imx_phy_reset(IMXFECState *s) |
| { |
| trace_imx_phy_reset(); |
| |
| s->phy_status = 0x7809; |
| s->phy_control = 0x3000; |
| s->phy_advertise = 0x01e1; |
| s->phy_int_mask = 0; |
| s->phy_int = 0; |
| imx_phy_update_link(s); |
| } |
| |
| static uint32_t imx_phy_read(IMXFECState *s, int reg) |
| { |
| uint32_t val; |
| uint32_t phy = reg / 32; |
| |
| if (!s->phy_connected) { |
| return 0xffff; |
| } |
| |
| if (phy != s->phy_num) { |
| if (s->phy_consumer && phy == s->phy_consumer->phy_num) { |
| s = s->phy_consumer; |
| } else { |
| trace_imx_phy_read_num(phy, s->phy_num); |
| return 0xffff; |
| } |
| } |
| |
| reg %= 32; |
| |
| switch (reg) { |
| case 0: /* Basic Control */ |
| val = s->phy_control; |
| break; |
| case 1: /* Basic Status */ |
| val = s->phy_status; |
| break; |
| case 2: /* ID1 */ |
| val = 0x0007; |
| break; |
| case 3: /* ID2 */ |
| val = 0xc0d1; |
| break; |
| case 4: /* Auto-neg advertisement */ |
| val = s->phy_advertise; |
| break; |
| case 5: /* Auto-neg Link Partner Ability */ |
| val = 0x0f71; |
| break; |
| case 6: /* Auto-neg Expansion */ |
| val = 1; |
| break; |
| case 29: /* Interrupt source. */ |
| val = s->phy_int; |
| s->phy_int = 0; |
| imx_phy_update_irq(s); |
| break; |
| case 30: /* Interrupt mask */ |
| val = s->phy_int_mask; |
| break; |
| case 17: |
| case 18: |
| case 27: |
| case 31: |
| qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n", |
| TYPE_IMX_FEC, __func__, reg); |
| val = 0; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n", |
| TYPE_IMX_FEC, __func__, reg); |
| val = 0; |
| break; |
| } |
| |
| trace_imx_phy_read(val, phy, reg); |
| |
| return val; |
| } |
| |
| static void imx_phy_write(IMXFECState *s, int reg, uint32_t val) |
| { |
| uint32_t phy = reg / 32; |
| |
| if (!s->phy_connected) { |
| return; |
| } |
| |
| if (phy != s->phy_num) { |
| if (s->phy_consumer && phy == s->phy_consumer->phy_num) { |
| s = s->phy_consumer; |
| } else { |
| trace_imx_phy_write_num(phy, s->phy_num); |
| return; |
| } |
| } |
| |
| reg %= 32; |
| |
| trace_imx_phy_write(val, phy, reg); |
| |
| switch (reg) { |
| case 0: /* Basic Control */ |
| if (val & 0x8000) { |
| imx_phy_reset(s); |
| } else { |
| s->phy_control = val & 0x7980; |
| /* Complete autonegotiation immediately. */ |
| if (val & 0x1000) { |
| s->phy_status |= 0x0020; |
| } |
| } |
| break; |
| case 4: /* Auto-neg advertisement */ |
| s->phy_advertise = (val & 0x2d7f) | 0x80; |
| break; |
| case 30: /* Interrupt mask */ |
| s->phy_int_mask = val & 0xff; |
| imx_phy_update_irq(s); |
| break; |
| case 17: |
| case 18: |
| case 27: |
| case 31: |
| qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n", |
| TYPE_IMX_FEC, __func__, reg); |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n", |
| TYPE_IMX_FEC, __func__, reg); |
| break; |
| } |
| } |
| |
| static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr) |
| { |
| dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd), |
| MEMTXATTRS_UNSPECIFIED); |
| |
| trace_imx_fec_read_bd(addr, bd->flags, bd->length, bd->data); |
| } |
| |
| static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr) |
| { |
| dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd), |
| MEMTXATTRS_UNSPECIFIED); |
| } |
| |
| static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr) |
| { |
| dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd), |
| MEMTXATTRS_UNSPECIFIED); |
| |
| trace_imx_enet_read_bd(addr, bd->flags, bd->length, bd->data, |
| bd->option, bd->status); |
| } |
| |
| static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr) |
| { |
| dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd), |
