| /* |
| * RDMA protocol and interfaces |
| * |
| * Copyright IBM, Corp. 2010-2013 |
| * |
| * Authors: |
| * Michael R. Hines <mrhines@us.ibm.com> |
| * Jiuxing Liu <jl@us.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or |
| * later. See the COPYING file in the top-level directory. |
| * |
| */ |
| #include "qemu-common.h" |
| #include "migration/migration.h" |
| #include "migration/qemu-file.h" |
| #include "exec/cpu-common.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/sockets.h" |
| #include "qemu/bitmap.h" |
| #include "block/coroutine.h" |
| #include <stdio.h> |
| #include <sys/types.h> |
| #include <sys/socket.h> |
| #include <netdb.h> |
| #include <arpa/inet.h> |
| #include <string.h> |
| #include <rdma/rdma_cma.h> |
| |
| //#define DEBUG_RDMA |
| //#define DEBUG_RDMA_VERBOSE |
| //#define DEBUG_RDMA_REALLY_VERBOSE |
| |
| #ifdef DEBUG_RDMA |
| #define DPRINTF(fmt, ...) \ |
| do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| #ifdef DEBUG_RDMA_VERBOSE |
| #define DDPRINTF(fmt, ...) \ |
| do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DDPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| #ifdef DEBUG_RDMA_REALLY_VERBOSE |
| #define DDDPRINTF(fmt, ...) \ |
| do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DDDPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| /* |
| * Print and error on both the Monitor and the Log file. |
| */ |
| #define ERROR(errp, fmt, ...) \ |
| do { \ |
| fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \ |
| if (errp && (*(errp) == NULL)) { \ |
| error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \ |
| } \ |
| } while (0) |
| |
| #define RDMA_RESOLVE_TIMEOUT_MS 10000 |
| |
| /* Do not merge data if larger than this. */ |
| #define RDMA_MERGE_MAX (2 * 1024 * 1024) |
| #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096) |
| |
| #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */ |
| |
| /* |
| * This is only for non-live state being migrated. |
| * Instead of RDMA_WRITE messages, we use RDMA_SEND |
| * messages for that state, which requires a different |
| * delivery design than main memory. |
| */ |
| #define RDMA_SEND_INCREMENT 32768 |
| |
| /* |
| * Maximum size infiniband SEND message |
| */ |
| #define RDMA_CONTROL_MAX_BUFFER (512 * 1024) |
| #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096 |
| |
| #define RDMA_CONTROL_VERSION_CURRENT 1 |
| /* |
| * Capabilities for negotiation. |
| */ |
| #define RDMA_CAPABILITY_PIN_ALL 0x01 |
| |
| /* |
| * Add the other flags above to this list of known capabilities |
| * as they are introduced. |
| */ |
| static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL; |
| |
| #define CHECK_ERROR_STATE() \ |
| do { \ |
| if (rdma->error_state) { \ |
| if (!rdma->error_reported) { \ |
| fprintf(stderr, "RDMA is in an error state waiting migration" \ |
| " to abort!\n"); \ |
| rdma->error_reported = 1; \ |
| } \ |
| return rdma->error_state; \ |
| } \ |
| } while (0); |
| |
| /* |
| * A work request ID is 64-bits and we split up these bits |
| * into 3 parts: |
| * |
| * bits 0-15 : type of control message, 2^16 |
| * bits 16-29: ram block index, 2^14 |
| * bits 30-63: ram block chunk number, 2^34 |
| * |
| * The last two bit ranges are only used for RDMA writes, |
| * in order to track their completion and potentially |
| * also track unregistration status of the message. |
| */ |
| #define RDMA_WRID_TYPE_SHIFT 0UL |
| #define RDMA_WRID_BLOCK_SHIFT 16UL |
| #define RDMA_WRID_CHUNK_SHIFT 30UL |
| |
| #define RDMA_WRID_TYPE_MASK \ |
| ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL) |
| |
| #define RDMA_WRID_BLOCK_MASK \ |
| (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL)) |
| |
| #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK) |
| |
| /* |
| * RDMA migration protocol: |
| * 1. RDMA Writes (data messages, i.e. RAM) |
| * 2. IB Send/Recv (control channel messages) |
| */ |
| enum { |
| RDMA_WRID_NONE = 0, |
| RDMA_WRID_RDMA_WRITE = 1, |
| RDMA_WRID_SEND_CONTROL = 2000, |
| RDMA_WRID_RECV_CONTROL = 4000, |
| }; |
| |
| const char *wrid_desc[] = { |
| [RDMA_WRID_NONE] = "NONE", |
| [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA", |
| [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND", |
| [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV", |
| }; |
| |
| /* |
| * Work request IDs for IB SEND messages only (not RDMA writes). |
| * This is used by the migration protocol to transmit |
| * control messages (such as device state and registration commands) |
| * |
| * We could use more WRs, but we have enough for now. |
| */ |
| enum { |
| RDMA_WRID_READY = 0, |
| RDMA_WRID_DATA, |
| RDMA_WRID_CONTROL, |
| RDMA_WRID_MAX, |
| }; |
| |
| /* |
| * SEND/RECV IB Control Messages. |
| */ |
| enum { |
| RDMA_CONTROL_NONE = 0, |
| RDMA_CONTROL_ERROR, |
| RDMA_CONTROL_READY, /* ready to receive */ |
| RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */ |
| RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */ |
| RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */ |
| RDMA_CONTROL_COMPRESS, /* page contains repeat values */ |
| RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */ |
| RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */ |
| RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */ |
| RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */ |
| RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */ |
| }; |
| |
| const char *control_desc[] = { |
| [RDMA_CONTROL_NONE] = "NONE", |
| [RDMA_CONTROL_ERROR] = "ERROR", |
| [RDMA_CONTROL_READY] = "READY", |
| [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE", |
| [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST", |
| [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT", |
| [RDMA_CONTROL_COMPRESS] = "COMPRESS", |
| [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST", |
| [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT", |
| [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED", |
| [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST", |
| [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED", |
| }; |
| |
| /* |
| * Memory and MR structures used to represent an IB Send/Recv work request. |
| * This is *not* used for RDMA writes, only IB Send/Recv. |
| */ |
| typedef struct { |
| uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */ |
| struct ibv_mr *control_mr; /* registration metadata */ |
| size_t control_len; /* length of the message */ |
| uint8_t *control_curr; /* start of unconsumed bytes */ |
| } RDMAWorkRequestData; |
| |
| /* |
| * Negotiate RDMA capabilities during connection-setup time. |
| */ |
| typedef struct { |
| uint32_t version; |
| uint32_t flags; |
| } RDMACapabilities; |
| |
| static void caps_to_network(RDMACapabilities *cap) |
| { |
| cap->version = htonl(cap->version); |
| cap->flags = htonl(cap->flags); |
| } |
| |
| static void network_to_caps(RDMACapabilities *cap) |
| { |
| cap->version = ntohl(cap->version); |
| cap->flags = ntohl(cap->flags); |
| } |
| |
| /* |
| * Representation of a RAMBlock from an RDMA perspective. |
| * This is not transmitted, only local. |
| * This and subsequent structures cannot be linked lists |
| * because we're using a single IB message to transmit |
| * the information. It's small anyway, so a list is overkill. |
| */ |
| typedef struct RDMALocalBlock { |
| uint8_t *local_host_addr; /* local virtual address */ |
| uint64_t remote_host_addr; /* remote virtual address */ |
| uint64_t offset; |
| uint64_t length; |
| struct ibv_mr **pmr; /* MRs for chunk-level registration */ |
| struct ibv_mr *mr; /* MR for non-chunk-level registration */ |
| uint32_t *remote_keys; /* rkeys for chunk-level registration */ |
| uint32_t remote_rkey; /* rkeys for non-chunk-level registration */ |
| int index; /* which block are we */ |
| bool is_ram_block; |
| int nb_chunks; |
| unsigned long *transit_bitmap; |
| unsigned long *unregister_bitmap; |
| } RDMALocalBlock; |
| |
| /* |
| * Also represents a RAMblock, but only on the dest. |
| * This gets transmitted by the dest during connection-time |
| * to the source VM and then is used to populate the |
| * corresponding RDMALocalBlock with |
| * the information needed to perform the actual RDMA. |
| */ |
| typedef struct QEMU_PACKED RDMARemoteBlock { |
| uint64_t remote_host_addr; |
| uint64_t offset; |
| uint64_t length; |
| uint32_t remote_rkey; |
| uint32_t padding; |
| } RDMARemoteBlock; |
| |
| static uint64_t htonll(uint64_t v) |
| { |
| union { uint32_t lv[2]; uint64_t llv; } u; |
| u.lv[0] = htonl(v >> 32); |
| u.lv[1] = htonl(v & 0xFFFFFFFFULL); |
| return u.llv; |
| } |
| |
| static uint64_t ntohll(uint64_t v) { |
| union { uint32_t lv[2]; uint64_t llv; } u; |
| u.llv = v; |
| return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]); |
| } |
| |
| static void remote_block_to_network(RDMARemoteBlock *rb) |
| { |
| rb->remote_host_addr = htonll(rb->remote_host_addr); |
| rb->offset = htonll(rb->offset); |
| rb->length = htonll(rb->length); |
| rb->remote_rkey = htonl(rb->remote_rkey); |
| } |
| |
| static void network_to_remote_block(RDMARemoteBlock *rb) |
| { |
| rb->remote_host_addr = ntohll(rb->remote_host_addr); |
| rb->offset = ntohll(rb->offset); |
| rb->length = ntohll(rb->length); |
| rb->remote_rkey = ntohl(rb->remote_rkey); |
| } |
| |
| /* |
| * Virtual address of the above structures used for transmitting |
| * the RAMBlock descriptions at connection-time. |
| * This structure is *not* transmitted. |
| */ |
| typedef struct RDMALocalBlocks { |
| int nb_blocks; |
| bool init; /* main memory init complete */ |
| RDMALocalBlock *block; |
| } RDMALocalBlocks; |
| |
| /* |
| * Main data structure for RDMA state. |
| * While there is only one copy of this structure being allocated right now, |
| * this is the place where one would start if you wanted to consider |
| * having more than one RDMA connection open at the same time. |
| */ |
| typedef struct RDMAContext { |
| char *host; |
| int port; |
| |
| RDMAWorkRequestData wr_data[RDMA_WRID_MAX]; |
| |
| /* |
| * This is used by *_exchange_send() to figure out whether or not |
| * the initial "READY" message has already been received or not. |
| * This is because other functions may potentially poll() and detect |
| * the READY message before send() does, in which case we need to |
| * know if it completed. |
| */ |
| int control_ready_expected; |
| |
| /* number of outstanding writes */ |
| int nb_sent; |
| |
| /* store info about current buffer so that we can |
| merge it with future sends */ |
| uint64_t current_addr; |
| uint64_t current_length; |
| /* index of ram block the current buffer belongs to */ |
| int current_index; |
| /* index of the chunk in the current ram block */ |
| int current_chunk; |
| |
| bool pin_all; |
| |
| /* |
| * infiniband-specific variables for opening the device |
| * and maintaining connection state and so forth. |
| * |
| * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in |
| * cm_id->verbs, cm_id->channel, and cm_id->qp. |
| */ |
| struct rdma_cm_id *cm_id; /* connection manager ID */ |
| struct rdma_cm_id *listen_id; |
| bool connected; |
| |
| struct ibv_context *verbs; |
| struct rdma_event_channel *channel; |
| struct ibv_qp *qp; /* queue pair */ |
| struct ibv_comp_channel *comp_channel; /* completion channel */ |
| struct ibv_pd *pd; /* protection domain */ |
| struct ibv_cq *cq; /* completion queue */ |
| |
| /* |
| * If a previous write failed (perhaps because of a failed |
| * memory registration, then do not attempt any future work |
| * and remember the error state. |
| */ |
| int error_state; |
| int error_reported; |
| |
| /* |
| * Description of ram blocks used throughout the code. |
| */ |
| RDMALocalBlocks local_ram_blocks; |
| RDMARemoteBlock *block; |
| |
| /* |
| * Migration on *destination* started. |
| * Then use coroutine yield function. |
| * Source runs in a thread, so we don't care. |
| */ |
| int migration_started_on_destination; |
| |
| int total_registrations; |
| int total_writes; |
| |
| int unregister_current, unregister_next; |
| uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX]; |
| |
| GHashTable *blockmap; |
| } RDMAContext; |
| |
| /* |
