| /* |
| * QEMU SMBus EEPROM device |
| * |
| * Copyright (c) 2007 Arastra, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "qapi/error.h" |
| #include "hw/boards.h" |
| #include "hw/i2c/i2c.h" |
| #include "hw/i2c/smbus_slave.h" |
| #include "hw/qdev-properties.h" |
| #include "migration/vmstate.h" |
| #include "hw/i2c/smbus_eeprom.h" |
| #include "qom/object.h" |
| |
| //#define DEBUG |
| |
| #define TYPE_SMBUS_EEPROM "smbus-eeprom" |
| |
| OBJECT_DECLARE_SIMPLE_TYPE(SMBusEEPROMDevice, SMBUS_EEPROM) |
| |
| #define SMBUS_EEPROM_SIZE 256 |
| |
| struct SMBusEEPROMDevice { |
| SMBusDevice smbusdev; |
| uint8_t data[SMBUS_EEPROM_SIZE]; |
| uint8_t *init_data; |
| uint8_t offset; |
| bool accessed; |
| }; |
| |
| static uint8_t eeprom_receive_byte(SMBusDevice *dev) |
| { |
| SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); |
| uint8_t *data = eeprom->data; |
| uint8_t val = data[eeprom->offset++]; |
| |
| eeprom->accessed = true; |
| #ifdef DEBUG |
| printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n", |
| dev->i2c.address, val); |
| #endif |
| return val; |
| } |
| |
| static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len) |
| { |
| SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); |
| uint8_t *data = eeprom->data; |
| |
| eeprom->accessed = true; |
| #ifdef DEBUG |
| printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n", |
| dev->i2c.address, buf[0], buf[1]); |
| #endif |
| /* len is guaranteed to be > 0 */ |
| eeprom->offset = buf[0]; |
| buf++; |
| len--; |
| |
| for (; len > 0; len--) { |
| data[eeprom->offset] = *buf++; |
| eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE; |
| } |
| |
| return 0; |
| } |
| |
| static bool smbus_eeprom_vmstate_needed(void *opaque) |
| { |
| MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); |
| SMBusEEPROMDevice *eeprom = opaque; |
| |
| return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) && |
| !mc->smbus_no_migration_support; |
| } |
| |
| static const VMStateDescription vmstate_smbus_eeprom = { |
| .name = "smbus-eeprom", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = smbus_eeprom_vmstate_needed, |
| .fields = (const VMStateField[]) { |
| VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice), |
| VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE), |
| VMSTATE_UINT8(offset, SMBusEEPROMDevice), |
| VMSTATE_BOOL(accessed, SMBusEEPROMDevice), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| /* |
| * Reset the EEPROM contents to the initial state on a reset. This |
| * isn't really how an EEPROM works, of course, but the general |
| * principle of QEMU is to restore function on reset to what it would |
| * be if QEMU was stopped and started. |
| * |
| * The proper thing to do would be to have a backing blockdev to hold |
| * the contents and restore that on startup, and not do this on reset. |
| * But until that time, act as if we had been stopped and restarted. |
| */ |
| static void smbus_eeprom_reset(DeviceState *dev) |
| { |
| SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); |
| |
| memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE); |
| eeprom->offset = 0; |
| } |
| |
| static void smbus_eeprom_realize(DeviceState *dev, Error **errp) |
| { |
| SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); |
| |
| smbus_eeprom_reset(dev); |
| if (eeprom->init_data == NULL) { |
| error_setg(errp, "init_data cannot be NULL"); |
| } |
| } |
| |
| static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass); |
| |
| dc->realize = smbus_eeprom_realize; |
| dc->reset = smbus_eeprom_reset; |
| sc->receive_byte = eeprom_receive_byte; |
| sc->write_data = eeprom_write_data; |
| dc->vmsd = &vmstate_smbus_eeprom; |
| /* Reason: init_data */ |
| dc->user_creatable = false; |
| } |
| |
| static const TypeInfo smbus_eeprom_info = { |
| .name = TYPE_SMBUS_EEPROM, |
| .parent = TYPE_SMBUS_DEVICE, |
| .instance_size = sizeof(SMBusEEPROMDevice), |
| .class_init = smbus_eeprom_class_initfn, |
| }; |
| |
| static void smbus_eeprom_register_types(void) |