| MEMTXATTRS_UNSPECIFIED); |
| } |
| |
| static void imx_eth_update(IMXFECState *s) |
| { |
| /* |
| * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER |
| * interrupts swapped. This worked with older versions of Linux (4.14 |
| * and older) since Linux associated both interrupt lines with Ethernet |
| * MAC interrupts. Specifically, |
| * - Linux 4.15 and later have separate interrupt handlers for the MAC and |
| * timer interrupts. Those versions of Linux fail with versions of QEMU |
| * with swapped interrupt assignments. |
| * - In linux 4.14, both interrupt lines were registered with the Ethernet |
| * MAC interrupt handler. As a result, all versions of qemu happen to |
| * work, though that is accidental. |
| * - In Linux 4.9 and older, the timer interrupt was registered directly |
| * with the Ethernet MAC interrupt handler. The MAC interrupt was |
| * redirected to a GPIO interrupt to work around erratum ERR006687. |
| * This was implemented using the SOC's IOMUX block. In qemu, this GPIO |
| * interrupt never fired since IOMUX is currently not supported in qemu. |
| * Linux instead received MAC interrupts on the timer interrupt. |
| * As a result, qemu versions with the swapped interrupt assignment work, |
| * albeit accidentally, but qemu versions with the correct interrupt |
| * assignment fail. |
| * |
| * To ensure that all versions of Linux work, generate ENET_INT_MAC |
| * interrupts on both interrupt lines. This should be changed if and when |
| * qemu supports IOMUX. |
| */ |
| if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & |
| (ENET_INT_MAC | ENET_INT_TS_TIMER)) { |
| qemu_set_irq(s->irq[1], 1); |
| } else { |
| qemu_set_irq(s->irq[1], 0); |
| } |
| |
| if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) { |
| qemu_set_irq(s->irq[0], 1); |
| } else { |
| qemu_set_irq(s->irq[0], 0); |
| } |
| } |
| |
| static void imx_fec_do_tx(IMXFECState *s) |
| { |
| int frame_size = 0, descnt = 0; |
| uint8_t *ptr = s->frame; |
| uint32_t addr = s->tx_descriptor[0]; |
| |
| while (descnt++ < IMX_MAX_DESC) { |
| IMXFECBufDesc bd; |
| int len; |
| |
| imx_fec_read_bd(&bd, addr); |
| if ((bd.flags & ENET_BD_R) == 0) { |
| |
| /* Run out of descriptors to transmit. */ |
| trace_imx_eth_tx_bd_busy(); |
| |
| break; |
| } |
| len = bd.length; |
| if (frame_size + len > ENET_MAX_FRAME_SIZE) { |
| len = ENET_MAX_FRAME_SIZE - frame_size; |
| s->regs[ENET_EIR] |= ENET_INT_BABT; |
| } |
| dma_memory_read(&address_space_memory, bd.data, ptr, len, |
| MEMTXATTRS_UNSPECIFIED); |
| ptr += len; |
| frame_size += len; |
| if (bd.flags & ENET_BD_L) { |
| /* Last buffer in frame. */ |
| qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size); |
| ptr = s->frame; |
| frame_size = 0; |
| s->regs[ENET_EIR] |= ENET_INT_TXF; |
| } |
| s->regs[ENET_EIR] |= ENET_INT_TXB; |
| bd.flags &= ~ENET_BD_R; |
| /* Write back the modified descriptor. */ |
| imx_fec_write_bd(&bd, addr); |
| /* Advance to the next descriptor. */ |
| if ((bd.flags & ENET_BD_W) != 0) { |
| addr = s->regs[ENET_TDSR]; |
| } else { |
| addr += sizeof(bd); |
| } |
| } |
| |
| s->tx_descriptor[0] = addr; |
| |
| imx_eth_update(s); |
| } |
| |
| static void imx_enet_do_tx(IMXFECState *s, uint32_t index) |
| { |
| int frame_size = 0, descnt = 0; |
| |
| uint8_t *ptr = s->frame; |
| uint32_t addr, int_txb, int_txf, tdsr; |
| size_t ring; |
| |
| switch (index) { |
| case ENET_TDAR: |
| ring = 0; |
| int_txb = ENET_INT_TXB; |
| int_txf = ENET_INT_TXF; |
| tdsr = ENET_TDSR; |
| break; |
| case ENET_TDAR1: |
| ring = 1; |
| int_txb = ENET_INT_TXB1; |
| int_txf = ENET_INT_TXF1; |