| * Interface to the rest of the migration call stack. |
| */ |
| typedef struct QEMUFileRDMA { |
| RDMAContext *rdma; |
| size_t len; |
| void *file; |
| } QEMUFileRDMA; |
| |
| /* |
| * Main structure for IB Send/Recv control messages. |
| * This gets prepended at the beginning of every Send/Recv. |
| */ |
| typedef struct QEMU_PACKED { |
| uint32_t len; /* Total length of data portion */ |
| uint32_t type; /* which control command to perform */ |
| uint32_t repeat; /* number of commands in data portion of same type */ |
| uint32_t padding; |
| } RDMAControlHeader; |
| |
| static void control_to_network(RDMAControlHeader *control) |
| { |
| control->type = htonl(control->type); |
| control->len = htonl(control->len); |
| control->repeat = htonl(control->repeat); |
| } |
| |
| static void network_to_control(RDMAControlHeader *control) |
| { |
| control->type = ntohl(control->type); |
| control->len = ntohl(control->len); |
| control->repeat = ntohl(control->repeat); |
| } |
| |
| /* |
| * Register a single Chunk. |
| * Information sent by the source VM to inform the dest |
| * to register an single chunk of memory before we can perform |
| * the actual RDMA operation. |
| */ |
| typedef struct QEMU_PACKED { |
| union QEMU_PACKED { |
| uint64_t current_addr; /* offset into the ramblock of the chunk */ |
| uint64_t chunk; /* chunk to lookup if unregistering */ |
| } key; |
| uint32_t current_index; /* which ramblock the chunk belongs to */ |
| uint32_t padding; |
| uint64_t chunks; /* how many sequential chunks to register */ |
| } RDMARegister; |
| |
| static void register_to_network(RDMARegister *reg) |
| { |
| reg->key.current_addr = htonll(reg->key.current_addr); |
| reg->current_index = htonl(reg->current_index); |
| reg->chunks = htonll(reg->chunks); |
| } |
| |
| static void network_to_register(RDMARegister *reg) |
| { |
| reg->key.current_addr = ntohll(reg->key.current_addr); |
| reg->current_index = ntohl(reg->current_index); |
| reg->chunks = ntohll(reg->chunks); |
| } |
| |
| typedef struct QEMU_PACKED { |
| uint32_t value; /* if zero, we will madvise() */ |
| uint32_t block_idx; /* which ram block index */ |
| uint64_t offset; /* where in the remote ramblock this chunk */ |
| uint64_t length; /* length of the chunk */ |
| } RDMACompress; |
| |
| static void compress_to_network(RDMACompress *comp) |
| { |
| comp->value = htonl(comp->value); |
| comp->block_idx = htonl(comp->block_idx); |
| comp->offset = htonll(comp->offset); |
| comp->length = htonll(comp->length); |
| } |
| |
| static void network_to_compress(RDMACompress *comp) |
| { |
| comp->value = ntohl(comp->value); |
| comp->block_idx = ntohl(comp->block_idx); |
| comp->offset = ntohll(comp->offset); |
| comp->length = ntohll(comp->length); |
| } |
| |
| /* |
| * The result of the dest's memory registration produces an "rkey" |
| * which the source VM must reference in order to perform |
| * the RDMA operation. |
| */ |
| typedef struct QEMU_PACKED { |
| uint32_t rkey; |
| uint32_t padding; |
| uint64_t host_addr; |
| } RDMARegisterResult; |
| |
| static void result_to_network(RDMARegisterResult *result) |
| { |
| result->rkey = htonl(result->rkey); |
| result->host_addr = htonll(result->host_addr); |
| }; |
| |
| static void network_to_result(RDMARegisterResult *result) |
| { |
| result->rkey = ntohl(result->rkey); |
| result->host_addr = ntohll(result->host_addr); |
| }; |
| |
| const char *print_wrid(int wrid); |
| static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, |
| uint8_t *data, RDMAControlHeader *resp, |
| int *resp_idx, |
| int (*callback)(RDMAContext *rdma)); |
| |
| static inline uint64_t ram_chunk_index(const uint8_t *start, |
| const uint8_t *host) |
| { |
| return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT; |
| } |
| |
| static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block, |
| uint64_t i) |
| { |
| return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr) |
| + (i << RDMA_REG_CHUNK_SHIFT)); |
| } |
| |
| static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block, |
| uint64_t i) |
| { |
| uint8_t *result = ram_chunk_start(rdma_ram_block, i) + |
| (1UL << RDMA_REG_CHUNK_SHIFT); |
| |
| if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) { |
| result = rdma_ram_block->local_host_addr + rdma_ram_block->length; |
| } |
| |
| return result; |
| } |
| |
| static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr, |
| ram_addr_t block_offset, uint64_t length) |
| { |
| RDMALocalBlocks *local = &rdma->local_ram_blocks; |
| RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, |
| (void *) block_offset); |
| RDMALocalBlock *old = local->block; |
| |
| assert(block == NULL); |
| |
| local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1)); |
| |
| if (local->nb_blocks) { |
| int x; |
| |
| for (x = 0; x < local->nb_blocks; x++) { |
| g_hash_table_remove(rdma->blockmap, (void *)old[x].offset); |
| g_hash_table_insert(rdma->blockmap, (void *)old[x].offset, |
| &local->block[x]); |
| } |
| memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks); |
| g_free(old); |
| } |
| |
| block = &local->block[local->nb_blocks]; |
| |
| block->local_host_addr = host_addr; |
| block->offset = block_offset; |
| block->length = length; |
| block->index = local->nb_blocks; |
| block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL; |
| block->transit_bitmap = bitmap_new(block->nb_chunks); |
| bitmap_clear(block->transit_bitmap, 0, block->nb_chunks); |
| block->unregister_bitmap = bitmap_new(block->nb_chunks); |
| bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks); |
| block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t)); |
| |
| block->is_ram_block = local->init ? false : true; |
| |
| g_hash_table_insert(rdma->blockmap, (void *) block_offset, block); |
| |
| DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64 |
| " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n", |
| local->nb_blocks, (uint64_t) block->local_host_addr, block->offset, |
| block->length, (uint64_t) (block->local_host_addr + block->length), |
| BITS_TO_LONGS(block->nb_chunks) * |
| sizeof(unsigned long) * 8, block->nb_chunks); |
| |
| local->nb_blocks++; |
| |
| return 0; |
| } |
| |
| /* |
| * Memory regions need to be registered with the device and queue pairs setup |
| * in advanced before the migration starts. This tells us where the RAM blocks |
| * are so that we can register them individually. |
| */ |
| static void qemu_rdma_init_one_block(void *host_addr, |
| ram_addr_t block_offset, ram_addr_t length, void *opaque) |
| { |
| __qemu_rdma_add_block(opaque, host_addr, block_offset, length); |
| } |
| |
| /* |
| * Identify the RAMBlocks and their quantity. They will be references to |
| * identify chunk boundaries inside each RAMBlock and also be referenced |
| * during dynamic page registration. |
| */ |
| static int qemu_rdma_init_ram_blocks(RDMAContext *rdma) |
| { |
| RDMALocalBlocks *local = &rdma->local_ram_blocks; |
| |
| assert(rdma->blockmap == NULL); |
| rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal); |
| memset(local, 0, sizeof *local); |
| qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma); |
| DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks); |
| rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) * |
| rdma->local_ram_blocks.nb_blocks); |
| local->init = true; |
| return 0; |
| } |
| |
| static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset) |
| { |
| RDMALocalBlocks *local = &rdma->local_ram_blocks; |
| RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, |
| (void *) block_offset); |
| RDMALocalBlock *old = local->block; |
| int x; |
| |
| assert(block); |
| |
| if (block->pmr) { |
| int j; |
| |
| for (j = 0; j < block->nb_chunks; j++) { |
| if (!block->pmr[j]) { |
| continue; |
| } |
| ibv_dereg_mr(block->pmr[j]); |
| rdma->total_registrations--; |
| } |
| g_free(block->pmr); |
| block->pmr = NULL; |
| } |
| |
| if (block->mr) { |
| ibv_dereg_mr(block->mr); |
| rdma->total_registrations--; |
| block->mr = NULL; |
| } |
| |
| g_free(block->transit_bitmap); |
| block->transit_bitmap = NULL; |
| |
| g_free(block->unregister_bitmap); |
| block->unregister_bitmap = NULL; |
| |
| g_free(block->remote_keys); |
| block->remote_keys = NULL; |
| |
| for (x = 0; x < local->nb_blocks; x++) { |
| g_hash_table_remove(rdma->blockmap, (void *)old[x].offset); |
| } |
| |
| if (local->nb_blocks > 1) { |
| |
| local->block = g_malloc0(sizeof(RDMALocalBlock) * |
| (local->nb_blocks - 1)); |
| |
| if (block->index) { |
| memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index); |
| } |
| |
| if (block->index < (local->nb_blocks - 1)) { |
| memcpy(local->block + block->index, old + (block->index + 1), |
| sizeof(RDMALocalBlock) * |
| (local->nb_blocks - (block->index + 1))); |
| } |
| } else { |
| assert(block == local->block); |
| local->block = NULL; |
| } |
| |
| DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64 |
| " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n", |
| local->nb_blocks, (uint64_t) block->local_host_addr, block->offset, |
| block->length, (uint64_t) (block->local_host_addr + block->length), |
| BITS_TO_LONGS(block->nb_chunks) * |
| sizeof(unsigned long) * 8, block->nb_chunks); |
| |
| g_free(old); |
| |
| local->nb_blocks--; |
| |
| if (local->nb_blocks) { |
| for (x = 0; x < local->nb_blocks; x++) { |
| g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset, |
| &local->block[x]); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Put in the log file which RDMA device was opened and the details |
| * associated with that device. |
| */ |
| static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs) |
| { |
| struct ibv_port_attr port; |
| |
| if (ibv_query_port(verbs, 1, &port)) { |
| fprintf(stderr, "FAILED TO QUERY PORT INFORMATION!\n"); |
| return; |
| } |
| |
| printf("%s RDMA Device opened: kernel name %s " |
| "uverbs device name %s, " |
| "infiniband_verbs class device path %s, " |
| "infiniband class device path %s, " |
| "transport: (%d) %s\n", |
| who, |
| verbs->device->name, |
| verbs->device->dev_name, |
| verbs->device->dev_path, |
| verbs->device->ibdev_path, |
| port.link_layer, |
| (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" : |
| ((port.link_layer == IBV_LINK_LAYER_ETHERNET) |
| ? "Ethernet" : "Unknown")); |
| } |
| |
| /* |
| * Put in the log file the RDMA gid addressing information, |
| * useful for folks who have trouble understanding the |
| * RDMA device hierarchy in the kernel. |
| */ |
| static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id) |
| { |
| char sgid[33]; |
| char dgid[33]; |
| inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid); |
| inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid); |
| DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid); |
| } |
| |
| /* |
| * As of now, IPv6 over RoCE / iWARP is not supported by linux. |
| * We will try the next addrinfo struct, and fail if there are |
| * no other valid addresses to bind against. |
| * |
| * If user is listening on '[::]', then we will not have a opened a device |
| * yet and have no way of verifying if the device is RoCE or not. |
| * |
| * In this case, the source VM will throw an error for ALL types of |
| * connections (both IPv4 and IPv6) if the destination machine does not have |
| * a regular infiniband network available for use. |
| * |
| * The only way to guarantee that an error is thrown for broken kernels is |
| * for the management software to choose a *specific* interface at bind time |
| * and validate what time of hardware it is. |
| * |
| * Unfortunately, this puts the user in a fix: |
| * |
| * If the source VM connects with an IPv4 address without knowing that the |
| * destination has bound to '[::]' the migration will unconditionally fail |
| * unless the management software is explicitly listening on the the IPv4 |
| * address while using a RoCE-based device. |
| * |
| * If the source VM connects with an IPv6 address, then we're OK because we can |
| * throw an error on the source (and similarly on the destination). |
| * |
| * But in mixed environments, this will be broken for a while until it is fixed |
| * inside linux. |
| * |
| * We do provide a *tiny* bit of help in this function: We can list all of the |
