| /* |
| * ARM MPS2 SCC emulation |
| * |
| * Copyright (c) 2017 Linaro Limited |
| * Written by Peter Maydell |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 or |
| * (at your option) any later version. |
| */ |
| |
| /* This is a model of the SCC (Serial Communication Controller) |
| * found in the FPGA images of MPS2 development boards. |
| * |
| * Documentation of it can be found in the MPS2 TRM: |
| * https://developer.arm.com/documentation/100112/latest/ |
| * and also in the Application Notes documenting individual FPGA images. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "qemu/bitops.h" |
| #include "trace.h" |
| #include "hw/sysbus.h" |
| #include "hw/irq.h" |
| #include "migration/vmstate.h" |
| #include "hw/registerfields.h" |
| #include "hw/misc/mps2-scc.h" |
| #include "hw/misc/led.h" |
| #include "hw/qdev-properties.h" |
| |
| REG32(CFG0, 0) |
| REG32(CFG1, 4) |
| REG32(CFG2, 8) |
| REG32(CFG3, 0xc) |
| REG32(CFG4, 0x10) |
| REG32(CFG5, 0x14) |
| REG32(CFG6, 0x18) |
| REG32(CFG7, 0x1c) |
| REG32(CFGDATA_RTN, 0xa0) |
| REG32(CFGDATA_OUT, 0xa4) |
| REG32(CFGCTRL, 0xa8) |
| FIELD(CFGCTRL, DEVICE, 0, 12) |
| FIELD(CFGCTRL, RES1, 12, 8) |
| FIELD(CFGCTRL, FUNCTION, 20, 6) |
| FIELD(CFGCTRL, RES2, 26, 4) |
| FIELD(CFGCTRL, WRITE, 30, 1) |
| FIELD(CFGCTRL, START, 31, 1) |
| REG32(CFGSTAT, 0xac) |
| FIELD(CFGSTAT, DONE, 0, 1) |
| FIELD(CFGSTAT, ERROR, 1, 1) |
| REG32(DLL, 0x100) |
| REG32(AID, 0xFF8) |
| REG32(ID, 0xFFC) |
| |
| static int scc_partno(MPS2SCC *s) |
| { |
| /* Return the partno field of the SCC_ID (0x524, 0x511, etc) */ |
| return extract32(s->id, 4, 8); |
| } |
| |
| /* Is CFG_REG2 present? */ |
| static bool have_cfg2(MPS2SCC *s) |
| { |
| return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 || |
| scc_partno(s) == 0x536; |
| } |
| |
| /* Is CFG_REG3 present? */ |
| static bool have_cfg3(MPS2SCC *s) |
| { |
| return scc_partno(s) != 0x524 && scc_partno(s) != 0x547 && |
| scc_partno(s) != 0x536; |
| } |
| |
| /* Is CFG_REG5 present? */ |
| static bool have_cfg5(MPS2SCC *s) |
| { |
| return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 || |
| scc_partno(s) == 0x536; |
| } |
| |
| /* Is CFG_REG6 present? */ |
| static bool have_cfg6(MPS2SCC *s) |
| { |
| return scc_partno(s) == 0x524 || scc_partno(s) == 0x536; |
| } |
| |
| /* Is CFG_REG7 present? */ |
| static bool have_cfg7(MPS2SCC *s) |
| { |
| return scc_partno(s) == 0x536; |
| } |
| |
| /* Does CFG_REG0 drive the 'remap' GPIO output? */ |
| static bool cfg0_is_remap(MPS2SCC *s) |
| { |
| return scc_partno(s) != 0x536; |
| } |
| |
| /* Is CFG_REG1 driving a set of LEDs? */ |
| static bool cfg1_is_leds(MPS2SCC *s) |
| { |
| return scc_partno(s) != 0x536; |
| } |
| |
| /* Handle a write via the SYS_CFG channel to the specified function/device. |
| * Return false on error (reported to guest via SYS_CFGCTRL ERROR bit). |
| */ |
| static bool scc_cfg_write(MPS2SCC *s, unsigned function, |
| unsigned device, uint32_t value) |
| { |
| trace_mps2_scc_cfg_write(function, device, value); |
| |
| if (function != 1 || device >= s->num_oscclk) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "MPS2 SCC config write: bad function %d device %d\n", |
| function, device); |
| return false; |
| } |
| |
| s->oscclk[device] = value; |
| return true; |
| } |
| |