| tdsr = ENET_TDSR1; |
| break; |
| case ENET_TDAR2: |
| ring = 2; |
| int_txb = ENET_INT_TXB2; |
| int_txf = ENET_INT_TXF2; |
| tdsr = ENET_TDSR2; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: bogus value for index %x\n", |
| __func__, index); |
| abort(); |
| break; |
| } |
| |
| addr = s->tx_descriptor[ring]; |
| |
| while (descnt++ < IMX_MAX_DESC) { |
| IMXENETBufDesc bd; |
| int len; |
| |
| imx_enet_read_bd(&bd, addr); |
| if ((bd.flags & ENET_BD_R) == 0) { |
| /* Run out of descriptors to transmit. */ |
| |
| trace_imx_eth_tx_bd_busy(); |
| |
| break; |
| } |
| len = bd.length; |
| if (frame_size + len > ENET_MAX_FRAME_SIZE) { |
| len = ENET_MAX_FRAME_SIZE - frame_size; |
| s->regs[ENET_EIR] |= ENET_INT_BABT; |
| } |
| dma_memory_read(&address_space_memory, bd.data, ptr, len, |
| MEMTXATTRS_UNSPECIFIED); |
| ptr += len; |
| frame_size += len; |
| if (bd.flags & ENET_BD_L) { |
| int csum = 0; |
| |
| if (bd.option & ENET_BD_PINS) { |
| csum |= (CSUM_TCP | CSUM_UDP); |
| } |
| if (bd.option & ENET_BD_IINS) { |
| csum |= CSUM_IP; |
| } |
| if (csum) { |
| net_checksum_calculate(s->frame, frame_size, csum); |
| } |
| |
| /* Last buffer in frame. */ |
| |
| qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size); |
| ptr = s->frame; |
| |
| frame_size = 0; |
| if (bd.option & ENET_BD_TX_INT) { |
| s->regs[ENET_EIR] |= int_txf; |
| } |
| /* Indicate that we've updated the last buffer descriptor. */ |
| bd.last_buffer = ENET_BD_BDU; |
| } |
| if (bd.option & ENET_BD_TX_INT) { |
| s->regs[ENET_EIR] |= int_txb; |
| } |
| bd.flags &= ~ENET_BD_R; |
| /* Write back the modified descriptor. */ |
| imx_enet_write_bd(&bd, addr); |
| /* Advance to the next descriptor. */ |
| if ((bd.flags & ENET_BD_W) != 0) { |
| addr = s->regs[tdsr]; |
| } else { |
| addr += sizeof(bd); |
| } |
| } |
| |
| s->tx_descriptor[ring] = addr; |
| |
| imx_eth_update(s); |
| } |
| |
| static void imx_eth_do_tx(IMXFECState *s, uint32_t index) |
| { |
| if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) { |
| imx_enet_do_tx(s, index); |
| } else { |
| imx_fec_do_tx(s); |
| } |
| } |
| |
| static void imx_eth_enable_rx(IMXFECState *s, bool flush) |
| { |
| IMXFECBufDesc bd; |
| |
| imx_fec_read_bd(&bd, s->rx_descriptor); |
| |
| s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0; |
| |
| if (!s->regs[ENET_RDAR]) { |
| trace_imx_eth_rx_bd_full(); |
| } else if (flush) { |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| } |
| |
| static void imx_eth_reset(DeviceState *d) |
| { |
| IMXFECState *s = IMX_FEC(d); |
| |
| /* Reset the Device */ |
| memset(s->regs, 0, sizeof(s->regs)); |
| s->regs[ENET_ECR] = 0xf0000000; |
| s->regs[ENET_MIBC] = 0xc0000000; |
| s->regs[ENET_RCR] = 0x05ee0001; |
| s->regs[ENET_OPD] = 0x00010000; |
| |
| s->regs[ENET_PALR] = (s->conf.macaddr.a[0] << 24) |
| | (s->conf.macaddr.a[1] << 16) |
| | (s->conf.macaddr.a[2] << 8) |
| | s->conf.macaddr.a[3]; |
| s->regs[ENET_PAUR] = (s->conf.macaddr.a[4] << 24) |
| | (s->conf.macaddr.a[5] << 16) |
| | 0x8808; |
| |
| if (s->is_fec) { |
| s->regs[ENET_FRBR] = 0x00000600; |
| s->regs[ENET_FRSR] = 0x00000500; |
| s->regs[ENET_MIIGSK_ENR] = 0x00000006; |
| } else { |
| s->regs[ENET_RAEM] = 0x00000004; |
| s->regs[ENET_RAFL] = 0x00000004; |
| s->regs[ENET_TAEM] = 0x00000004; |
| s->regs[ENET_TAFL] = 0x00000008; |
| s->regs[ENET_TIPG] = 0x0000000c; |
| s->regs[ENET_FTRL] = 0x000007ff; |
| s->regs[ENET_ATPER] = 0x3b9aca00; |
| } |
| |
| s->rx_descriptor = 0; |
| memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor)); |
| |
| /* We also reset the PHY */ |
| imx_phy_reset(s); |
| } |
| |