| * devices in the system and check to see if all the devices are RoCE or |
| * Infiniband. |
| * |
| * If we detect that we have a *pure* RoCE environment, then we can safely |
| * thrown an error even if the management software has specified '[::]' as the |
| * bind address. |
| * |
| * However, if there is are multiple hetergeneous devices, then we cannot make |
| * this assumption and the user just has to be sure they know what they are |
| * doing. |
| * |
| * Patches are being reviewed on linux-rdma. |
| */ |
| static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs) |
| { |
| struct ibv_port_attr port_attr; |
| |
| /* This bug only exists in linux, to our knowledge. */ |
| #ifdef CONFIG_LINUX |
| |
| /* |
| * Verbs are only NULL if management has bound to '[::]'. |
| * |
| * Let's iterate through all the devices and see if there any pure IB |
| * devices (non-ethernet). |
| * |
| * If not, then we can safely proceed with the migration. |
| * Otherwise, there are no guarantees until the bug is fixed in linux. |
| */ |
| if (!verbs) { |
| int num_devices, x; |
| struct ibv_device ** dev_list = ibv_get_device_list(&num_devices); |
| bool roce_found = false; |
| bool ib_found = false; |
| |
| for (x = 0; x < num_devices; x++) { |
| verbs = ibv_open_device(dev_list[x]); |
| |
| if (ibv_query_port(verbs, 1, &port_attr)) { |
| ibv_close_device(verbs); |
| ERROR(errp, "Could not query initial IB port"); |
| return -EINVAL; |
| } |
| |
| if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) { |
| ib_found = true; |
| } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { |
| roce_found = true; |
| } |
| |
| ibv_close_device(verbs); |
| |
| } |
| |
| if (roce_found) { |
| if (ib_found) { |
| fprintf(stderr, "WARN: migrations may fail:" |
| " IPv6 over RoCE / iWARP in linux" |
| " is broken. But since you appear to have a" |
| " mixed RoCE / IB environment, be sure to only" |
| " migrate over the IB fabric until the kernel " |
| " fixes the bug.\n"); |
| } else { |
| ERROR(errp, "You only have RoCE / iWARP devices in your systems" |
| " and your management software has specified '[::]'" |
| ", but IPv6 over RoCE / iWARP is not supported in Linux."); |
| return -ENONET; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * If we have a verbs context, that means that some other than '[::]' was |
| * used by the management software for binding. In which case we can actually |
| * warn the user about a potential broken kernel; |
| */ |
| |
| /* IB ports start with 1, not 0 */ |
| if (ibv_query_port(verbs, 1, &port_attr)) { |
| ERROR(errp, "Could not query initial IB port"); |
| return -EINVAL; |
| } |
| |
| if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { |
| ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 " |
| "(but patches on linux-rdma in progress)"); |
| return -ENONET; |
| } |
| |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * Figure out which RDMA device corresponds to the requested IP hostname |
| * Also create the initial connection manager identifiers for opening |
| * the connection. |
| */ |
| static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp) |
| { |
| int ret; |
| struct rdma_addrinfo *res; |
| char port_str[16]; |
| struct rdma_cm_event *cm_event; |
| char ip[40] = "unknown"; |
| struct rdma_addrinfo *e; |
| |
| if (rdma->host == NULL || !strcmp(rdma->host, "")) { |
| ERROR(errp, "RDMA hostname has not been set"); |
| return -EINVAL; |
| } |
| |
| /* create CM channel */ |
| rdma->channel = rdma_create_event_channel(); |
| if (!rdma->channel) { |
| ERROR(errp, "could not create CM channel"); |
| return -EINVAL; |
| } |
| |
| /* create CM id */ |
| ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP); |
| if (ret) { |
| ERROR(errp, "could not create channel id"); |
| goto err_resolve_create_id; |
| } |
| |
| snprintf(port_str, 16, "%d", rdma->port); |
| port_str[15] = '\0'; |
| |
| ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); |
| if (ret < 0) { |
| ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); |
| goto err_resolve_get_addr; |
| } |
| |
| for (e = res; e != NULL; e = e->ai_next) { |
| inet_ntop(e->ai_family, |
| &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); |
| DPRINTF("Trying %s => %s\n", rdma->host, ip); |
| |
| ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr, |
| RDMA_RESOLVE_TIMEOUT_MS); |
| if (!ret) { |
| if (e->ai_family == AF_INET6) { |
| ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs); |
| if (ret) { |
| continue; |
| } |
| } |
| goto route; |
| } |
| } |
| |
| ERROR(errp, "could not resolve address %s", rdma->host); |
| goto err_resolve_get_addr; |
| |
| route: |
| qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id); |
| |
| ret = rdma_get_cm_event(rdma->channel, &cm_event); |
| if (ret) { |
| ERROR(errp, "could not perform event_addr_resolved"); |
| goto err_resolve_get_addr; |
| } |
| |
| if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) { |
| ERROR(errp, "result not equal to event_addr_resolved %s", |
| rdma_event_str(cm_event->event)); |
| perror("rdma_resolve_addr"); |
| rdma_ack_cm_event(cm_event); |
| ret = -EINVAL; |
| goto err_resolve_get_addr; |
| } |
| rdma_ack_cm_event(cm_event); |
| |
| /* resolve route */ |
| ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS); |
| if (ret) { |
| ERROR(errp, "could not resolve rdma route"); |
| goto err_resolve_get_addr; |
| } |
| |
| ret = rdma_get_cm_event(rdma->channel, &cm_event); |
| if (ret) { |
| ERROR(errp, "could not perform event_route_resolved"); |
| goto err_resolve_get_addr; |
| } |
| if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) { |
| ERROR(errp, "result not equal to event_route_resolved: %s", |
| rdma_event_str(cm_event->event)); |
| rdma_ack_cm_event(cm_event); |
| ret = -EINVAL; |
| goto err_resolve_get_addr; |
| } |
| rdma_ack_cm_event(cm_event); |
| rdma->verbs = rdma->cm_id->verbs; |
| qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs); |
| qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id); |
| return 0; |
| |
| err_resolve_get_addr: |
| rdma_destroy_id(rdma->cm_id); |
| rdma->cm_id = NULL; |
| err_resolve_create_id: |
| rdma_destroy_event_channel(rdma->channel); |
| rdma->channel = NULL; |
| return ret; |
| } |
| |
| /* |
| * Create protection domain and completion queues |
| */ |
| static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma) |
| { |
| /* allocate pd */ |
| rdma->pd = ibv_alloc_pd(rdma->verbs); |
| if (!rdma->pd) { |
| fprintf(stderr, "failed to allocate protection domain\n"); |
| return -1; |
| } |
| |
| /* create completion channel */ |
| rdma->comp_channel = ibv_create_comp_channel(rdma->verbs); |
| if (!rdma->comp_channel) { |
| fprintf(stderr, "failed to allocate completion channel\n"); |
| goto err_alloc_pd_cq; |
| } |
| |
| /* |
| * Completion queue can be filled by both read and write work requests, |
| * so must reflect the sum of both possible queue sizes. |
| */ |
| rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), |
| NULL, rdma->comp_channel, 0); |
| if (!rdma->cq) { |
| fprintf(stderr, "failed to allocate completion queue\n"); |
| goto err_alloc_pd_cq; |
| } |
| |
| return 0; |
| |
| err_alloc_pd_cq: |
| if (rdma->pd) { |
| ibv_dealloc_pd(rdma->pd); |
| } |
| if (rdma->comp_channel) { |
| ibv_destroy_comp_channel(rdma->comp_channel); |
| } |
| rdma->pd = NULL; |
| rdma->comp_channel = NULL; |
| return -1; |
| |
| } |
| |
| /* |
| * Create queue pairs. |
| */ |
| static int qemu_rdma_alloc_qp(RDMAContext *rdma) |
| { |
| struct ibv_qp_init_attr attr = { 0 }; |
| int ret; |
| |
| attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX; |
| attr.cap.max_recv_wr = 3; |
| attr.cap.max_send_sge = 1; |
| attr.cap.max_recv_sge = 1; |
| attr.send_cq = rdma->cq; |
| attr.recv_cq = rdma->cq; |
| attr.qp_type = IBV_QPT_RC; |
| |
| ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr); |
| if (ret) { |
| return -1; |
| } |
| |
| rdma->qp = rdma->cm_id->qp; |
| return 0; |
| } |
| |
| static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma) |
| { |
| int i; |
| RDMALocalBlocks *local = &rdma->local_ram_blocks; |
| |
| for (i = 0; i < local->nb_blocks; i++) { |
| local->block[i].mr = |
| ibv_reg_mr(rdma->pd, |
| local->block[i].local_host_addr, |
| local->block[i].length, |
| IBV_ACCESS_LOCAL_WRITE | |
| IBV_ACCESS_REMOTE_WRITE |
| ); |
| if (!local->block[i].mr) { |
| perror("Failed to register local dest ram block!\n"); |
| break; |
| } |
| rdma->total_registrations++; |
| } |
| |
| if (i >= local->nb_blocks) { |
| return 0; |
| } |
| |
| for (i--; i >= 0; i--) { |
| ibv_dereg_mr(local->block[i].mr); |
| rdma->total_registrations--; |
| } |
| |
| return -1; |
| |
| } |
| |
| /* |
| * Find the ram block that corresponds to the page requested to be |
| * transmitted by QEMU. |
| * |
| * Once the block is found, also identify which 'chunk' within that |
| * block that the page belongs to. |
| * |
| * This search cannot fail or the migration will fail. |
| */ |
| static int qemu_rdma_search_ram_block(RDMAContext *rdma, |
| uint64_t block_offset, |
| uint64_t offset, |
| uint64_t length, |
| uint64_t *block_index, |
| uint64_t *chunk_index) |
| { |
| uint64_t current_addr = block_offset + offset; |
| RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, |
| (void *) block_offset); |
| assert(block); |
| assert(current_addr >= block->offset); |
| assert((current_addr + length) <= (block->offset + block->length)); |
| |
| *block_index = block->index; |
| *chunk_index = ram_chunk_index(block->local_host_addr, |
| block->local_host_addr + (current_addr - block->offset)); |
| |
| return 0; |
| } |
| |
| /* |
| * Register a chunk with IB. If the chunk was already registered |
| * previously, then skip. |
| * |
| * Also return the keys associated with the registration needed |
| * to perform the actual RDMA operation. |
| */ |
| static int qemu_rdma_register_and_get_keys(RDMAContext *rdma, |
| RDMALocalBlock *block, uint8_t *host_addr, |
| uint32_t *lkey, uint32_t *rkey, int chunk, |
| uint8_t *chunk_start, uint8_t *chunk_end) |
| { |
| if (block->mr) { |
| if (lkey) { |
| *lkey = block->mr->lkey; |
| } |
| if (rkey) { |
| *rkey = block->mr->rkey; |
| } |
| return 0; |
| } |
| |
| /* allocate memory to store chunk MRs */ |
| if (!block->pmr) { |
| block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *)); |
| if (!block->pmr) { |
| return -1; |
| } |
| } |
| |
| /* |
| * If 'rkey', then we're the destination, so grant access to the source. |
| * |
| * If 'lkey', then we're the source VM, so grant access only to ourselves. |
| */ |
| if (!block->pmr[chunk]) { |
| uint64_t len = chunk_end - chunk_start; |
| |
| DDPRINTF("Registering %" PRIu64 " bytes @ %p\n", |
| len, chunk_start); |
| |
| block->pmr[chunk] = ibv_reg_mr(rdma->pd, |
| chunk_start, len, |
| (rkey ? (IBV_ACCESS_LOCAL_WRITE | |
| IBV_ACCESS_REMOTE_WRITE) : 0)); |
| |
| if (!block->pmr[chunk]) { |
| perror("Failed to register chunk!"); |
| fprintf(stderr, "Chunk details: block: %d chunk index %d" |
| " start %" PRIu64 " end %" PRIu64 " host %" PRIu64 |
| " local %" PRIu64 " registrations: %d\n", |
| block->index, chunk, (uint64_t) chunk_start, |
| (uint64_t) chunk_end, (uint64_t) host_addr, |
| (uint64_t) block->local_host_addr, |
| rdma->total_registrations); |
| return -1; |
| } |
| rdma->total_registrations++; |
| } |
| |
| if (lkey) { |
| *lkey = block->pmr[chunk]->lkey; |
| } |
| if (rkey) { |
| *rkey = block->pmr[chunk]->rkey; |
| } |
| return 0; |
| } |
| |
| /* |
| * Register (at connection time) the memory used for control |
| * channel messages. |
| */ |
| static int qemu_rdma_reg_control(RDMAContext *rdma, int idx) |
| { |
| rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd, |
| rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER, |
| IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); |
| if (rdma->wr_data[idx].control_mr) { |
| rdma->total_registrations++; |
| return 0; |
| } |
| fprintf(stderr, "qemu_rdma_reg_control failed!\n"); |
| return -1; |
| } |
| |
| const char *print_wrid(int wrid) |
| { |
| if (wrid >= RDMA_WRID_RECV_CONTROL) { |
| return wrid_desc[RDMA_WRID_RECV_CONTROL]; |
| } |
| return wrid_desc[wrid]; |
| } |
| |
