| #!/bin/bash |
| # |
| # Test case for image corruption (overlapping data structures) in qcow2 |
| # |
| # Copyright (C) 2013 Red Hat, Inc. |
| # |
| # This program is free software; you can redistribute it and/or modify |
| # it under the terms of the GNU General Public License as published by |
| # the Free Software Foundation; either version 2 of the License, or |
| # (at your option) any later version. |
| # |
| # This program is distributed in the hope that it will be useful, |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| # GNU General Public License for more details. |
| # |
| # You should have received a copy of the GNU General Public License |
| # along with this program. If not, see <http://www.gnu.org/licenses/>. |
| # |
| |
| # creator |
| owner=mreitz@redhat.com |
| |
| seq="$(basename $0)" |
| echo "QA output created by $seq" |
| |
| here="$PWD" |
| tmp=/tmp/$$ |
| status=1 # failure is the default! |
| |
| _cleanup() |
| { |
| _cleanup_test_img |
| } |
| trap "_cleanup; exit \$status" 0 1 2 3 15 |
| |
| # get standard environment, filters and checks |
| . ./common.rc |
| . ./common.filter |
| |
| # This tests qocw2-specific low-level functionality |
| _supported_fmt qcow2 |
| _supported_proto file |
| _supported_os Linux |
| |
| rt_offset=65536 # 0x10000 (XXX: just an assumption) |
| rb_offset=131072 # 0x20000 (XXX: just an assumption) |
| l1_offset=196608 # 0x30000 (XXX: just an assumption) |
| l2_offset=262144 # 0x40000 (XXX: just an assumption) |
| l2_offset_after_snapshot=524288 # 0x80000 (XXX: just an assumption) |
| |
| IMGOPTS="compat=1.1" |
| |
| OPEN_RW="open -o overlap-check=all $TEST_IMG" |
| # Overlap checks are done before write operations only, therefore opening an |
| # image read-only makes the overlap-check option irrelevant |
| OPEN_RO="open -r $TEST_IMG" |
| |
| echo |
| echo "=== Testing L2 reference into L1 ===" |
| echo |
| _make_test_img 64M |
| # Link first L1 entry (first L2 table) onto itself |
| # (Note the MSb in the L1 entry is set, ensuring the refcount is one - else any |
| # later write will result in a COW operation, effectively ruining this attempt |
| # on image corruption) |
| poke_file "$TEST_IMG" "$l1_offset" "\x80\x00\x00\x00\x00\x03\x00\x00" |
| _check_test_img |
| |
| # The corrupt bit should not be set anyway |
| $PYTHON qcow2.py "$TEST_IMG" dump-header | grep incompatible_features |
| |
| # Try to write something, thereby forcing the corrupt bit to be set |
| $QEMU_IO -c "$OPEN_RW" -c "write -P 0x2a 0 512" | _filter_qemu_io |
| |
| # The corrupt bit must now be set |
| $PYTHON qcow2.py "$TEST_IMG" dump-header | grep incompatible_features |
| |
| # Try to open the image R/W (which should fail) |
| $QEMU_IO -c "$OPEN_RW" -c "read 0 512" 2>&1 | _filter_qemu_io \ |
| | _filter_testdir \ |
| | _filter_imgfmt |
| |
| # Try to open it RO (which should succeed) |
| $QEMU_IO -c "$OPEN_RO" -c "read 0 512" | _filter_qemu_io |
| |
| # We could now try to fix the image, but this would probably fail (how should an |
| # L2 table linked onto the L1 table be fixed?) |
| |
| echo |
| echo "=== Testing cluster data reference into refcount block ===" |
| echo |
| _make_test_img 64M |
| # Allocate L2 table |
| truncate -s "$(($l2_offset+65536))" "$TEST_IMG" |
| poke_file "$TEST_IMG" "$l1_offset" "\x80\x00\x00\x00\x00\x04\x00\x00" |
| # Mark cluster as used |
| poke_file "$TEST_IMG" "$(($rb_offset+8))" "\x00\x01" |
| # Redirect new data cluster onto refcount block |