| static uint32_t imx_default_read(IMXFECState *s, uint32_t index) |
| { |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" |
| PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4); |
| return 0; |
| } |
| |
| static uint32_t imx_fec_read(IMXFECState *s, uint32_t index) |
| { |
| switch (index) { |
| case ENET_FRBR: |
| case ENET_FRSR: |
| case ENET_MIIGSK_CFGR: |
| case ENET_MIIGSK_ENR: |
| return s->regs[index]; |
| default: |
| return imx_default_read(s, index); |
| } |
| } |
| |
| static uint32_t imx_enet_read(IMXFECState *s, uint32_t index) |
| { |
| switch (index) { |
| case ENET_RSFL: |
| case ENET_RSEM: |
| case ENET_RAEM: |
| case ENET_RAFL: |
| case ENET_TSEM: |
| case ENET_TAEM: |
| case ENET_TAFL: |
| case ENET_TIPG: |
| case ENET_FTRL: |
| case ENET_TACC: |
| case ENET_RACC: |
| case ENET_ATCR: |
| case ENET_ATVR: |
| case ENET_ATOFF: |
| case ENET_ATPER: |
| case ENET_ATCOR: |
| case ENET_ATINC: |
| case ENET_ATSTMP: |
| case ENET_TGSR: |
| case ENET_TCSR0: |
| case ENET_TCCR0: |
| case ENET_TCSR1: |
| case ENET_TCCR1: |
| case ENET_TCSR2: |
| case ENET_TCCR2: |
| case ENET_TCSR3: |
| case ENET_TCCR3: |
| return s->regs[index]; |
| default: |
| return imx_default_read(s, index); |
| } |
| } |
| |
| static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| uint32_t value = 0; |
| IMXFECState *s = IMX_FEC(opaque); |
| uint32_t index = offset >> 2; |
| |
| switch (index) { |
| case ENET_EIR: |
| case ENET_EIMR: |
| case ENET_RDAR: |
| case ENET_TDAR: |
| case ENET_ECR: |
| case ENET_MMFR: |
| case ENET_MSCR: |
| case ENET_MIBC: |
| case ENET_RCR: |
| case ENET_TCR: |
| case ENET_PALR: |
| case ENET_PAUR: |
| case ENET_OPD: |
| case ENET_IAUR: |
| case ENET_IALR: |
| case ENET_GAUR: |
| case ENET_GALR: |
| case ENET_TFWR: |
| case ENET_RDSR: |
| case ENET_TDSR: |
| case ENET_MRBR: |
| value = s->regs[index]; |
| break; |
| default: |
| if (s->is_fec) { |
| value = imx_fec_read(s, index); |
| } else { |
| value = imx_enet_read(s, index); |
| } |
| break; |
| } |
| |
| trace_imx_eth_read(index, imx_eth_reg_name(s, index), value); |
| |
| return value; |
| } |
| |
| static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value) |
| { |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%" |
| PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4); |
| return; |
| } |
| |
| static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value) |
| { |
| switch (index) { |
| case ENET_FRBR: |
| /* FRBR is read only */ |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n", |
| TYPE_IMX_FEC, __func__); |
| break; |
| case ENET_FRSR: |
| s->regs[index] = (value & 0x000003fc) | 0x00000400; |
| break; |
| case ENET_MIIGSK_CFGR: |
| s->regs[index] = value & 0x00000053; |
| break; |
| case ENET_MIIGSK_ENR: |
| s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0; |
| break; |
| default: |
| imx_default_write(s, index, value); |
| break; |
| } |
| } |
| |
| static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value) |
| { |
| switch (index) { |
| case ENET_RSFL: |
| case ENET_RSEM: |
| case ENET_RAEM: |
| case ENET_RAFL: |
| case ENET_TSEM: |
| case ENET_TAEM: |
| case ENET_TAFL: |
| s->regs[index] = value & 0x000001ff; |
| break; |
| case ENET_TIPG: |
| s->regs[index] = value & 0x0000001f; |
| break; |
| case ENET_FTRL: |
| s->regs[index] = value & 0x00003fff; |
| break; |
| case ENET_TACC: |
| s->regs[index] = value & 0x00000019; |
| break; |
| case ENET_RACC: |
| s->regs[index] = value & 0x000000C7; |
| break; |
| case ENET_ATCR: |
| s->regs[index] = value & 0x00002a9d; |
| break; |
| case ENET_ATVR: |
| case ENET_ATOFF: |
| case ENET_ATPER: |
