blob: 761276127ed2fa8cd9d8166471fd72072cb68c92 [file] [log] [blame]
/*
* QEMU System Emulator block driver
*
* Copyright (c) 2003 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef BLOCK_INT_COMMON_H
#define BLOCK_INT_COMMON_H
#include "block/aio.h"
#include "block/block-common.h"
#include "block/block-global-state.h"
#include "block/snapshot.h"
#include "qemu/iov.h"
#include "qemu/rcu.h"
#include "qemu/stats64.h"
#define BLOCK_FLAG_LAZY_REFCOUNTS 8
#define BLOCK_OPT_SIZE "size"
#define BLOCK_OPT_ENCRYPT "encryption"
#define BLOCK_OPT_ENCRYPT_FORMAT "encrypt.format"
#define BLOCK_OPT_COMPAT6 "compat6"
#define BLOCK_OPT_HWVERSION "hwversion"
#define BLOCK_OPT_BACKING_FILE "backing_file"
#define BLOCK_OPT_BACKING_FMT "backing_fmt"
#define BLOCK_OPT_CLUSTER_SIZE "cluster_size"
#define BLOCK_OPT_TABLE_SIZE "table_size"
#define BLOCK_OPT_PREALLOC "preallocation"
#define BLOCK_OPT_SUBFMT "subformat"
#define BLOCK_OPT_COMPAT_LEVEL "compat"
#define BLOCK_OPT_LAZY_REFCOUNTS "lazy_refcounts"
#define BLOCK_OPT_ADAPTER_TYPE "adapter_type"
#define BLOCK_OPT_REDUNDANCY "redundancy"
#define BLOCK_OPT_NOCOW "nocow"
#define BLOCK_OPT_EXTENT_SIZE_HINT "extent_size_hint"
#define BLOCK_OPT_OBJECT_SIZE "object_size"
#define BLOCK_OPT_REFCOUNT_BITS "refcount_bits"
#define BLOCK_OPT_DATA_FILE "data_file"
#define BLOCK_OPT_DATA_FILE_RAW "data_file_raw"
#define BLOCK_OPT_COMPRESSION_TYPE "compression_type"
#define BLOCK_OPT_EXTL2 "extended_l2"
#define BLOCK_PROBE_BUF_SIZE 512
enum BdrvTrackedRequestType {
BDRV_TRACKED_READ,
BDRV_TRACKED_WRITE,
BDRV_TRACKED_DISCARD,
BDRV_TRACKED_TRUNCATE,
};
/*
* That is not quite good that BdrvTrackedRequest structure is public,
* as block/io.c is very careful about incoming offset/bytes being
* correct. Be sure to assert bdrv_check_request() succeeded after any
* modification of BdrvTrackedRequest object out of block/io.c
*/
typedef struct BdrvTrackedRequest {
BlockDriverState *bs;
int64_t offset;
int64_t bytes;
enum BdrvTrackedRequestType type;
bool serialising;
int64_t overlap_offset;
int64_t overlap_bytes;
QLIST_ENTRY(BdrvTrackedRequest) list;
Coroutine *co; /* owner, used for deadlock detection */
CoQueue wait_queue; /* coroutines blocked on this request */
struct BdrvTrackedRequest *waiting_for;
} BdrvTrackedRequest;
struct BlockDriver {
/*
* These fields are initialized when this object is created,
* and are never changed afterwards.
*/
const char *format_name;
int instance_size;
/*
* Set to true if the BlockDriver is a block filter. Block filters pass
* certain callbacks that refer to data (see block.c) to their bs->file
* or bs->backing (whichever one exists) if the driver doesn't implement
* them. Drivers that do not wish to forward must implement them and return
* -ENOTSUP.
* Note that filters are not allowed to modify data.
*
* Filters generally cannot have more than a single filtered child,
* because the data they present must at all times be the same as
* that on their filtered child. That would be impossible to
* achieve for multiple filtered children.
* (And this filtered child must then be bs->file or bs->backing.)
*/
bool is_filter;
/*
* Only make sense for filter drivers, for others must be false.
* If true, filtered child is bs->backing. Otherwise it's bs->file.
* Two internal filters use bs->backing as filtered child and has this
* field set to true: mirror_top and commit_top. There also two such test
* filters in tests/unit/test-bdrv-graph-mod.c.
*
* Never create any more such filters!
*
* TODO: imagine how to deprecate this behavior and make all filters work
* similarly using bs->file as filtered child.
*/
bool filtered_child_is_backing;
/*
* Set to true if the BlockDriver is a format driver. Format nodes
* generally do not expect their children to be other format nodes
* (except for backing files), and so format probing is disabled
* on those children.
*/
bool is_format;
/*
* Set to true if the BlockDriver supports zoned children.
*/
bool supports_zoned_children;
/*
* Drivers not implementing bdrv_parse_filename nor bdrv_open should have
* this field set to true, except ones that are defined only by their
* child's bs.
* An example of the last type will be the quorum block driver.
*/
bool bdrv_needs_filename;
/*
* Set if a driver can support backing files. This also implies the
* following semantics:
*
* - Return status 0 of .bdrv_co_block_status means that corresponding
* blocks are not allocated in this layer of backing-chain
* - For such (unallocated) blocks, read will:
* - fill buffer with zeros if there is no backing file
* - read from the backing file otherwise, where the block layer
* takes care of reading zeros beyond EOF if backing file is short
*/
bool supports_backing;
/*
* Drivers setting this field must be able to work with just a plain
* filename with '<protocol_name>:' as a prefix, and no other options.
* Options may be extracted from the filename by implementing
* bdrv_parse_filename.