| { |
| type_register_static(&smbus_eeprom_info); |
| } |
| |
| type_init(smbus_eeprom_register_types) |
| |
| void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf) |
| { |
| DeviceState *dev; |
| |
| dev = qdev_new(TYPE_SMBUS_EEPROM); |
| qdev_prop_set_uint8(dev, "address", address); |
| /* FIXME: use an array of byte or block backend property? */ |
| SMBUS_EEPROM(dev)->init_data = eeprom_buf; |
| qdev_realize_and_unref(dev, (BusState *)smbus, &error_fatal); |
| } |
| |
| void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom, |
| const uint8_t *eeprom_spd, int eeprom_spd_size) |
| { |
| int i; |
| /* XXX: make this persistent */ |
| |
| assert(nb_eeprom <= 8); |
| uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE); |
| if (eeprom_spd_size > 0) { |
| memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size); |
| } |
| |
| for (i = 0; i < nb_eeprom; i++) { |
| smbus_eeprom_init_one(smbus, 0x50 + i, |
| eeprom_buf + (i * SMBUS_EEPROM_SIZE)); |
| } |
| } |
| |
| /* Generate SDRAM SPD EEPROM data describing a module of type and size */ |
| uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size) |
| { |
| uint8_t *spd; |
| uint8_t nbanks; |
| uint16_t density; |
| uint32_t size; |
| int min_log2, max_log2, sz_log2; |
| int i; |
| |
| switch (type) { |
| case SDR: |
| min_log2 = 2; |
| max_log2 = 9; |
| break; |
| case DDR: |
| min_log2 = 5; |
| max_log2 = 12; |
| break; |
| case DDR2: |
| min_log2 = 7; |
| max_log2 = 14; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| size = ram_size >> 20; /* work in terms of megabytes */ |
| sz_log2 = 31 - clz32(size); |
| size = 1U << sz_log2; |
| assert(ram_size == size * MiB); |
| assert(sz_log2 >= min_log2); |
| |
| nbanks = 1; |
| while (sz_log2 > max_log2 && nbanks < 8) { |
| sz_log2--; |
| nbanks *= 2; |
| } |
| |
| assert(size == (1ULL << sz_log2) * nbanks); |
| |
| /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */ |
| if (nbanks == 1 && sz_log2 > min_log2) { |
| sz_log2--; |
| nbanks++; |
| } |
| |
| density = 1ULL << (sz_log2 - 2); |
| switch (type) { |
| case DDR2: |
| density = (density & 0xe0) | (density >> 8 & 0x1f); |
| break; |
| case DDR: |
| density = (density & 0xf8) | (density >> 8 & 0x07); |
| break; |
| case SDR: |
| default: |
| density &= 0xff; |
| break; |
| } |
| |
| spd = g_malloc0(256); |
| spd[0] = 128; /* data bytes in EEPROM */ |
| spd[1] = 8; /* log2 size of EEPROM */ |
| spd[2] = type; |
| spd[3] = 13; /* row address bits */ |
| spd[4] = 10; /* column address bits */ |
| spd[5] = (type == DDR2 ? nbanks - 1 : nbanks); |
| spd[6] = 64; /* module data width */ |
| /* reserved / data width high */ |
| spd[8] = 4; /* interface voltage level */ |
| spd[9] = 0x25; /* highest CAS latency */ |
| spd[10] = 1; /* access time */ |
| /* DIMM configuration 0 = non-ECC */ |
| spd[12] = 0x82; /* refresh requirements */ |
| spd[13] = 8; /* primary SDRAM width */ |
| /* ECC SDRAM width */ |
| spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */ |
| spd[16] = 12; /* burst lengths supported */ |
| spd[17] = 4; /* banks per SDRAM device */ |
| spd[18] = 12; /* ~CAS latencies supported */ |
| spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */ |
| spd[20] = 2; /* DIMM type / ~WE latencies */ |
| spd[21] = (type < DDR2 ? 0x20 : 0); /* module features */ |
| /* memory chip features */ |
| spd[23] = 0x12; /* clock cycle time @ medium CAS latency */ |
| /* data access time */ |
| /* clock cycle time @ short CAS latency */ |
| /* data access time */ |
| spd[27] = 20; /* min. row precharge time */ |
| spd[28] = 15; /* min. row active row delay */ |
| spd[29] = 20; /* min. ~RAS to ~CAS delay */ |
| spd[30] = 45; /* min. active to precharge time */ |
| spd[31] = density; |
| spd[32] = 20; /* addr/cmd setup time */ |
| spd[33] = 8; /* addr/cmd hold time */ |
| spd[34] = 20; /* data input setup time */ |
| spd[35] = 8; /* data input hold time */ |
| |
| /* checksum */ |
| for (i = 0; i < 63; i++) { |
| spd[63] += spd[i]; |
| } |
| return spd; |
| } |