| s->regs[index] = value; |
| break; |
| case ENET_ATSTMP: |
| /* ATSTMP is read only */ |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n", |
| TYPE_IMX_FEC, __func__); |
| break; |
| case ENET_ATCOR: |
| s->regs[index] = value & 0x7fffffff; |
| break; |
| case ENET_ATINC: |
| s->regs[index] = value & 0x00007f7f; |
| break; |
| case ENET_TGSR: |
| /* implement clear timer flag */ |
| s->regs[index] &= ~(value & 0x0000000f); /* all bits W1C */ |
| break; |
| case ENET_TCSR0: |
| case ENET_TCSR1: |
| case ENET_TCSR2: |
| case ENET_TCSR3: |
| s->regs[index] &= ~(value & 0x00000080); /* W1C bits */ |
| s->regs[index] &= ~0x0000007d; /* writable fields */ |
| s->regs[index] |= (value & 0x0000007d); |
| break; |
| case ENET_TCCR0: |
| case ENET_TCCR1: |
| case ENET_TCCR2: |
| case ENET_TCCR3: |
| s->regs[index] = value; |
| break; |
| default: |
| imx_default_write(s, index, value); |
| break; |
| } |
| } |
| |
| static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value, |
| unsigned size) |
| { |
| IMXFECState *s = IMX_FEC(opaque); |
| const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s); |
| uint32_t index = offset >> 2; |
| |
| trace_imx_eth_write(index, imx_eth_reg_name(s, index), value); |
| |
| switch (index) { |
| case ENET_EIR: |
| s->regs[index] &= ~value; |
| break; |
| case ENET_EIMR: |
| s->regs[index] = value; |
| break; |
| case ENET_RDAR: |
| if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) { |
| if (!s->regs[index]) { |
| imx_eth_enable_rx(s, true); |
| } |
| } else { |
| s->regs[index] = 0; |
| } |
| break; |
| case ENET_TDAR1: |
| case ENET_TDAR2: |
| if (unlikely(single_tx_ring)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "[%s]%s: trying to access TDAR2 or TDAR1\n", |
| TYPE_IMX_FEC, __func__); |
| return; |
| } |
| /* fall through */ |
| case ENET_TDAR: |
| if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) { |
| s->regs[index] = ENET_TDAR_TDAR; |
| imx_eth_do_tx(s, index); |
| } |
| s->regs[index] = 0; |
| break; |
| case ENET_ECR: |
| if (value & ENET_ECR_RESET) { |
| return imx_eth_reset(DEVICE(s)); |
| } |
| s->regs[index] = value; |
| if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) { |
| s->regs[ENET_RDAR] = 0; |
| s->rx_descriptor = s->regs[ENET_RDSR]; |
| s->regs[ENET_TDAR] = 0; |
| s->regs[ENET_TDAR1] = 0; |
| s->regs[ENET_TDAR2] = 0; |
| s->tx_descriptor[0] = s->regs[ENET_TDSR]; |
| s->tx_descriptor[1] = s->regs[ENET_TDSR1]; |
| s->tx_descriptor[2] = s->regs[ENET_TDSR2]; |
| } |
| break; |
| case ENET_MMFR: |
| s->regs[index] = value; |
| if (extract32(value, 29, 1)) { |
| /* This is a read operation */ |
| s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16, |
| imx_phy_read(s, |
| extract32(value, |
| 18, 10))); |
| } else { |
| /* This is a write operation */ |
| imx_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16)); |
| } |
| /* raise the interrupt as the PHY operation is done */ |
| s->regs[ENET_EIR] |= ENET_INT_MII; |
| break; |
| case ENET_MSCR: |
| s->regs[index] = value & 0xfe; |
| break; |
| case ENET_MIBC: |
| /* TODO: Implement MIB. */ |
| s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0; |
| break; |
| case ENET_RCR: |
| s->regs[index] = value & 0x07ff003f; |
| /* TODO: Implement LOOP mode. */ |
| break; |
| case ENET_TCR: |
| /* We transmit immediately, so raise GRA immediately. */ |
| s->regs[index] = value; |
| if (value & 1) { |
| s->regs[ENET_EIR] |= ENET_INT_GRA; |
| } |
| break; |
| case ENET_PALR: |
| s->regs[index] = value; |
| s->conf.macaddr.a[0] = value >> 24; |
| s->conf.macaddr.a[1] = value >> 16; |
| s->conf.macaddr.a[2] = value >> 8; |