| poke_file "$TEST_IMG" "$l2_offset" "\x80\x00\x00\x00\x00\x02\x00\x00" |
| _check_test_img |
| $PYTHON qcow2.py "$TEST_IMG" dump-header | grep incompatible_features |
| $QEMU_IO -c "$OPEN_RW" -c "write -P 0x2a 0 512" | _filter_qemu_io |
| $PYTHON qcow2.py "$TEST_IMG" dump-header | grep incompatible_features |
| |
| # Try to fix it |
| _check_test_img -r all |
| |
| # The corrupt bit should be cleared |
| $PYTHON qcow2.py "$TEST_IMG" dump-header | grep incompatible_features |
| |
| # Look if it's really really fixed |
| $QEMU_IO -c "$OPEN_RW" -c "write -P 0x2a 0 512" | _filter_qemu_io |
| $PYTHON qcow2.py "$TEST_IMG" dump-header | grep incompatible_features |
| |
| echo |
| echo "=== Testing cluster data reference into inactive L2 table ===" |
| echo |
| _make_test_img 64M |
| $QEMU_IO -c "$OPEN_RW" -c "write -P 1 0 512" | _filter_qemu_io |
| $QEMU_IMG snapshot -c foo "$TEST_IMG" |
| $QEMU_IO -c "$OPEN_RW" -c "write -P 2 0 512" | _filter_qemu_io |
| # The inactive L2 table remains at its old offset |
| poke_file "$TEST_IMG" "$l2_offset_after_snapshot" \ |
| "\x80\x00\x00\x00\x00\x04\x00\x00" |
| _check_test_img |
| $PYTHON qcow2.py "$TEST_IMG" dump-header | grep incompatible_features |
| $QEMU_IO -c "$OPEN_RW" -c "write -P 3 0 512" | _filter_qemu_io |
| $PYTHON qcow2.py "$TEST_IMG" dump-header | grep incompatible_features |
| _check_test_img -r all |
| $PYTHON qcow2.py "$TEST_IMG" dump-header | grep incompatible_features |
| $QEMU_IO -c "$OPEN_RW" -c "write -P 4 0 512" | _filter_qemu_io |
| $PYTHON qcow2.py "$TEST_IMG" dump-header | grep incompatible_features |
| |
| # Check data |
| $QEMU_IO -c "$OPEN_RO" -c "read -P 4 0 512" | _filter_qemu_io |
| $QEMU_IMG snapshot -a foo "$TEST_IMG" |
| _check_test_img |
| $QEMU_IO -c "$OPEN_RO" -c "read -P 1 0 512" | _filter_qemu_io |
| |
| echo |
| echo "=== Testing overlap while COW is in flight ===" |
| echo |
| # compat=0.10 is required in order to make the following discard actually |
| # unallocate the sector rather than make it a zero sector - we want COW, after |
| # all. |
| IMGOPTS='compat=0.10' _make_test_img 1G |
| # Write two clusters, the second one enforces creation of an L2 table after |
| # the first data cluster. |
| $QEMU_IO -c 'write 0k 64k' -c 'write 512M 64k' "$TEST_IMG" | _filter_qemu_io |
| # Discard the first cluster. This cluster will soon enough be reallocated and |
| # used for COW. |
| $QEMU_IO -c 'discard 0k 64k' "$TEST_IMG" | _filter_qemu_io |
| # Now, corrupt the image by marking the second L2 table cluster as free. |
| poke_file "$TEST_IMG" '131084' "\x00\x00" # 0x2000c |
| # Start a write operation requiring COW on the image stopping it right before |
| # doing the read; then, trigger the corruption prevention by writing anything to |
| # any unallocated cluster, leading to an attempt to overwrite the second L2 |
| # table. Finally, resume the COW write and see it fail (but not crash). |
| echo "open -o file.driver=blkdebug $TEST_IMG |
| break cow_read 0 |
| aio_write 0k 1k |
| wait_break 0 |
| write 64k 64k |
| resume 0" | $QEMU_IO | _filter_qemu_io |
| |
| echo |
| echo "=== Testing unallocated image header ===" |
| echo |
| _make_test_img 64M |
| # Create L1/L2 |
| $QEMU_IO -c "$OPEN_RW" -c "write 0 64k" | _filter_qemu_io |
| poke_file "$TEST_IMG" "$rb_offset" "\x00\x00" |
| $QEMU_IO -c "$OPEN_RW" -c "write 64k 64k" | _filter_qemu_io |
| |
| # success, all done |
| echo "*** done" |
| rm -f $seq.full |
| status=0 |