| /* Handle a read via the SYS_CFG channel to the specified function/device. |
| * Return false on error (reported to guest via SYS_CFGCTRL ERROR bit), |
| * or set *value on success. |
| */ |
| static bool scc_cfg_read(MPS2SCC *s, unsigned function, |
| unsigned device, uint32_t *value) |
| { |
| if (function != 1 || device >= s->num_oscclk) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "MPS2 SCC config read: bad function %d device %d\n", |
| function, device); |
| return false; |
| } |
| |
| *value = s->oscclk[device]; |
| |
| trace_mps2_scc_cfg_read(function, device, *value); |
| return true; |
| } |
| |
| static uint64_t mps2_scc_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| MPS2SCC *s = MPS2_SCC(opaque); |
| uint64_t r; |
| |
| switch (offset) { |
| case A_CFG0: |
| r = s->cfg0; |
| break; |
| case A_CFG1: |
| r = s->cfg1; |
| break; |
| case A_CFG2: |
| if (!have_cfg2(s)) { |
| goto bad_offset; |
| } |
| r = s->cfg2; |
| break; |
| case A_CFG3: |
| if (!have_cfg3(s)) { |
| goto bad_offset; |
| } |
| /* |
| * These are user-settable DIP switches on the board. We don't |
| * model that, so just return zeroes. |
| * |
| * TODO: for AN536 this is MCC_MSB_ADDR "additional MCC addressing |
| * bits". These change which part of the DDR4 the motherboard |
| * configuration controller can see in its memory map (see the |
| * appnote section 2.4). QEMU doesn't model the MCC at all, so these |
| * bits are not interesting to us; read-as-zero is as good as anything |
| * else. |
| */ |
| r = 0; |
| break; |
| case A_CFG4: |
| r = s->cfg4; |
| break; |
| case A_CFG5: |
| if (!have_cfg5(s)) { |
| goto bad_offset; |
| } |
| r = s->cfg5; |
| break; |
| case A_CFG6: |
| if (!have_cfg6(s)) { |
| goto bad_offset; |
| } |
| r = s->cfg6; |
| break; |
| case A_CFG7: |
| if (!have_cfg7(s)) { |
| goto bad_offset; |
| } |
| r = s->cfg7; |
| break; |
| case A_CFGDATA_RTN: |
| r = s->cfgdata_rtn; |
| break; |
| case A_CFGDATA_OUT: |
| r = s->cfgdata_out; |
| break; |
| case A_CFGCTRL: |
| r = s->cfgctrl; |
| break; |
| case A_CFGSTAT: |
| r = s->cfgstat; |
| break; |
| case A_DLL: |
| r = s->dll; |
| break; |
| case A_AID: |
| r = s->aid; |
| break; |
| case A_ID: |
| r = s->id; |
| break; |
| default: |
| bad_offset: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "MPS2 SCC read: bad offset %x\n", (int) offset); |
| r = 0; |
| break; |
| } |
| |
| trace_mps2_scc_read(offset, r, size); |
| return r; |
| } |
| |
| static void mps2_scc_write(void *opaque, hwaddr offset, uint64_t value, |
| unsigned size) |
| { |
| MPS2SCC *s = MPS2_SCC(opaque); |
| |
| trace_mps2_scc_write(offset, value, size); |
| |
| switch (offset) { |
| case A_CFG0: |
| /* |
| * On some boards bit 0 controls board-specific remapping; |
| * we always reflect bit 0 in the 'remap' GPIO output line, |
| * and let the board wire it up or not as it chooses. |
| * TODO on some boards bit 1 is CPU_WAIT. |
| * |
| * TODO: on the AN536 this register controls reset and halt |
| * for both CPUs. For the moment we don't implement this, so the |
| * register just reads as written. |
| */ |
| s->cfg0 = value; |
| if (cfg0_is_remap(s)) { |
| qemu_set_irq(s->remap, s->cfg0 & 1); |
| } |
| break; |
| case A_CFG1: |
| s->cfg1 = value; |
| /* |
| * On most boards this register drives LEDs. |
| * |
| * TODO: for AN536 this controls whether flash and ATCM are |