| /* |
| * RDMA requires memory registration (mlock/pinning), but this is not good for |
| * overcommitment. |
| * |
| * In preparation for the future where LRU information or workload-specific |
| * writable writable working set memory access behavior is available to QEMU |
| * it would be nice to have in place the ability to UN-register/UN-pin |
| * particular memory regions from the RDMA hardware when it is determine that |
| * those regions of memory will likely not be accessed again in the near future. |
| * |
| * While we do not yet have such information right now, the following |
| * compile-time option allows us to perform a non-optimized version of this |
| * behavior. |
| * |
| * By uncommenting this option, you will cause *all* RDMA transfers to be |
| * unregistered immediately after the transfer completes on both sides of the |
| * connection. This has no effect in 'rdma-pin-all' mode, only regular mode. |
| * |
| * This will have a terrible impact on migration performance, so until future |
| * workload information or LRU information is available, do not attempt to use |
| * this feature except for basic testing. |
| */ |
| //#define RDMA_UNREGISTRATION_EXAMPLE |
| |
| /* |
| * Perform a non-optimized memory unregistration after every transfer |
| * for demonsration purposes, only if pin-all is not requested. |
| * |
| * Potential optimizations: |
| * 1. Start a new thread to run this function continuously |
| - for bit clearing |
| - and for receipt of unregister messages |
| * 2. Use an LRU. |
| * 3. Use workload hints. |
| */ |
| static int qemu_rdma_unregister_waiting(RDMAContext *rdma) |
| { |
| while (rdma->unregistrations[rdma->unregister_current]) { |
| int ret; |
| uint64_t wr_id = rdma->unregistrations[rdma->unregister_current]; |
| uint64_t chunk = |
| (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; |
| uint64_t index = |
| (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; |
| RDMALocalBlock *block = |
| &(rdma->local_ram_blocks.block[index]); |
| RDMARegister reg = { .current_index = index }; |
| RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED, |
| }; |
| RDMAControlHeader head = { .len = sizeof(RDMARegister), |
| .type = RDMA_CONTROL_UNREGISTER_REQUEST, |
| .repeat = 1, |
| }; |
| |
| DDPRINTF("Processing unregister for chunk: %" PRIu64 |
| " at position %d\n", chunk, rdma->unregister_current); |
| |
| rdma->unregistrations[rdma->unregister_current] = 0; |
| rdma->unregister_current++; |
| |
| if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) { |
| rdma->unregister_current = 0; |
| } |
| |
| |
| /* |
| * Unregistration is speculative (because migration is single-threaded |
| * and we cannot break the protocol's inifinband message ordering). |
| * Thus, if the memory is currently being used for transmission, |
| * then abort the attempt to unregister and try again |
| * later the next time a completion is received for this memory. |
| */ |
| clear_bit(chunk, block->unregister_bitmap); |
| |
| if (test_bit(chunk, block->transit_bitmap)) { |
| DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk); |
| continue; |
| } |
| |
| DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk); |
| |
| ret = ibv_dereg_mr(block->pmr[chunk]); |
| block->pmr[chunk] = NULL; |
| block->remote_keys[chunk] = 0; |
| |
| if (ret != 0) { |
| perror("unregistration chunk failed"); |
| return -ret; |
| } |
| rdma->total_registrations--; |
| |
| reg.key.chunk = chunk; |
| register_to_network(®); |
| ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, |
| &resp, NULL, NULL); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk); |
| } |
| |
| return 0; |
| } |
| |
| static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index, |
| uint64_t chunk) |
| { |
| uint64_t result = wr_id & RDMA_WRID_TYPE_MASK; |
| |
| result |= (index << RDMA_WRID_BLOCK_SHIFT); |
| result |= (chunk << RDMA_WRID_CHUNK_SHIFT); |
| |
| return result; |
| } |
| |
| /* |
| * Set bit for unregistration in the next iteration. |
| * We cannot transmit right here, but will unpin later. |
| */ |
| static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index, |
| uint64_t chunk, uint64_t wr_id) |
| { |
| if (rdma->unregistrations[rdma->unregister_next] != 0) { |
| fprintf(stderr, "rdma migration: queue is full!\n"); |
| } else { |
| RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); |
| |
| if (!test_and_set_bit(chunk, block->unregister_bitmap)) { |
| DDPRINTF("Appending unregister chunk %" PRIu64 |
| " at position %d\n", chunk, rdma->unregister_next); |
| |
| rdma->unregistrations[rdma->unregister_next++] = |
| qemu_rdma_make_wrid(wr_id, index, chunk); |
| |
| if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) { |
| rdma->unregister_next = 0; |
| } |
| } else { |
| DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n", |
| chunk); |
| } |
| } |
| } |
| |
| /* |
| * Consult the connection manager to see a work request |
| * (of any kind) has completed. |
| * Return the work request ID that completed. |
| */ |
| static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out, |
| uint32_t *byte_len) |
| { |
| int ret; |
| struct ibv_wc wc; |
| uint64_t wr_id; |
| |
| ret = ibv_poll_cq(rdma->cq, 1, &wc); |
| |
| if (!ret) { |
| *wr_id_out = RDMA_WRID_NONE; |
| return 0; |
| } |
| |
| if (ret < 0) { |
| fprintf(stderr, "ibv_poll_cq return %d!\n", ret); |
| return ret; |
| } |
| |
| wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK; |
| |
| if (wc.status != IBV_WC_SUCCESS) { |
| fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n", |
| wc.status, ibv_wc_status_str(wc.status)); |
| fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]); |
| |
| return -1; |
| } |
| |
| if (rdma->control_ready_expected && |
| (wr_id >= RDMA_WRID_RECV_CONTROL)) { |
| DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")" |
| " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL], |
| wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent); |
| rdma->control_ready_expected = 0; |
| } |
| |
| if (wr_id == RDMA_WRID_RDMA_WRITE) { |
| uint64_t chunk = |
| (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; |
| uint64_t index = |
| (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; |
| RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); |
| |
| DDDPRINTF("completions %s (%" PRId64 ") left %d, " |
| "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n", |
| print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk, |
| block->local_host_addr, (void *)block->remote_host_addr); |
| |
| clear_bit(chunk, block->transit_bitmap); |
| |
| if (rdma->nb_sent > 0) { |
| rdma->nb_sent--; |
| } |
| |
| if (!rdma->pin_all) { |
| /* |
| * FYI: If one wanted to signal a specific chunk to be unregistered |
| * using LRU or workload-specific information, this is the function |
| * you would call to do so. That chunk would then get asynchronously |
| * unregistered later. |
| */ |
| #ifdef RDMA_UNREGISTRATION_EXAMPLE |
| qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id); |
| #endif |
| } |
| } else { |
| DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n", |
| print_wrid(wr_id), wr_id, rdma->nb_sent); |
| } |
| |
| *wr_id_out = wc.wr_id; |
| if (byte_len) { |
| *byte_len = wc.byte_len; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Block until the next work request has completed. |
| * |
| * First poll to see if a work request has already completed, |
| * otherwise block. |
| * |
| * If we encounter completed work requests for IDs other than |
| * the one we're interested in, then that's generally an error. |
| * |
| * The only exception is actual RDMA Write completions. These |
| * completions only need to be recorded, but do not actually |
| * need further processing. |
| */ |
| static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, |
| uint32_t *byte_len) |
| { |
| int num_cq_events = 0, ret = 0; |
| struct ibv_cq *cq; |
| void *cq_ctx; |
| uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; |
| |
| if (ibv_req_notify_cq(rdma->cq, 0)) { |
| return -1; |
| } |
| /* poll cq first */ |
| while (wr_id != wrid_requested) { |
| ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; |
| |
| if (wr_id == RDMA_WRID_NONE) { |
| break; |
| } |
| if (wr_id != wrid_requested) { |
| DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n", |
| print_wrid(wrid_requested), |
| wrid_requested, print_wrid(wr_id), wr_id); |
| } |
| } |
| |
| if (wr_id == wrid_requested) { |
| return 0; |
| } |
| |
| while (1) { |
| /* |
| * Coroutine doesn't start until process_incoming_migration() |
| * so don't yield unless we know we're running inside of a coroutine. |
| */ |
| if (rdma->migration_started_on_destination) { |
| yield_until_fd_readable(rdma->comp_channel->fd); |
| } |
| |
| if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) { |
| perror("ibv_get_cq_event"); |
| goto err_block_for_wrid; |
| } |
| |
| num_cq_events++; |
| |
| if (ibv_req_notify_cq(cq, 0)) { |
| goto err_block_for_wrid; |
| } |
| |
| while (wr_id != wrid_requested) { |
| ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); |
| if (ret < 0) { |
| goto err_block_for_wrid; |
| } |
| |
| wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; |
| |
| if (wr_id == RDMA_WRID_NONE) { |
| break; |
| } |
| if (wr_id != wrid_requested) { |
| DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n", |
| print_wrid(wrid_requested), wrid_requested, |
| print_wrid(wr_id), wr_id); |
| } |
| } |
| |
| if (wr_id == wrid_requested) { |
| goto success_block_for_wrid; |
| } |
| } |
| |
| success_block_for_wrid: |
| if (num_cq_events) { |
| ibv_ack_cq_events(cq, num_cq_events); |
| } |
| return 0; |
| |
| err_block_for_wrid: |
| if (num_cq_events) { |
| ibv_ack_cq_events(cq, num_cq_events); |
| } |
| return ret; |
| } |
| |
| /* |
| * Post a SEND message work request for the control channel |
| * containing some data and block until the post completes. |
| */ |
| static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf, |
| RDMAControlHeader *head) |
| { |
| int ret = 0; |
| RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL]; |
| struct ibv_send_wr *bad_wr; |
| struct ibv_sge sge = { |
| .addr = (uint64_t)(wr->control), |
| .length = head->len + sizeof(RDMAControlHeader), |
| .lkey = wr->control_mr->lkey, |
| }; |
| struct ibv_send_wr send_wr = { |
| .wr_id = RDMA_WRID_SEND_CONTROL, |
| .opcode = IBV_WR_SEND, |
| .send_flags = IBV_SEND_SIGNALED, |
| .sg_list = &sge, |
| .num_sge = 1, |
| }; |
| |
| DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]); |
| |
| /* |
| * We don't actually need to do a memcpy() in here if we used |
| * the "sge" properly, but since we're only sending control messages |
| * (not RAM in a performance-critical path), then its OK for now. |
| * |
| * The copy makes the RDMAControlHeader simpler to manipulate |
| * for the time being. |
| */ |
| assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head)); |
| memcpy(wr->control, head, sizeof(RDMAControlHeader)); |
| control_to_network((void *) wr->control); |
| |
| if (buf) { |
| memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len); |
| } |
| |
| |
| ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); |
| |
| if (ret > 0) { |
| fprintf(stderr, "Failed to use post IB SEND for control!\n"); |
| return -ret; |
| } |
| |
| ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL); |
| if (ret < 0) { |
| fprintf(stderr, "rdma migration: send polling control error!\n"); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Post a RECV work request in anticipation of some future receipt |
| * of data on the control channel. |
| */ |
| static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx) |
| { |
| struct ibv_recv_wr *bad_wr; |
| struct ibv_sge sge = { |
| .addr = (uint64_t)(rdma->wr_data[idx].control), |
| .length = RDMA_CONTROL_MAX_BUFFER, |
| .lkey = rdma->wr_data[idx].control_mr->lkey, |
| }; |
| |
| struct ibv_recv_wr recv_wr = { |
| .wr_id = RDMA_WRID_RECV_CONTROL + idx, |
| .sg_list = &sge, |
| .num_sge = 1, |
| }; |
| |
| |
| if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Block and wait for a RECV control channel message to arrive. |
| */ |
| static int qemu_rdma_exchange_get_response(RDMAContext *rdma, |