| s->conf.macaddr.a[3] = value; |
| break; |
| case ENET_PAUR: |
| s->regs[index] = (value | 0x0000ffff) & 0xffff8808; |
| s->conf.macaddr.a[4] = value >> 24; |
| s->conf.macaddr.a[5] = value >> 16; |
| break; |
| case ENET_OPD: |
| s->regs[index] = (value & 0x0000ffff) | 0x00010000; |
| break; |
| case ENET_IAUR: |
| case ENET_IALR: |
| case ENET_GAUR: |
| case ENET_GALR: |
| /* TODO: implement MAC hash filtering. */ |
| break; |
| case ENET_TFWR: |
| if (s->is_fec) { |
| s->regs[index] = value & 0x3; |
| } else { |
| s->regs[index] = value & 0x13f; |
| } |
| break; |
| case ENET_RDSR: |
| if (s->is_fec) { |
| s->regs[index] = value & ~3; |
| } else { |
| s->regs[index] = value & ~7; |
| } |
| s->rx_descriptor = s->regs[index]; |
| break; |
| case ENET_TDSR: |
| if (s->is_fec) { |
| s->regs[index] = value & ~3; |
| } else { |
| s->regs[index] = value & ~7; |
| } |
| s->tx_descriptor[0] = s->regs[index]; |
| break; |
| case ENET_TDSR1: |
| if (unlikely(single_tx_ring)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "[%s]%s: trying to access TDSR1\n", |
| TYPE_IMX_FEC, __func__); |
| return; |
| } |
| |
| s->regs[index] = value & ~7; |
| s->tx_descriptor[1] = s->regs[index]; |
| break; |
| case ENET_TDSR2: |
| if (unlikely(single_tx_ring)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "[%s]%s: trying to access TDSR2\n", |
| TYPE_IMX_FEC, __func__); |
| return; |
| } |
| |
| s->regs[index] = value & ~7; |
| s->tx_descriptor[2] = s->regs[index]; |
| break; |
| case ENET_MRBR: |
| s->regs[index] = value & 0x00003ff0; |
| break; |
| default: |
| if (s->is_fec) { |
| imx_fec_write(s, index, value); |
| } else { |
| imx_enet_write(s, index, value); |
| } |
| return; |
| } |
| |
| imx_eth_update(s); |
| } |
| |
| static bool imx_eth_can_receive(NetClientState *nc) |
| { |
| IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); |
| |
| return !!s->regs[ENET_RDAR]; |
| } |
| |
| static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf, |
| size_t len) |
| { |
| IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); |
| IMXFECBufDesc bd; |
| uint32_t flags = 0; |
| uint32_t addr; |
| uint32_t crc; |
| uint32_t buf_addr; |
| uint8_t *crc_ptr; |
| unsigned int buf_len; |
| size_t size = len; |
| |
| trace_imx_fec_receive(size); |
| |
| if (!s->regs[ENET_RDAR]) { |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n", |
| TYPE_IMX_FEC, __func__); |
| return 0; |
| } |
| |
| crc = cpu_to_be32(crc32(~0, buf, size)); |
| /* Increase size by 4, loop below reads the last 4 bytes from crc_ptr. */ |
| size += 4; |
| crc_ptr = (uint8_t *) &crc; |
| |
| /* Huge frames are truncated. */ |
| if (size > ENET_MAX_FRAME_SIZE) { |
| size = ENET_MAX_FRAME_SIZE; |
| flags |= ENET_BD_TR | ENET_BD_LG; |
| } |
| |
| /* Frames larger than the user limit just set error flags. */ |
| if (size > (s->regs[ENET_RCR] >> 16)) { |
| flags |= ENET_BD_LG; |
| } |
| |
| addr = s->rx_descriptor; |
| while (size > 0) { |
| imx_fec_read_bd(&bd, addr); |
| if ((bd.flags & ENET_BD_E) == 0) { |
| /* No descriptors available. Bail out. */ |
| /* |
| * FIXME: This is wrong. We should probably either |
| * save the remainder for when more RX buffers are |
| * available, or flag an error. |
| */ |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n", |
| TYPE_IMX_FEC, __func__); |
| break; |
| } |
| buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR]; |
| bd.length = buf_len; |
| size -= buf_len; |
| |
| trace_imx_fec_receive_len(addr, bd.length); |
| |
| /* The last 4 bytes are the CRC. */ |
| if (size < 4) { |
| buf_len += size - 4; |
| } |
| buf_addr = bd.data; |