| * enabled or disabled on reset. QEMU doesn't model this, and |
| * always wires up RAM in the ATCM area and ROM in the flash area. |
| */ |
| if (cfg1_is_leds(s)) { |
| for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) { |
| led_set_state(s->led[i], extract32(value, i, 1)); |
| } |
| } |
| break; |
| case A_CFG2: |
| if (!have_cfg2(s)) { |
| goto bad_offset; |
| } |
| /* AN524, AN536: QSPI Select signal */ |
| s->cfg2 = value; |
| break; |
| case A_CFG5: |
| if (!have_cfg5(s)) { |
| goto bad_offset; |
| } |
| /* AN524, AN536: ACLK frequency in Hz */ |
| s->cfg5 = value; |
| break; |
| case A_CFG6: |
| if (!have_cfg6(s)) { |
| goto bad_offset; |
| } |
| /* AN524: Clock divider for BRAM */ |
| /* AN536: Core 0 vector table base address */ |
| s->cfg6 = value; |
| break; |
| case A_CFG7: |
| if (!have_cfg7(s)) { |
| goto bad_offset; |
| } |
| /* AN536: Core 1 vector table base address */ |
| s->cfg6 = value; |
| break; |
| case A_CFGDATA_OUT: |
| s->cfgdata_out = value; |
| break; |
| case A_CFGCTRL: |
| /* Writing to CFGCTRL clears SYS_CFGSTAT */ |
| s->cfgstat = 0; |
| s->cfgctrl = value & ~(R_CFGCTRL_RES1_MASK | |
| R_CFGCTRL_RES2_MASK | |
| R_CFGCTRL_START_MASK); |
| |
| if (value & R_CFGCTRL_START_MASK) { |
| /* Start bit set -- do a read or write (instantaneously) */ |
| int device = extract32(s->cfgctrl, R_CFGCTRL_DEVICE_SHIFT, |
| R_CFGCTRL_DEVICE_LENGTH); |
| int function = extract32(s->cfgctrl, R_CFGCTRL_FUNCTION_SHIFT, |
| R_CFGCTRL_FUNCTION_LENGTH); |
| |
| s->cfgstat = R_CFGSTAT_DONE_MASK; |
| if (s->cfgctrl & R_CFGCTRL_WRITE_MASK) { |
| if (!scc_cfg_write(s, function, device, s->cfgdata_out)) { |
| s->cfgstat |= R_CFGSTAT_ERROR_MASK; |
| } |
| } else { |
| uint32_t result; |
| if (!scc_cfg_read(s, function, device, &result)) { |
| s->cfgstat |= R_CFGSTAT_ERROR_MASK; |
| } else { |
| s->cfgdata_rtn = result; |
| } |
| } |
| } |
| break; |
| case A_DLL: |
| /* DLL stands for Digital Locked Loop. |
| * Bits [31:24] (DLL_LOCK_MASK) are writable, and indicate a |
| * mask of which of the DLL_LOCKED bits [16:23] should be ORed |
| * together to determine the ALL_UNMASKED_DLLS_LOCKED bit [0]. |
| * For QEMU, our DLLs are always locked, so we can leave bit 0 |
| * as 1 always and don't need to recalculate it. |
| */ |
| s->dll = deposit32(s->dll, 24, 8, extract32(value, 24, 8)); |
| break; |
| default: |
| bad_offset: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "MPS2 SCC write: bad offset 0x%x\n", (int) offset); |
| break; |
| } |
| } |
| |
| static const MemoryRegionOps mps2_scc_ops = { |
| .read = mps2_scc_read, |
| .write = mps2_scc_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void mps2_scc_reset(DeviceState *dev) |
| { |
| MPS2SCC *s = MPS2_SCC(dev); |
| int i; |
| |
| trace_mps2_scc_reset(); |
| s->cfg0 = s->cfg0_reset; |
| s->cfg1 = 0; |
| s->cfg2 = 0; |
| s->cfg5 = 0; |
| s->cfg6 = 0; |
| s->cfgdata_rtn = 0; |
| s->cfgdata_out = 0; |
| s->cfgctrl = 0x100000; |
| s->cfgstat = 0; |
| s->dll = 0xffff0001; |
| for (i = 0; i < s->num_oscclk; i++) { |
| s->oscclk[i] = s->oscclk_reset[i]; |
| } |
| for (i = 0; i < ARRAY_SIZE(s->led); i++) { |
| device_cold_reset(DEVICE(s->led[i])); |
| } |
| } |
| |
| static void mps2_scc_init(Object *obj) |
| { |
| SysBusDevice *sbd = SYS_BUS_DEVICE(obj); |
| MPS2SCC *s = MPS2_SCC(obj); |
| |