| RDMAControlHeader *head, int expecting, int idx) |
| { |
| uint32_t byte_len; |
| int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx, |
| &byte_len); |
| |
| if (ret < 0) { |
| fprintf(stderr, "rdma migration: recv polling control error!\n"); |
| return ret; |
| } |
| |
| network_to_control((void *) rdma->wr_data[idx].control); |
| memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader)); |
| |
| DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]); |
| |
| if (expecting == RDMA_CONTROL_NONE) { |
| DDDPRINTF("Surprise: got %s (%d)\n", |
| control_desc[head->type], head->type); |
| } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) { |
| fprintf(stderr, "Was expecting a %s (%d) control message" |
| ", but got: %s (%d), length: %d\n", |
| control_desc[expecting], expecting, |
| control_desc[head->type], head->type, head->len); |
| return -EIO; |
| } |
| if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) { |
| fprintf(stderr, "too long length: %d\n", head->len); |
| return -EINVAL; |
| } |
| if (sizeof(*head) + head->len != byte_len) { |
| fprintf(stderr, "Malformed length: %d byte_len %d\n", |
| head->len, byte_len); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * When a RECV work request has completed, the work request's |
| * buffer is pointed at the header. |
| * |
| * This will advance the pointer to the data portion |
| * of the control message of the work request's buffer that |
| * was populated after the work request finished. |
| */ |
| static void qemu_rdma_move_header(RDMAContext *rdma, int idx, |
| RDMAControlHeader *head) |
| { |
| rdma->wr_data[idx].control_len = head->len; |
| rdma->wr_data[idx].control_curr = |
| rdma->wr_data[idx].control + sizeof(RDMAControlHeader); |
| } |
| |
| /* |
| * This is an 'atomic' high-level operation to deliver a single, unified |
| * control-channel message. |
| * |
| * Additionally, if the user is expecting some kind of reply to this message, |
| * they can request a 'resp' response message be filled in by posting an |
| * additional work request on behalf of the user and waiting for an additional |
| * completion. |
| * |
| * The extra (optional) response is used during registration to us from having |
| * to perform an *additional* exchange of message just to provide a response by |
| * instead piggy-backing on the acknowledgement. |
| */ |
| static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, |
| uint8_t *data, RDMAControlHeader *resp, |
| int *resp_idx, |
| int (*callback)(RDMAContext *rdma)) |
| { |
| int ret = 0; |
| |
| /* |
| * Wait until the dest is ready before attempting to deliver the message |
| * by waiting for a READY message. |
| */ |
| if (rdma->control_ready_expected) { |
| RDMAControlHeader resp; |
| ret = qemu_rdma_exchange_get_response(rdma, |
| &resp, RDMA_CONTROL_READY, RDMA_WRID_READY); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| /* |
| * If the user is expecting a response, post a WR in anticipation of it. |
| */ |
| if (resp) { |
| ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA); |
| if (ret) { |
| fprintf(stderr, "rdma migration: error posting" |
| " extra control recv for anticipated result!"); |
| return ret; |
| } |
| } |
| |
| /* |
| * Post a WR to replace the one we just consumed for the READY message. |
| */ |
| ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); |
| if (ret) { |
| fprintf(stderr, "rdma migration: error posting first control recv!"); |
| return ret; |
| } |
| |
| /* |
| * Deliver the control message that was requested. |
| */ |
| ret = qemu_rdma_post_send_control(rdma, data, head); |
| |
| if (ret < 0) { |
| fprintf(stderr, "Failed to send control buffer!\n"); |
| return ret; |
| } |
| |
| /* |
| * If we're expecting a response, block and wait for it. |
| */ |
| if (resp) { |
| if (callback) { |
| DDPRINTF("Issuing callback before receiving response...\n"); |
| ret = callback(rdma); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| DDPRINTF("Waiting for response %s\n", control_desc[resp->type]); |
| ret = qemu_rdma_exchange_get_response(rdma, resp, |
| resp->type, RDMA_WRID_DATA); |
| |
| if (ret < 0) { |
| return ret; |
| } |
| |
| qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp); |
| if (resp_idx) { |
| *resp_idx = RDMA_WRID_DATA; |
| } |
| DDPRINTF("Response %s received.\n", control_desc[resp->type]); |
| } |
| |
| rdma->control_ready_expected = 1; |
| |
| return 0; |
| } |
| |
| /* |
| * This is an 'atomic' high-level operation to receive a single, unified |
| * control-channel message. |
| */ |
| static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head, |
| int expecting) |
| { |
| RDMAControlHeader ready = { |
| .len = 0, |
| .type = RDMA_CONTROL_READY, |
| .repeat = 1, |
| }; |
| int ret; |
| |
| /* |
| * Inform the source that we're ready to receive a message. |
| */ |
| ret = qemu_rdma_post_send_control(rdma, NULL, &ready); |
| |
| if (ret < 0) { |
| fprintf(stderr, "Failed to send control buffer!\n"); |
| return ret; |
| } |
| |
| /* |
| * Block and wait for the message. |
| */ |
| ret = qemu_rdma_exchange_get_response(rdma, head, |
| expecting, RDMA_WRID_READY); |
| |
| if (ret < 0) { |
| return ret; |
| } |
| |
| qemu_rdma_move_header(rdma, RDMA_WRID_READY, head); |
| |
| /* |
| * Post a new RECV work request to replace the one we just consumed. |
| */ |
| ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); |
| if (ret) { |
| fprintf(stderr, "rdma migration: error posting second control recv!"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Write an actual chunk of memory using RDMA. |
| * |
| * If we're using dynamic registration on the dest-side, we have to |
| * send a registration command first. |
| */ |
| static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma, |
| int current_index, uint64_t current_addr, |
| uint64_t length) |
| { |
| struct ibv_sge sge; |
| struct ibv_send_wr send_wr = { 0 }; |
| struct ibv_send_wr *bad_wr; |
| int reg_result_idx, ret, count = 0; |
| uint64_t chunk, chunks; |
| uint8_t *chunk_start, *chunk_end; |
| RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]); |
| RDMARegister reg; |
| RDMARegisterResult *reg_result; |
| RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT }; |
| RDMAControlHeader head = { .len = sizeof(RDMARegister), |
| .type = RDMA_CONTROL_REGISTER_REQUEST, |
| .repeat = 1, |
| }; |
| |
| retry: |
| sge.addr = (uint64_t)(block->local_host_addr + |
| (current_addr - block->offset)); |
| sge.length = length; |
| |
| chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr); |
| chunk_start = ram_chunk_start(block, chunk); |
| |
| if (block->is_ram_block) { |
| chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT); |
| |
| if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { |
| chunks--; |
| } |
| } else { |
| chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT); |
| |
| if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { |
| chunks--; |
| } |
| } |
| |
| DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n", |
| chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024); |
| |
| chunk_end = ram_chunk_end(block, chunk + chunks); |
| |
| if (!rdma->pin_all) { |
| #ifdef RDMA_UNREGISTRATION_EXAMPLE |
| qemu_rdma_unregister_waiting(rdma); |
| #endif |
| } |
| |
| while (test_bit(chunk, block->transit_bitmap)) { |
| (void)count; |
| DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64 |
| " current %" PRIu64 " len %" PRIu64 " %d %d\n", |
| count++, current_index, chunk, |
| sge.addr, length, rdma->nb_sent, block->nb_chunks); |
| |
| ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
| |
| if (ret < 0) { |
| fprintf(stderr, "Failed to Wait for previous write to complete " |
| "block %d chunk %" PRIu64 |
| " current %" PRIu64 " len %" PRIu64 " %d\n", |
| current_index, chunk, sge.addr, length, rdma->nb_sent); |
| return ret; |
| } |
| } |
| |
| if (!rdma->pin_all || !block->is_ram_block) { |
| if (!block->remote_keys[chunk]) { |
| /* |
| * This chunk has not yet been registered, so first check to see |
| * if the entire chunk is zero. If so, tell the other size to |
| * memset() + madvise() the entire chunk without RDMA. |
| */ |
| |
| if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length) |
| && buffer_find_nonzero_offset((void *)sge.addr, |
| length) == length) { |
| RDMACompress comp = { |
| .offset = current_addr, |
| .value = 0, |
| .block_idx = current_index, |
| .length = length, |
| }; |
| |
| head.len = sizeof(comp); |
| head.type = RDMA_CONTROL_COMPRESS; |
| |
| DDPRINTF("Entire chunk is zero, sending compress: %" |
| PRIu64 " for %d " |
| "bytes, index: %d, offset: %" PRId64 "...\n", |
| chunk, sge.length, current_index, current_addr); |
| |
| compress_to_network(&comp); |
| ret = qemu_rdma_exchange_send(rdma, &head, |
| (uint8_t *) &comp, NULL, NULL, NULL); |
| |
| if (ret < 0) { |
| return -EIO; |
| } |
| |
| acct_update_position(f, sge.length, true); |
| |
| return 1; |
| } |
| |
| /* |
| * Otherwise, tell other side to register. |
| */ |
| reg.current_index = current_index; |
| if (block->is_ram_block) { |
| reg.key.current_addr = current_addr; |
| } else { |
| reg.key.chunk = chunk; |
| } |
| reg.chunks = chunks; |
| |
| DDPRINTF("Sending registration request chunk %" PRIu64 " for %d " |
| "bytes, index: %d, offset: %" PRId64 "...\n", |
| chunk, sge.length, current_index, current_addr); |
| |
| register_to_network(®); |
| ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, |
| &resp, ®_result_idx, NULL); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| /* try to overlap this single registration with the one we sent. */ |
| if (qemu_rdma_register_and_get_keys(rdma, block, |
| (uint8_t *) sge.addr, |
| &sge.lkey, NULL, chunk, |
| chunk_start, chunk_end)) { |
| fprintf(stderr, "cannot get lkey!\n"); |
| return -EINVAL; |
| } |
| |
| reg_result = (RDMARegisterResult *) |
| rdma->wr_data[reg_result_idx].control_curr; |
| |
| network_to_result(reg_result); |
| |
| DDPRINTF("Received registration result:" |
| " my key: %x their key %x, chunk %" PRIu64 "\n", |
| block->remote_keys[chunk], reg_result->rkey, chunk); |
| |
| block->remote_keys[chunk] = reg_result->rkey; |
| block->remote_host_addr = reg_result->host_addr; |
| } else { |
| /* already registered before */ |
| if (qemu_rdma_register_and_get_keys(rdma, block, |
| (uint8_t *)sge.addr, |
| &sge.lkey, NULL, chunk, |
| chunk_start, chunk_end)) { |
| fprintf(stderr, "cannot get lkey!\n"); |
| return -EINVAL; |
| } |
| } |
| |
| send_wr.wr.rdma.rkey = block->remote_keys[chunk]; |
| } else { |
| send_wr.wr.rdma.rkey = block->remote_rkey; |
| |
| if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr, |
| &sge.lkey, NULL, chunk, |
| chunk_start, chunk_end)) { |
| fprintf(stderr, "cannot get lkey!\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Encode the ram block index and chunk within this wrid. |
| * We will use this information at the time of completion |
| * to figure out which bitmap to check against and then which |
| * chunk in the bitmap to look for. |
| */ |
| send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE, |
| current_index, chunk); |
| |
| send_wr.opcode = IBV_WR_RDMA_WRITE; |
| send_wr.send_flags = IBV_SEND_SIGNALED; |
| send_wr.sg_list = &sge; |
| send_wr.num_sge = 1; |
| send_wr.wr.rdma.remote_addr = block->remote_host_addr + |
| (current_addr - block->offset); |
| |
| DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx" |
| " remote: %lx, bytes %" PRIu32 "\n", |
| chunk, sge.addr, send_wr.wr.rdma.remote_addr, |
| sge.length); |
| |
| /* |
| * ibv_post_send() does not return negative error numbers, |
| * per the specification they are positive - no idea why. |
| */ |
| ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); |
| |
| if (ret == ENOMEM) { |
| DDPRINTF("send queue is full. wait a little....\n"); |
| ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
| if (ret < 0) { |
| fprintf(stderr, "rdma migration: failed to make " |
| "room in full send queue! %d\n", ret); |
| return ret; |
| } |
| |
| goto retry; |
| |
| } else if (ret > 0) { |
| perror("rdma migration: post rdma write failed"); |
| return -ret; |
| } |
| |
| set_bit(chunk, block->transit_bitmap); |
| acct_update_position(f, sge.length, false); |