| dma_memory_write(&address_space_memory, buf_addr, buf, buf_len, |
| MEMTXATTRS_UNSPECIFIED); |
| buf += buf_len; |
| if (size < 4) { |
| dma_memory_write(&address_space_memory, buf_addr + buf_len, |
| crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED); |
| crc_ptr += 4 - size; |
| } |
| bd.flags &= ~ENET_BD_E; |
| if (size == 0) { |
| /* Last buffer in frame. */ |
| bd.flags |= flags | ENET_BD_L; |
| |
| trace_imx_fec_receive_last(bd.flags); |
| |
| s->regs[ENET_EIR] |= ENET_INT_RXF; |
| } else { |
| s->regs[ENET_EIR] |= ENET_INT_RXB; |
| } |
| imx_fec_write_bd(&bd, addr); |
| /* Advance to the next descriptor. */ |
| if ((bd.flags & ENET_BD_W) != 0) { |
| addr = s->regs[ENET_RDSR]; |
| } else { |
| addr += sizeof(bd); |
| } |
| } |
| s->rx_descriptor = addr; |
| imx_eth_enable_rx(s, false); |
| imx_eth_update(s); |
| return len; |
| } |
| |
| static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf, |
| size_t len) |
| { |
| IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); |
| IMXENETBufDesc bd; |
| uint32_t flags = 0; |
| uint32_t addr; |
| uint32_t crc; |
| uint32_t buf_addr; |
| uint8_t *crc_ptr; |
| unsigned int buf_len; |
| size_t size = len; |
| bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16; |
| |
| trace_imx_enet_receive(size); |
| |
| if (!s->regs[ENET_RDAR]) { |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n", |
| TYPE_IMX_FEC, __func__); |
| return 0; |
| } |
| |
| crc = cpu_to_be32(crc32(~0, buf, size)); |
| /* Increase size by 4, loop below reads the last 4 bytes from crc_ptr. */ |
| size += 4; |
| crc_ptr = (uint8_t *) &crc; |
| |
| if (shift16) { |
| size += 2; |
| } |
| |
| /* Huge frames are truncated. */ |
| if (size > s->regs[ENET_FTRL]) { |
| size = s->regs[ENET_FTRL]; |
| flags |= ENET_BD_TR | ENET_BD_LG; |
| } |
| |
| /* Frames larger than the user limit just set error flags. */ |
| if (size > (s->regs[ENET_RCR] >> 16)) { |
| flags |= ENET_BD_LG; |
| } |
| |
| addr = s->rx_descriptor; |
| while (size > 0) { |
| imx_enet_read_bd(&bd, addr); |
| if ((bd.flags & ENET_BD_E) == 0) { |
| /* No descriptors available. Bail out. */ |
| /* |
| * FIXME: This is wrong. We should probably either |
| * save the remainder for when more RX buffers are |
| * available, or flag an error. |
| */ |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n", |
| TYPE_IMX_FEC, __func__); |
| break; |
| } |
| buf_len = MIN(size, s->regs[ENET_MRBR]); |
| bd.length = buf_len; |
| size -= buf_len; |
| |
| trace_imx_enet_receive_len(addr, bd.length); |
| |
| /* The last 4 bytes are the CRC. */ |
| if (size < 4) { |
| buf_len += size - 4; |
| } |
| buf_addr = bd.data; |
| |
| if (shift16) { |
| /* |
| * If SHIFT16 bit of ENETx_RACC register is set we need to |
| * align the payload to 4-byte boundary. |
| */ |
| const uint8_t zeros[2] = { 0 }; |
| |
| dma_memory_write(&address_space_memory, buf_addr, zeros, |
| sizeof(zeros), MEMTXATTRS_UNSPECIFIED); |
| |
| buf_addr += sizeof(zeros); |
| buf_len -= sizeof(zeros); |
| |
| /* We only do this once per Ethernet frame */ |
| shift16 = false; |
| } |
| |
| dma_memory_write(&address_space_memory, buf_addr, buf, buf_len, |
| MEMTXATTRS_UNSPECIFIED); |
| buf += buf_len; |
| if (size < 4) { |
| dma_memory_write(&address_space_memory, buf_addr + buf_len, |
| crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED); |
| crc_ptr += 4 - size; |
| } |
| bd.flags &= ~ENET_BD_E; |
| if (size == 0) { |
| /* Last buffer in frame. */ |
| bd.flags |= flags | ENET_BD_L; |
| |
| trace_imx_enet_receive_last(bd.flags); |
| |
| /* Indicate that we've updated the last buffer descriptor. */ |
| bd.last_buffer = ENET_BD_BDU; |