| memory_region_init_io(&s->iomem, obj, &mps2_scc_ops, s, "mps2-scc", 0x1000); |
| sysbus_init_mmio(sbd, &s->iomem); |
| qdev_init_gpio_out_named(DEVICE(obj), &s->remap, "remap", 1); |
| } |
| |
| static void mps2_scc_realize(DeviceState *dev, Error **errp) |
| { |
| MPS2SCC *s = MPS2_SCC(dev); |
| |
| for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) { |
| char *name = g_strdup_printf("SCC LED%zu", i); |
| s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH, |
| LED_COLOR_GREEN, name); |
| g_free(name); |
| } |
| |
| s->oscclk = g_new0(uint32_t, s->num_oscclk); |
| } |
| |
| static void mps2_scc_finalize(Object *obj) |
| { |
| MPS2SCC *s = MPS2_SCC(obj); |
| |
| g_free(s->oscclk_reset); |
| } |
| |
| static bool cfg7_needed(void *opaque) |
| { |
| MPS2SCC *s = opaque; |
| |
| return have_cfg7(s); |
| } |
| |
| static const VMStateDescription vmstate_cfg7 = { |
| .name = "mps2-scc/cfg7", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = cfg7_needed, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT32(cfg7, MPS2SCC), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription mps2_scc_vmstate = { |
| .name = "mps2-scc", |
| .version_id = 3, |
| .minimum_version_id = 3, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT32(cfg0, MPS2SCC), |
| VMSTATE_UINT32(cfg1, MPS2SCC), |
| VMSTATE_UINT32(cfg2, MPS2SCC), |
| /* cfg3, cfg4 are read-only so need not be migrated */ |
| VMSTATE_UINT32(cfg5, MPS2SCC), |
| VMSTATE_UINT32(cfg6, MPS2SCC), |
| VMSTATE_UINT32(cfgdata_rtn, MPS2SCC), |
| VMSTATE_UINT32(cfgdata_out, MPS2SCC), |
| VMSTATE_UINT32(cfgctrl, MPS2SCC), |
| VMSTATE_UINT32(cfgstat, MPS2SCC), |
| VMSTATE_UINT32(dll, MPS2SCC), |
| VMSTATE_VARRAY_UINT32(oscclk, MPS2SCC, num_oscclk, |
| 0, vmstate_info_uint32, uint32_t), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription * const []) { |
| &vmstate_cfg7, |
| NULL |
| } |
| }; |
| |
| static Property mps2_scc_properties[] = { |
| /* Values for various read-only ID registers (which are specific |
| * to the board model or FPGA image) |
| */ |
| DEFINE_PROP_UINT32("scc-cfg4", MPS2SCC, cfg4, 0), |
| DEFINE_PROP_UINT32("scc-aid", MPS2SCC, aid, 0), |
| DEFINE_PROP_UINT32("scc-id", MPS2SCC, id, 0), |
| /* Reset value for CFG0 register */ |
| DEFINE_PROP_UINT32("scc-cfg0", MPS2SCC, cfg0_reset, 0), |
| /* |
| * These are the initial settings for the source clocks on the board. |
| * In hardware they can be configured via a config file read by the |
| * motherboard configuration controller to suit the FPGA image. |
| */ |
| DEFINE_PROP_ARRAY("oscclk", MPS2SCC, num_oscclk, oscclk_reset, |
| qdev_prop_uint32, uint32_t), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void mps2_scc_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = mps2_scc_realize; |
| dc->vmsd = &mps2_scc_vmstate; |
| device_class_set_legacy_reset(dc, mps2_scc_reset); |
| device_class_set_props(dc, mps2_scc_properties); |
| } |
| |
| static const TypeInfo mps2_scc_info = { |
| .name = TYPE_MPS2_SCC, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(MPS2SCC), |
| .instance_init = mps2_scc_init, |
| .instance_finalize = mps2_scc_finalize, |
| .class_init = mps2_scc_class_init, |
| }; |
| |
| static void mps2_scc_register_types(void) |
| { |
| type_register_static(&mps2_scc_info); |
| } |
| |
| type_init(mps2_scc_register_types); |