| rdma->total_writes++; |
| |
| return 0; |
| } |
| |
| /* |
| * Push out any unwritten RDMA operations. |
| * |
| * We support sending out multiple chunks at the same time. |
| * Not all of them need to get signaled in the completion queue. |
| */ |
| static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma) |
| { |
| int ret; |
| |
| if (!rdma->current_length) { |
| return 0; |
| } |
| |
| ret = qemu_rdma_write_one(f, rdma, |
| rdma->current_index, rdma->current_addr, rdma->current_length); |
| |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (ret == 0) { |
| rdma->nb_sent++; |
| DDDPRINTF("sent total: %d\n", rdma->nb_sent); |
| } |
| |
| rdma->current_length = 0; |
| rdma->current_addr = 0; |
| |
| return 0; |
| } |
| |
| static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma, |
| uint64_t offset, uint64_t len) |
| { |
| RDMALocalBlock *block; |
| uint8_t *host_addr; |
| uint8_t *chunk_end; |
| |
| if (rdma->current_index < 0) { |
| return 0; |
| } |
| |
| if (rdma->current_chunk < 0) { |
| return 0; |
| } |
| |
| block = &(rdma->local_ram_blocks.block[rdma->current_index]); |
| host_addr = block->local_host_addr + (offset - block->offset); |
| chunk_end = ram_chunk_end(block, rdma->current_chunk); |
| |
| if (rdma->current_length == 0) { |
| return 0; |
| } |
| |
| /* |
| * Only merge into chunk sequentially. |
| */ |
| if (offset != (rdma->current_addr + rdma->current_length)) { |
| return 0; |
| } |
| |
| if (offset < block->offset) { |
| return 0; |
| } |
| |
| if ((offset + len) > (block->offset + block->length)) { |
| return 0; |
| } |
| |
| if ((host_addr + len) > chunk_end) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * We're not actually writing here, but doing three things: |
| * |
| * 1. Identify the chunk the buffer belongs to. |
| * 2. If the chunk is full or the buffer doesn't belong to the current |
| * chunk, then start a new chunk and flush() the old chunk. |
| * 3. To keep the hardware busy, we also group chunks into batches |
| * and only require that a batch gets acknowledged in the completion |
| * qeueue instead of each individual chunk. |
| */ |
| static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma, |
| uint64_t block_offset, uint64_t offset, |
| uint64_t len) |
| { |
| uint64_t current_addr = block_offset + offset; |
| uint64_t index = rdma->current_index; |
| uint64_t chunk = rdma->current_chunk; |
| int ret; |
| |
| /* If we cannot merge it, we flush the current buffer first. */ |
| if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) { |
| ret = qemu_rdma_write_flush(f, rdma); |
| if (ret) { |
| return ret; |
| } |
| rdma->current_length = 0; |
| rdma->current_addr = current_addr; |
| |
| ret = qemu_rdma_search_ram_block(rdma, block_offset, |
| offset, len, &index, &chunk); |
| if (ret) { |
| fprintf(stderr, "ram block search failed\n"); |
| return ret; |
| } |
| rdma->current_index = index; |
| rdma->current_chunk = chunk; |
| } |
| |
| /* merge it */ |
| rdma->current_length += len; |
| |
| /* flush it if buffer is too large */ |
| if (rdma->current_length >= RDMA_MERGE_MAX) { |
| return qemu_rdma_write_flush(f, rdma); |
| } |
| |
| return 0; |
| } |
| |
| static void qemu_rdma_cleanup(RDMAContext *rdma) |
| { |
| struct rdma_cm_event *cm_event; |
| int ret, idx; |
| |
| if (rdma->cm_id && rdma->connected) { |
| if (rdma->error_state) { |
| RDMAControlHeader head = { .len = 0, |
| .type = RDMA_CONTROL_ERROR, |
| .repeat = 1, |
| }; |
| fprintf(stderr, "Early error. Sending error.\n"); |
| qemu_rdma_post_send_control(rdma, NULL, &head); |
| } |
| |
| ret = rdma_disconnect(rdma->cm_id); |
| if (!ret) { |
| DDPRINTF("waiting for disconnect\n"); |
| ret = rdma_get_cm_event(rdma->channel, &cm_event); |
| if (!ret) { |
| rdma_ack_cm_event(cm_event); |
| } |
| } |
| DDPRINTF("Disconnected.\n"); |
| rdma->connected = false; |
| } |
| |
| g_free(rdma->block); |
| rdma->block = NULL; |
| |
| for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
| if (rdma->wr_data[idx].control_mr) { |
| rdma->total_registrations--; |
| ibv_dereg_mr(rdma->wr_data[idx].control_mr); |
| } |
| rdma->wr_data[idx].control_mr = NULL; |
| } |
| |
| if (rdma->local_ram_blocks.block) { |
| while (rdma->local_ram_blocks.nb_blocks) { |
| __qemu_rdma_delete_block(rdma, |
| rdma->local_ram_blocks.block->offset); |
| } |
| } |
| |
| if (rdma->cq) { |
| ibv_destroy_cq(rdma->cq); |
| rdma->cq = NULL; |
| } |
| if (rdma->comp_channel) { |
| ibv_destroy_comp_channel(rdma->comp_channel); |
| rdma->comp_channel = NULL; |
| } |
| if (rdma->pd) { |
| ibv_dealloc_pd(rdma->pd); |
| rdma->pd = NULL; |
| } |
| if (rdma->listen_id) { |
| rdma_destroy_id(rdma->listen_id); |
| rdma->listen_id = NULL; |
| } |
| if (rdma->cm_id) { |
| if (rdma->qp) { |
| rdma_destroy_qp(rdma->cm_id); |
| rdma->qp = NULL; |
| } |
| rdma_destroy_id(rdma->cm_id); |
| rdma->cm_id = NULL; |
| } |
| if (rdma->channel) { |
| rdma_destroy_event_channel(rdma->channel); |
| rdma->channel = NULL; |
| } |
| g_free(rdma->host); |
| rdma->host = NULL; |
| } |
| |
| |
| static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all) |
| { |
| int ret, idx; |
| Error *local_err = NULL, **temp = &local_err; |
| |
| /* |
| * Will be validated against destination's actual capabilities |
| * after the connect() completes. |
| */ |
| rdma->pin_all = pin_all; |
| |
| ret = qemu_rdma_resolve_host(rdma, temp); |
| if (ret) { |
| goto err_rdma_source_init; |
| } |
| |
| ret = qemu_rdma_alloc_pd_cq(rdma); |
| if (ret) { |
| ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()" |
| " limits may be too low. Please check $ ulimit -a # and " |
| "search for 'ulimit -l' in the output"); |
| goto err_rdma_source_init; |
| } |
| |
| ret = qemu_rdma_alloc_qp(rdma); |
| if (ret) { |
| ERROR(temp, "rdma migration: error allocating qp!"); |
| goto err_rdma_source_init; |
| } |
| |
| ret = qemu_rdma_init_ram_blocks(rdma); |
| if (ret) { |
| ERROR(temp, "rdma migration: error initializing ram blocks!"); |
| goto err_rdma_source_init; |
| } |
| |
| for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
| ret = qemu_rdma_reg_control(rdma, idx); |
| if (ret) { |
| ERROR(temp, "rdma migration: error registering %d control!", |
| idx); |
| goto err_rdma_source_init; |
| } |
| } |
| |
| return 0; |
| |
| err_rdma_source_init: |
| error_propagate(errp, local_err); |
| qemu_rdma_cleanup(rdma); |
| return -1; |
| } |
| |
| static int qemu_rdma_connect(RDMAContext *rdma, Error **errp) |
| { |
| RDMACapabilities cap = { |
| .version = RDMA_CONTROL_VERSION_CURRENT, |
| .flags = 0, |
| }; |
| struct rdma_conn_param conn_param = { .initiator_depth = 2, |
| .retry_count = 5, |
| .private_data = &cap, |
| .private_data_len = sizeof(cap), |
| }; |
| struct rdma_cm_event *cm_event; |
| int ret; |
| |
| /* |
| * Only negotiate the capability with destination if the user |
| * on the source first requested the capability. |
| */ |
| if (rdma->pin_all) { |
| DPRINTF("Server pin-all memory requested.\n"); |
| cap.flags |= RDMA_CAPABILITY_PIN_ALL; |
| } |
| |
| caps_to_network(&cap); |
| |
| ret = rdma_connect(rdma->cm_id, &conn_param); |
| if (ret) { |
| perror("rdma_connect"); |
| ERROR(errp, "connecting to destination!"); |
| rdma_destroy_id(rdma->cm_id); |
| rdma->cm_id = NULL; |
| goto err_rdma_source_connect; |
| } |
| |
| ret = rdma_get_cm_event(rdma->channel, &cm_event); |
| if (ret) { |
| perror("rdma_get_cm_event after rdma_connect"); |
| ERROR(errp, "connecting to destination!"); |
| rdma_ack_cm_event(cm_event); |
| rdma_destroy_id(rdma->cm_id); |
| rdma->cm_id = NULL; |
| goto err_rdma_source_connect; |
| } |
| |
| if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { |
| perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect"); |
| ERROR(errp, "connecting to destination!"); |
| rdma_ack_cm_event(cm_event); |
| rdma_destroy_id(rdma->cm_id); |
| rdma->cm_id = NULL; |
| goto err_rdma_source_connect; |
| } |
| rdma->connected = true; |
| |
| memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); |
| network_to_caps(&cap); |
| |
| /* |
| * Verify that the *requested* capabilities are supported by the destination |
| * and disable them otherwise. |
| */ |
| if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) { |
| ERROR(errp, "Server cannot support pinning all memory. " |
| "Will register memory dynamically."); |
| rdma->pin_all = false; |
| } |
| |
| DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled"); |
| |
| rdma_ack_cm_event(cm_event); |
| |
| ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); |
| if (ret) { |
| ERROR(errp, "posting second control recv!"); |
| goto err_rdma_source_connect; |
| } |
| |
| rdma->control_ready_expected = 1; |
| rdma->nb_sent = 0; |
| return 0; |
| |
| err_rdma_source_connect: |
| qemu_rdma_cleanup(rdma); |
| return -1; |
| } |
| |
| static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp) |
| { |
| int ret = -EINVAL, idx; |
| struct rdma_cm_id *listen_id; |
| char ip[40] = "unknown"; |
| struct rdma_addrinfo *res; |
| char port_str[16]; |
| |
| for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
| rdma->wr_data[idx].control_len = 0; |
| rdma->wr_data[idx].control_curr = NULL; |
| } |
| |
| if (rdma->host == NULL) { |
| ERROR(errp, "RDMA host is not set!"); |
| rdma->error_state = -EINVAL; |
| return -1; |
| } |
| /* create CM channel */ |
| rdma->channel = rdma_create_event_channel(); |
| if (!rdma->channel) { |
| ERROR(errp, "could not create rdma event channel"); |
| rdma->error_state = -EINVAL; |
| return -1; |
| } |
| |
| /* create CM id */ |
| ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP); |
| if (ret) { |
| ERROR(errp, "could not create cm_id!"); |
| goto err_dest_init_create_listen_id; |
| } |
| |
| snprintf(port_str, 16, "%d", rdma->port); |
| port_str[15] = '\0'; |
| |
| if (rdma->host && strcmp("", rdma->host)) { |
| struct rdma_addrinfo *e; |
| |
| ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); |
| if (ret < 0) { |
| ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); |
| goto err_dest_init_bind_addr; |
| } |
| |
| for (e = res; e != NULL; e = e->ai_next) { |
| inet_ntop(e->ai_family, |
| &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); |
| DPRINTF("Trying %s => %s\n", rdma->host, ip); |
| ret = rdma_bind_addr(listen_id, e->ai_dst_addr); |
| if (!ret) { |
| if (e->ai_family == AF_INET6) { |
| ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs); |
| if (ret) { |
| continue; |
| } |
| } |
| |
| goto listen; |
| } |
| } |
| |
| ERROR(errp, "Error: could not rdma_bind_addr!"); |
| goto err_dest_init_bind_addr; |
| } else { |
| ERROR(errp, "migration host and port not specified!"); |
| ret = -EINVAL; |
| goto err_dest_init_bind_addr; |
| } |
| listen: |
| |
| rdma->listen_id = listen_id; |
| qemu_rdma_dump_gid("dest_init", listen_id); |
| return 0; |
| |
| err_dest_init_bind_addr: |
| rdma_destroy_id(listen_id); |
| err_dest_init_create_listen_id: |
| rdma_destroy_event_channel(rdma->channel); |
| rdma->channel = NULL; |
| rdma->error_state = ret; |
| return ret; |
| |
| } |
| |
| static void *qemu_rdma_data_init(const char *host_port, Error **errp) |
| { |
| RDMAContext *rdma = NULL; |
| InetSocketAddress *addr; |
| |
| if (host_port) { |
| rdma = g_malloc0(sizeof(RDMAContext)); |
| memset(rdma, 0, sizeof(RDMAContext)); |
| rdma->current_index = -1; |
| rdma->current_chunk = -1; |
| |
| addr = inet_parse(host_port, NULL); |
| if (addr != NULL) { |
| rdma->port = atoi(addr->port); |
| rdma->host = g_strdup(addr->host); |
| } else { |
| ERROR(errp, "bad RDMA migration address '%s'", host_port); |
| g_free(rdma); |
| rdma = NULL; |
| } |
| |
| qapi_free_InetSocketAddress(addr); |
| } |
| |
| return rdma; |
| } |
| |
| /* |
| * QEMUFile interface to the control channel. |
| * SEND messages for control only. |
| * pc.ram is handled with regular RDMA messages. |
| */ |
| static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf, |
| int64_t pos, int size) |
| { |
| QEMUFileRDMA *r = opaque; |
| QEMUFile *f = r->file; |
| RDMAContext *rdma = r->rdma; |
| size_t remaining = size; |
| uint8_t * data = (void *) buf; |
| int ret; |
| |
| CHECK_ERROR_STATE(); |
| |
| /* |
| * Push out any writes that |
| * we're queued up for pc.ram. |
| */ |