| if (bd.option & ENET_BD_RX_INT) { |
| s->regs[ENET_EIR] |= ENET_INT_RXF; |
| } |
| } else { |
| if (bd.option & ENET_BD_RX_INT) { |
| s->regs[ENET_EIR] |= ENET_INT_RXB; |
| } |
| } |
| imx_enet_write_bd(&bd, addr); |
| /* Advance to the next descriptor. */ |
| if ((bd.flags & ENET_BD_W) != 0) { |
| addr = s->regs[ENET_RDSR]; |
| } else { |
| addr += sizeof(bd); |
| } |
| } |
| s->rx_descriptor = addr; |
| imx_eth_enable_rx(s, false); |
| imx_eth_update(s); |
| return len; |
| } |
| |
| static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf, |
| size_t len) |
| { |
| IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); |
| |
| if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) { |
| return imx_enet_receive(nc, buf, len); |
| } else { |
| return imx_fec_receive(nc, buf, len); |
| } |
| } |
| |
| static const MemoryRegionOps imx_eth_ops = { |
| .read = imx_eth_read, |
| .write = imx_eth_write, |
| .valid.min_access_size = 4, |
| .valid.max_access_size = 4, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static void imx_eth_cleanup(NetClientState *nc) |
| { |
| IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); |
| |
| s->nic = NULL; |
| } |
| |
| static NetClientInfo imx_eth_net_info = { |
| .type = NET_CLIENT_DRIVER_NIC, |
| .size = sizeof(NICState), |
| .can_receive = imx_eth_can_receive, |
| .receive = imx_eth_receive, |
| .cleanup = imx_eth_cleanup, |
| .link_status_changed = imx_eth_set_link, |
| }; |
| |
| |
| static void imx_eth_realize(DeviceState *dev, Error **errp) |
| { |
| IMXFECState *s = IMX_FEC(dev); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
| |
| memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s, |
| TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE); |
| sysbus_init_mmio(sbd, &s->iomem); |
| sysbus_init_irq(sbd, &s->irq[0]); |
| sysbus_init_irq(sbd, &s->irq[1]); |
| |
| qemu_macaddr_default_if_unset(&s->conf.macaddr); |
| |
| s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf, |
| object_get_typename(OBJECT(dev)), |
| dev->id, &dev->mem_reentrancy_guard, s); |
| |
| qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); |
| } |
| |
| static Property imx_eth_properties[] = { |
| DEFINE_NIC_PROPERTIES(IMXFECState, conf), |
| DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1), |
| DEFINE_PROP_UINT32("phy-num", IMXFECState, phy_num, 0), |
| DEFINE_PROP_BOOL("phy-connected", IMXFECState, phy_connected, true), |
| DEFINE_PROP_LINK("phy-consumer", IMXFECState, phy_consumer, TYPE_IMX_FEC, |
| IMXFECState *), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void imx_eth_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->vmsd = &vmstate_imx_eth; |
| dc->reset = imx_eth_reset; |
| device_class_set_props(dc, imx_eth_properties); |
| dc->realize = imx_eth_realize; |
| dc->desc = "i.MX FEC/ENET Ethernet Controller"; |
| } |
| |
| static void imx_fec_init(Object *obj) |
| { |
| IMXFECState *s = IMX_FEC(obj); |
| |
| s->is_fec = true; |
| } |
| |
| static void imx_enet_init(Object *obj) |
| { |
| IMXFECState *s = IMX_FEC(obj); |
| |
| s->is_fec = false; |
| } |
| |
| static const TypeInfo imx_fec_info = { |
| .name = TYPE_IMX_FEC, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(IMXFECState), |
| .instance_init = imx_fec_init, |
| .class_init = imx_eth_class_init, |
| }; |
| |
| static const TypeInfo imx_enet_info = { |
| .name = TYPE_IMX_ENET, |
| .parent = TYPE_IMX_FEC, |
| .instance_init = imx_enet_init, |
| }; |
| |
| static void imx_eth_register_types(void) |
| { |
| type_register_static(&imx_fec_info); |
| type_register_static(&imx_enet_info); |
| } |
| |
| type_init(imx_eth_register_types) |