| ret = qemu_rdma_write_flush(f, rdma); |
| if (ret < 0) { |
| rdma->error_state = ret; |
| return ret; |
| } |
| |
| while (remaining) { |
| RDMAControlHeader head; |
| |
| r->len = MIN(remaining, RDMA_SEND_INCREMENT); |
| remaining -= r->len; |
| |
| head.len = r->len; |
| head.type = RDMA_CONTROL_QEMU_FILE; |
| |
| ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL); |
| |
| if (ret < 0) { |
| rdma->error_state = ret; |
| return ret; |
| } |
| |
| data += r->len; |
| } |
| |
| return size; |
| } |
| |
| static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf, |
| int size, int idx) |
| { |
| size_t len = 0; |
| |
| if (rdma->wr_data[idx].control_len) { |
| DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n", |
| rdma->wr_data[idx].control_len, size); |
| |
| len = MIN(size, rdma->wr_data[idx].control_len); |
| memcpy(buf, rdma->wr_data[idx].control_curr, len); |
| rdma->wr_data[idx].control_curr += len; |
| rdma->wr_data[idx].control_len -= len; |
| } |
| |
| return len; |
| } |
| |
| /* |
| * QEMUFile interface to the control channel. |
| * RDMA links don't use bytestreams, so we have to |
| * return bytes to QEMUFile opportunistically. |
| */ |
| static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf, |
| int64_t pos, int size) |
| { |
| QEMUFileRDMA *r = opaque; |
| RDMAContext *rdma = r->rdma; |
| RDMAControlHeader head; |
| int ret = 0; |
| |
| CHECK_ERROR_STATE(); |
| |
| /* |
| * First, we hold on to the last SEND message we |
| * were given and dish out the bytes until we run |
| * out of bytes. |
| */ |
| r->len = qemu_rdma_fill(r->rdma, buf, size, 0); |
| if (r->len) { |
| return r->len; |
| } |
| |
| /* |
| * Once we run out, we block and wait for another |
| * SEND message to arrive. |
| */ |
| ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE); |
| |
| if (ret < 0) { |
| rdma->error_state = ret; |
| return ret; |
| } |
| |
| /* |
| * SEND was received with new bytes, now try again. |
| */ |
| return qemu_rdma_fill(r->rdma, buf, size, 0); |
| } |
| |
| /* |
| * Block until all the outstanding chunks have been delivered by the hardware. |
| */ |
| static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma) |
| { |
| int ret; |
| |
| if (qemu_rdma_write_flush(f, rdma) < 0) { |
| return -EIO; |
| } |
| |
| while (rdma->nb_sent) { |
| ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
| if (ret < 0) { |
| fprintf(stderr, "rdma migration: complete polling error!\n"); |
| return -EIO; |
| } |
| } |
| |
| qemu_rdma_unregister_waiting(rdma); |
| |
| return 0; |
| } |
| |
| static int qemu_rdma_close(void *opaque) |
| { |
| DPRINTF("Shutting down connection.\n"); |
| QEMUFileRDMA *r = opaque; |
| if (r->rdma) { |
| qemu_rdma_cleanup(r->rdma); |
| g_free(r->rdma); |
| } |
| g_free(r); |
| return 0; |
| } |
| |
| /* |
| * Parameters: |
| * @offset == 0 : |
| * This means that 'block_offset' is a full virtual address that does not |
| * belong to a RAMBlock of the virtual machine and instead |
| * represents a private malloc'd memory area that the caller wishes to |
| * transfer. |
| * |
| * @offset != 0 : |
| * Offset is an offset to be added to block_offset and used |
| * to also lookup the corresponding RAMBlock. |
| * |
| * @size > 0 : |
| * Initiate an transfer this size. |
| * |
| * @size == 0 : |
| * A 'hint' or 'advice' that means that we wish to speculatively |
| * and asynchronously unregister this memory. In this case, there is no |
| * guarantee that the unregister will actually happen, for example, |
| * if the memory is being actively transmitted. Additionally, the memory |
| * may be re-registered at any future time if a write within the same |
| * chunk was requested again, even if you attempted to unregister it |
| * here. |
| * |
| * @size < 0 : TODO, not yet supported |
| * Unregister the memory NOW. This means that the caller does not |
| * expect there to be any future RDMA transfers and we just want to clean |
| * things up. This is used in case the upper layer owns the memory and |
| * cannot wait for qemu_fclose() to occur. |
| * |
| * @bytes_sent : User-specificed pointer to indicate how many bytes were |
| * sent. Usually, this will not be more than a few bytes of |
| * the protocol because most transfers are sent asynchronously. |
| */ |
| static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque, |
| ram_addr_t block_offset, ram_addr_t offset, |
| size_t size, int *bytes_sent) |
| { |
| QEMUFileRDMA *rfile = opaque; |
| RDMAContext *rdma = rfile->rdma; |
| int ret; |
| |
| CHECK_ERROR_STATE(); |
| |
| qemu_fflush(f); |
| |
| if (size > 0) { |
| /* |
| * Add this page to the current 'chunk'. If the chunk |
| * is full, or the page doen't belong to the current chunk, |
| * an actual RDMA write will occur and a new chunk will be formed. |
| */ |
| ret = qemu_rdma_write(f, rdma, block_offset, offset, size); |
| if (ret < 0) { |
| fprintf(stderr, "rdma migration: write error! %d\n", ret); |
| goto err; |
| } |
| |
| /* |
| * We always return 1 bytes because the RDMA |
| * protocol is completely asynchronous. We do not yet know |
| * whether an identified chunk is zero or not because we're |
| * waiting for other pages to potentially be merged with |
| * the current chunk. So, we have to call qemu_update_position() |
| * later on when the actual write occurs. |
| */ |
| if (bytes_sent) { |
| *bytes_sent = 1; |
| } |
| } else { |
| uint64_t index, chunk; |
| |
| /* TODO: Change QEMUFileOps prototype to be signed: size_t => long |
| if (size < 0) { |
| ret = qemu_rdma_drain_cq(f, rdma); |
| if (ret < 0) { |
| fprintf(stderr, "rdma: failed to synchronously drain" |
| " completion queue before unregistration.\n"); |
| goto err; |
| } |
| } |
| */ |
| |
| ret = qemu_rdma_search_ram_block(rdma, block_offset, |
| offset, size, &index, &chunk); |
| |
| if (ret) { |
| fprintf(stderr, "ram block search failed\n"); |
| goto err; |
| } |
| |
| qemu_rdma_signal_unregister(rdma, index, chunk, 0); |
| |
| /* |
| * TODO: Synchronous, guaranteed unregistration (should not occur during |
| * fast-path). Otherwise, unregisters will process on the next call to |
| * qemu_rdma_drain_cq() |
| if (size < 0) { |
| qemu_rdma_unregister_waiting(rdma); |
| } |
| */ |
| } |
| |
| /* |
| * Drain the Completion Queue if possible, but do not block, |
| * just poll. |
| * |
| * If nothing to poll, the end of the iteration will do this |
| * again to make sure we don't overflow the request queue. |
| */ |
| while (1) { |
| uint64_t wr_id, wr_id_in; |
| int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL); |
| if (ret < 0) { |
| fprintf(stderr, "rdma migration: polling error! %d\n", ret); |
| goto err; |
| } |
| |
| wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; |
| |
| if (wr_id == RDMA_WRID_NONE) { |
| break; |
| } |
| } |
| |
| return RAM_SAVE_CONTROL_DELAYED; |
| err: |
| rdma->error_state = ret; |
| return ret; |
| } |
| |
| static int qemu_rdma_accept(RDMAContext *rdma) |
| { |
| RDMACapabilities cap; |
| struct rdma_conn_param conn_param = { |
| .responder_resources = 2, |
| .private_data = &cap, |
| .private_data_len = sizeof(cap), |
| }; |
| struct rdma_cm_event *cm_event; |
| struct ibv_context *verbs; |
| int ret = -EINVAL; |
| int idx; |
| |
| ret = rdma_get_cm_event(rdma->channel, &cm_event); |
| if (ret) { |
| goto err_rdma_dest_wait; |
| } |
| |
| if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) { |
| rdma_ack_cm_event(cm_event); |
| goto err_rdma_dest_wait; |
| } |
| |
| memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); |
| |
| network_to_caps(&cap); |
| |
| if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) { |
| fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n", |
| cap.version); |
| rdma_ack_cm_event(cm_event); |
| goto err_rdma_dest_wait; |
| } |
| |
| /* |
| * Respond with only the capabilities this version of QEMU knows about. |
| */ |
| cap.flags &= known_capabilities; |
| |
| /* |
| * Enable the ones that we do know about. |
| * Add other checks here as new ones are introduced. |
| */ |
| if (cap.flags & RDMA_CAPABILITY_PIN_ALL) { |
| rdma->pin_all = true; |
| } |
| |
| rdma->cm_id = cm_event->id; |
| verbs = cm_event->id->verbs; |
| |
| rdma_ack_cm_event(cm_event); |
| |
| DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled"); |
| |
| caps_to_network(&cap); |
| |
| DPRINTF("verbs context after listen: %p\n", verbs); |
| |
| if (!rdma->verbs) { |
| rdma->verbs = verbs; |
| } else if (rdma->verbs != verbs) { |
| fprintf(stderr, "ibv context not matching %p, %p!\n", |
| rdma->verbs, verbs); |
| goto err_rdma_dest_wait; |
| } |
| |
| qemu_rdma_dump_id("dest_init", verbs); |
| |
| ret = qemu_rdma_alloc_pd_cq(rdma); |
| if (ret) { |
| fprintf(stderr, "rdma migration: error allocating pd and cq!\n"); |
| goto err_rdma_dest_wait; |
| } |
| |
| ret = qemu_rdma_alloc_qp(rdma); |
| if (ret) { |
| fprintf(stderr, "rdma migration: error allocating qp!\n"); |
| goto err_rdma_dest_wait; |
| } |
| |
| ret = qemu_rdma_init_ram_blocks(rdma); |
| if (ret) { |
| fprintf(stderr, "rdma migration: error initializing ram blocks!\n"); |
| goto err_rdma_dest_wait; |
| } |
| |
| for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
| ret = qemu_rdma_reg_control(rdma, idx); |
| if (ret) { |
| fprintf(stderr, "rdma: error registering %d control!\n", idx); |
| goto err_rdma_dest_wait; |
| } |
| } |
| |
| qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL); |
| |
| ret = rdma_accept(rdma->cm_id, &conn_param); |
| if (ret) { |
| fprintf(stderr, "rdma_accept returns %d!\n", ret); |
| goto err_rdma_dest_wait; |
| } |
| |
| ret = rdma_get_cm_event(rdma->channel, &cm_event); |
| if (ret) { |
| fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret); |
| goto err_rdma_dest_wait; |
| } |
| |
| if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { |
| fprintf(stderr, "rdma_accept not event established!\n"); |
| rdma_ack_cm_event(cm_event); |
| goto err_rdma_dest_wait; |
| } |
| |
| rdma_ack_cm_event(cm_event); |
| rdma->connected = true; |
| |
| ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); |
| if (ret) { |
| fprintf(stderr, "rdma migration: error posting second control recv!\n"); |
| goto err_rdma_dest_wait; |
| } |
| |
| qemu_rdma_dump_gid("dest_connect", rdma->cm_id); |
| |
| return 0; |
| |
| err_rdma_dest_wait: |
| rdma->error_state = ret; |
| qemu_rdma_cleanup(rdma); |
| return ret; |
| } |
| |
| /* |
| * During each iteration of the migration, we listen for instructions |
| * by the source VM to perform dynamic page registrations before they |
| * can perform RDMA operations. |
| * |
| * We respond with the 'rkey'. |
| * |
| * Keep doing this until the source tells us to stop. |
| */ |
| static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque, |
| uint64_t flags) |
| { |
| RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult), |
| .type = RDMA_CONTROL_REGISTER_RESULT, |
| .repeat = 0, |
| }; |
| RDMAControlHeader unreg_resp = { .len = 0, |
| .type = RDMA_CONTROL_UNREGISTER_FINISHED, |
| .repeat = 0, |
| }; |
| RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT, |
| .repeat = 1 }; |
| QEMUFileRDMA *rfile = opaque; |
| RDMAContext *rdma = rfile->rdma; |
| RDMALocalBlocks *local = &rdma->local_ram_blocks; |
| RDMAControlHeader head; |
| RDMARegister *reg, *registers; |
| RDMACompress *comp; |
| RDMARegisterResult *reg_result; |
| static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE]; |
| RDMALocalBlock *block; |
| void *host_addr; |
| int ret = 0; |
| int idx = 0; |
| int count = 0; |
| int i = 0; |
| |
| CHECK_ERROR_STATE(); |
| |
| do { |
| DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags); |
| |
| ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE); |
| |
| if (ret < 0) { |
| break; |
| } |
| |
| if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) { |
| fprintf(stderr, "rdma: Too many requests in this message (%d)." |
| "Bailing.\n", head.repeat); |
| ret = -EIO; |
| break; |
| } |
| |
| switch (head.type) { |
| case RDMA_CONTROL_COMPRESS: |
| comp = (RDMACompress *) rdma->wr_data[idx].control_curr; |
| network_to_compress(comp); |
| |
| DDPRINTF("Zapping zero chunk: %" PRId64 |
| " bytes, index %d, offset %" PRId64 "\n", |
| comp->length, comp->block_idx, comp->offset); |
| block = &(rdma->local_ram_blocks.block[comp->block_idx]); |
| |
| host_addr = block->local_host_addr + |
| (comp->offset - block->offset); |
| |
| ram_handle_compressed(host_addr, comp->value, comp->length); |
| break; |
| |
| case RDMA_CONTROL_REGISTER_FINISHED: |
| DDDPRINTF("Current registrations complete.\n"); |
| goto out; |
| |
| case RDMA_CONTROL_RAM_BLOCKS_REQUEST: |
| DPRINTF("Initial setup info requested.\n"); |
| |
| if (rdma->pin_all) { |
| ret = qemu_rdma_reg_whole_ram_blocks(rdma); |
| if (ret) { |
| fprintf(stderr, "rdma migration: error dest " |
| "registering ram blocks!\n"); |
| goto out; |
| } |
| } |
| |
| /* |
| * Dest uses this to prepare to transmit the RAMBlock descriptions |
| * to the source VM after connection setup. |
| * Both sides use the "remote" structure to communicate and update |
| * their "local" descriptions with what was sent. |
| */ |
| for (i = 0; i < local->nb_blocks; i++) { |
| rdma->block[i].remote_host_addr = |
| (uint64_t)(local->block[i].local_host_addr); |
| |
| if (rdma->pin_all) { |
| rdma->block[i].remote_rkey = local->block[i].mr->rkey; |
| } |
| |
| rdma->block[i].offset = local->block[i].offset; |
| rdma->block[i].length = local->block[i].length; |
| |
| remote_block_to_network(&rdma->block[i]); |
| } |
| |
| blocks.len = rdma->local_ram_blocks.nb_blocks |
| * sizeof(RDMARemoteBlock); |
| |
| |
| ret = qemu_rdma_post_send_control(rdma, |
| (uint8_t *) rdma->block, &blocks); |
| |
| if (ret < 0) { |
| fprintf(stderr, "rdma migration: error sending remote info!\n"); |
| goto out; |
| } |
| |
| break; |
| case RDMA_CONTROL_REGISTER_REQUEST: |
| DDPRINTF("There are %d registration requests\n", head.repeat); |
| |
| reg_resp.repeat = head.repeat; |
| registers = (RDMARegister *) rdma->wr_data[idx].control_curr; |
| |
| for (count = 0; count < head.repeat; count++) { |
| uint64_t chunk; |
| uint8_t *chunk_start, *chunk_end; |
| |
| reg = ®isters[count]; |
| network_to_register(reg); |
| |
| reg_result = &results[count]; |
| |
| DDPRINTF("Registration request (%d): index %d, current_addr %" |
| PRIu64 " chunks: %" PRIu64 "\n", count, |
| reg->current_index, reg->key.current_addr, reg->chunks); |
| |
| block = &(rdma->local_ram_blocks.block[reg->current_index]); |
| if (block->is_ram_block) { |
| host_addr = (block->local_host_addr + |
| (reg->key.current_addr - block->offset)); |
| chunk = ram_chunk_index(block->local_host_addr, |
| (uint8_t *) host_addr); |
| } else { |
| chunk = reg->key.chunk; |
| host_addr = block->local_host_addr + |
| (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT)); |
| } |
| chunk_start = ram_chunk_start(block, chunk); |
| chunk_end = ram_chunk_end(block, chunk + reg->chunks); |
| if (qemu_rdma_register_and_get_keys(rdma, block, |
| (uint8_t *)host_addr, NULL, ®_result->rkey, |
| chunk, chunk_start, chunk_end)) { |
| fprintf(stderr, "cannot get rkey!\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| reg_result->host_addr = (uint64_t) block->local_host_addr; |
| |
| DDPRINTF("Registered rkey for this request: %x\n", |
| reg_result->rkey); |
| |
| result_to_network(reg_result); |
| } |
| |
| ret = qemu_rdma_post_send_control(rdma, |
| (uint8_t *) results, ®_resp); |
| |
| if (ret < 0) { |
| fprintf(stderr, "Failed to send control buffer!\n"); |
| goto out; |
| } |
| break; |
| case RDMA_CONTROL_UNREGISTER_REQUEST: |
| DDPRINTF("There are %d unregistration requests\n", head.repeat); |
| unreg_resp.repeat = head.repeat; |
| registers = (RDMARegister *) rdma->wr_data[idx].control_curr; |
| |
| for (count = 0; count < head.repeat; count++) { |
| reg = ®isters[count]; |
| network_to_register(reg); |
| |
| DDPRINTF("Unregistration request (%d): " |
| " index %d, chunk %" PRIu64 "\n", |
| count, reg->current_index, reg->key.chunk); |
| |
| block = &(rdma->local_ram_blocks.block[reg->current_index]); |
| |
| ret = ibv_dereg_mr(block->pmr[reg->key.chunk]); |
| block->pmr[reg->key.chunk] = NULL; |
| |
| if (ret != 0) { |
| perror("rdma unregistration chunk failed"); |
| ret = -ret; |
| goto out; |
| } |
| |
| rdma->total_registrations--; |
| |
| DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n", |
| reg->key.chunk); |
| } |
| |
| ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp); |
| |
| if (ret < 0) { |
| fprintf(stderr, "Failed to send control buffer!\n"); |
| goto out; |
| } |
| break; |
| case RDMA_CONTROL_REGISTER_RESULT: |
| fprintf(stderr, "Invalid RESULT message at dest.\n"); |
| ret = -EIO; |
| goto out; |
| default: |
| fprintf(stderr, "Unknown control message %s\n", |
| control_desc[head.type]); |
| ret = -EIO; |
| goto out; |
| } |
| } while (1); |
| out: |
| if (ret < 0) { |
| rdma->error_state = ret; |
| } |
| return ret; |
| } |
| |
| static int qemu_rdma_registration_start(QEMUFile *f, void *opaque, |
| uint64_t flags) |
| { |
| QEMUFileRDMA *rfile = opaque; |
| RDMAContext *rdma = rfile->rdma; |
| |
| CHECK_ERROR_STATE(); |
| |
| DDDPRINTF("start section: %" PRIu64 "\n", flags); |
| qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); |
| qemu_fflush(f); |
| |
| return 0; |
| } |
| |
| /* |
| * Inform dest that dynamic registrations are done for now. |
| * First, flush writes, if any. |
| */ |
| static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque, |
| uint64_t flags) |
| { |
| Error *local_err = NULL, **errp = &local_err; |
| QEMUFileRDMA *rfile = opaque; |
| RDMAContext *rdma = rfile->rdma; |
| RDMAControlHeader head = { .len = 0, .repeat = 1 }; |
| int ret = 0; |
| |
| CHECK_ERROR_STATE(); |
| |
| qemu_fflush(f); |
| ret = qemu_rdma_drain_cq(f, rdma); |
| |
| if (ret < 0) { |
| goto err; |
| } |
| |
| if (flags == RAM_CONTROL_SETUP) { |
| RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT }; |
| RDMALocalBlocks *local = &rdma->local_ram_blocks; |
| int reg_result_idx, i, j, nb_remote_blocks; |
| |
| head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST; |
| DPRINTF("Sending registration setup for ram blocks...\n"); |
| |
| /* |
| * Make sure that we parallelize the pinning on both sides. |
| * For very large guests, doing this serially takes a really |
| * long time, so we have to 'interleave' the pinning locally |
| * with the control messages by performing the pinning on this |
| * side before we receive the control response from the other |
| * side that the pinning has completed. |
| */ |
| ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp, |
| ®_result_idx, rdma->pin_all ? |
| qemu_rdma_reg_whole_ram_blocks : NULL); |
| if (ret < 0) { |
| ERROR(errp, "receiving remote info!"); |
| return ret; |
| } |
| |
| nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock); |
| |
| /* |
| * The protocol uses two different sets of rkeys (mutually exclusive): |
| * 1. One key to represent the virtual address of the entire ram block. |
| * (dynamic chunk registration disabled - pin everything with one rkey.) |
| * 2. One to represent individual chunks within a ram block. |
| * (dynamic chunk registration enabled - pin individual chunks.) |
| * |
| * Once the capability is successfully negotiated, the destination transmits |
| * the keys to use (or sends them later) including the virtual addresses |
| * and then propagates the remote ram block descriptions to his local copy. |
| */ |
| |
| if (local->nb_blocks != nb_remote_blocks) { |
| ERROR(errp, "ram blocks mismatch #1! " |
| "Your QEMU command line parameters are probably " |
| "not identical on both the source and destination."); |
| return -EINVAL; |
| } |
| |
| qemu_rdma_move_header(rdma, reg_result_idx, &resp); |
| memcpy(rdma->block, |
| rdma->wr_data[reg_result_idx].control_curr, resp.len); |
| for (i = 0; i < nb_remote_blocks; i++) { |
| network_to_remote_block(&rdma->block[i]); |
| |
| /* search local ram blocks */ |
| for (j = 0; j < local->nb_blocks; j++) { |
| if (rdma->block[i].offset != local->block[j].offset) { |
| continue; |
| } |
| |
| if (rdma->block[i].length != local->block[j].length) { |
| ERROR(errp, "ram blocks mismatch #2! " |
| "Your QEMU command line parameters are probably " |
| "not identical on both the source and destination."); |
| return -EINVAL; |
| } |
| local->block[j].remote_host_addr = |
| rdma->block[i].remote_host_addr; |
| local->block[j].remote_rkey = rdma->block[i].remote_rkey; |
| break; |
| } |
| |
| if (j >= local->nb_blocks) { |
| ERROR(errp, "ram blocks mismatch #3! " |
| "Your QEMU command line parameters are probably " |
| "not identical on both the source and destination."); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags); |
| |
| head.type = RDMA_CONTROL_REGISTER_FINISHED; |
| ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL); |
| |
| if (ret < 0) { |
| goto err; |
| } |
| |
| return 0; |
| err: |
| rdma->error_state = ret; |
| return ret; |
| } |
| |
| static int qemu_rdma_get_fd(void *opaque) |
| { |
| QEMUFileRDMA *rfile = opaque; |
| RDMAContext *rdma = rfile->rdma; |
| |
| return rdma->comp_channel->fd; |
| } |
| |
| const QEMUFileOps rdma_read_ops = { |
| .get_buffer = qemu_rdma_get_buffer, |
| .get_fd = qemu_rdma_get_fd, |
| .close = qemu_rdma_close, |
| .hook_ram_load = qemu_rdma_registration_handle, |
| }; |
| |
| const QEMUFileOps rdma_write_ops = { |
| .put_buffer = qemu_rdma_put_buffer, |
| .close = qemu_rdma_close, |
| .before_ram_iterate = qemu_rdma_registration_start, |
| .after_ram_iterate = qemu_rdma_registration_stop, |
| .save_page = qemu_rdma_save_page, |
| }; |
| |
| static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode) |
| { |
| QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA)); |
| |
| if (qemu_file_mode_is_not_valid(mode)) { |
| return NULL; |
| } |
| |
| r->rdma = rdma; |
| |
| if (mode[0] == 'w') { |
| r->file = qemu_fopen_ops(r, &rdma_write_ops); |
| } else { |
| r->file = qemu_fopen_ops(r, &rdma_read_ops); |
| } |
| |
| return r->file; |
| } |
| |
| static void rdma_accept_incoming_migration(void *opaque) |
| { |
| RDMAContext *rdma = opaque; |
| int ret; |
| QEMUFile *f; |
| Error *local_err = NULL, **errp = &local_err; |
| |
| DPRINTF("Accepting rdma connection...\n"); |
| ret = qemu_rdma_accept(rdma); |
| |
| if (ret) { |
| ERROR(errp, "RDMA Migration initialization failed!"); |
| return; |
| } |
| |
| DPRINTF("Accepted migration\n"); |
| |
| f = qemu_fopen_rdma(rdma, "rb"); |
| if (f == NULL) { |
| ERROR(errp, "could not qemu_fopen_rdma!"); |
| qemu_rdma_cleanup(rdma); |
| return; |
| } |
| |
| rdma->migration_started_on_destination = 1; |
| process_incoming_migration(f); |
| } |
| |
| void rdma_start_incoming_migration(const char *host_port, Error **errp) |
| { |
| int ret; |
| RDMAContext *rdma; |
| Error *local_err = NULL; |
| |
| DPRINTF("Starting RDMA-based incoming migration\n"); |
| rdma = qemu_rdma_data_init(host_port, &local_err); |
| |
| if (rdma == NULL) { |
| goto err; |
| } |
| |
| ret = qemu_rdma_dest_init(rdma, &local_err); |
| |
| if (ret) { |
| goto err; |
| } |
| |
| DPRINTF("qemu_rdma_dest_init success\n"); |
| |
| ret = rdma_listen(rdma->listen_id, 5); |
| |
| if (ret) { |
| ERROR(errp, "listening on socket!"); |
| goto err; |
| } |
| |
| DPRINTF("rdma_listen success\n"); |
| |
| qemu_set_fd_handler2(rdma->channel->fd, NULL, |
| rdma_accept_incoming_migration, NULL, |
| (void *)(intptr_t) rdma); |
| return; |
| err: |
| error_propagate(errp, local_err); |
| g_free(rdma); |
| } |
| |
| void rdma_start_outgoing_migration(void *opaque, |
| const char *host_port, Error **errp) |
| { |
| MigrationState *s = opaque; |
| Error *local_err = NULL, **temp = &local_err; |
| RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err); |
| int ret = 0; |
| |
| if (rdma == NULL) { |
| ERROR(temp, "Failed to initialize RDMA data structures! %d", ret); |
| goto err; |
| } |
| |
| ret = qemu_rdma_source_init(rdma, &local_err, |
| s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]); |
| |
| if (ret) { |
| goto err; |
| } |
| |
| DPRINTF("qemu_rdma_source_init success\n"); |
| ret = qemu_rdma_connect(rdma, &local_err); |
| |
| if (ret) { |
| goto err; |
| } |
| |
| DPRINTF("qemu_rdma_source_connect success\n"); |
| |
| s->file = qemu_fopen_rdma(rdma, "wb"); |
| migrate_fd_connect(s); |
| return; |
| err: |
| error_propagate(errp, local_err); |
| g_free(rdma); |
| migrate_fd_error(s); |
| } |