*/
const char *protocol_name;
/* List of options for creating images, terminated by name == NULL */
QemuOptsList *create_opts;
/* List of options for image amend */
QemuOptsList *amend_opts;
/*
* If this driver supports reopening images this contains a
* NULL-terminated list of the runtime options that can be
* modified. If an option in this list is unspecified during
* reopen then it _must_ be reset to its default value or return
* an error.
*/
const char *const *mutable_opts;
/*
* Pointer to a NULL-terminated array of names of strong options
* that can be specified for bdrv_open(). A strong option is one
* that changes the data of a BDS.
* If this pointer is NULL, the array is considered empty.
* "filename" and "driver" are always considered strong.
*/
const char *const *strong_runtime_opts;
/*
* Global state (GS) API. These functions run under the BQL.
*
* See include/block/block-global-state.h for more information about
* the GS API.
*/
/*
* This function is invoked under BQL before .bdrv_co_amend()
* (which in contrast does not necessarily run under the BQL)
* to allow driver-specific initialization code that requires
* the BQL, like setting up specific permission flags.
*/
int GRAPH_RDLOCK_PTR (*bdrv_amend_pre_run)(
BlockDriverState *bs, Error **errp);
/*
* This function is invoked under BQL after .bdrv_co_amend()
* to allow cleaning up what was done in .bdrv_amend_pre_run().
*/
void GRAPH_RDLOCK_PTR (*bdrv_amend_clean)(BlockDriverState *bs);
/*
* Return true if @to_replace can be replaced by a BDS with the
* same data as @bs without it affecting @bs's behavior (that is,
* without it being visible to @bs's parents).
*/
bool GRAPH_RDLOCK_PTR (*bdrv_recurse_can_replace)(
BlockDriverState *bs, BlockDriverState *to_replace);
int (*bdrv_probe_device)(const char *filename);
/*
* Any driver implementing this callback is expected to be able to handle
* NULL file names in its .bdrv_open() implementation.
*/
void (*bdrv_parse_filename)(const char *filename, QDict *options,
Error **errp);
/* For handling image reopen for split or non-split files. */
int GRAPH_UNLOCKED_PTR (*bdrv_reopen_prepare)(
BDRVReopenState *reopen_state, BlockReopenQueue *queue, Error **errp);
void GRAPH_UNLOCKED_PTR (*bdrv_reopen_commit)(
BDRVReopenState *reopen_state);
void GRAPH_UNLOCKED_PTR (*bdrv_reopen_commit_post)(
BDRVReopenState *reopen_state);
void GRAPH_UNLOCKED_PTR (*bdrv_reopen_abort)(
BDRVReopenState *reopen_state);
void (*bdrv_join_options)(QDict *options, QDict *old_options);
int GRAPH_UNLOCKED_PTR (*bdrv_open)(
BlockDriverState *bs, QDict *options, int flags, Error **errp);
/* Protocol drivers should implement this instead of bdrv_open */
int GRAPH_UNLOCKED_PTR (*bdrv_file_open)(
BlockDriverState *bs, QDict *options, int flags, Error **errp);
void (*bdrv_close)(BlockDriverState *bs);
int coroutine_fn GRAPH_UNLOCKED_PTR (*bdrv_co_create)(
BlockdevCreateOptions *opts, Error **errp);
int coroutine_fn GRAPH_UNLOCKED_PTR (*bdrv_co_create_opts)(
BlockDriver *drv, const char *filename, QemuOpts *opts, Error **errp);
int GRAPH_RDLOCK_PTR (*bdrv_amend_options)(
BlockDriverState *bs, QemuOpts *opts,
BlockDriverAmendStatusCB *status_cb, void *cb_opaque,
bool force, Error **errp);
int GRAPH_RDLOCK_PTR (*bdrv_make_empty)(BlockDriverState *bs);
/*
* Refreshes the bs->exact_filename field. If that is impossible,
* bs->exact_filename has to be left empty.
*/
void GRAPH_RDLOCK_PTR (*bdrv_refresh_filename)(BlockDriverState *bs);
/*
* Gathers the open options for all children into @target.
* A simple format driver (without backing file support) might
* implement this function like this:
*
* QINCREF(bs->file->bs->full_open_options);
* qdict_put(target, "file", bs->file->bs->full_open_options);
*
* If not specified, the generic implementation will simply put
* all children's options under their respective name.
*
* @backing_overridden is true when bs->backing seems not to be
* the child that would result from opening bs->backing_file.
* Therefore, if it is true, the backing child's options should be
* gathered; otherwise, there is no need since the backing child
* is the one implied by the image header.
*
* Note that ideally this function would not be needed. Every
* block driver which implements it is probably doing something
* shady regarding its runtime option structure.
*/
void GRAPH_RDLOCK_PTR (*bdrv_gather_child_options)(
BlockDriverState *bs, QDict *target, bool backing_overridden);
/*
* Returns an allocated string which is the directory name of this BDS: It
* will be used to make relative filenames absolute by prepending this
* function's return value to them.
*/
char * GRAPH_RDLOCK_PTR (*bdrv_dirname)(BlockDriverState *bs, Error **errp);
/*
* This informs the driver that we are no longer interested in the result
* of in-flight requests, so don't waste the time if possible.
*
* One example usage is to avoid waiting for an nbd target node reconnect
* timeout during job-cancel with force=true.
*/
void GRAPH_RDLOCK_PTR (*bdrv_cancel_in_flight)(BlockDriverState *bs);
int GRAPH_RDLOCK_PTR (*bdrv_inactivate)(BlockDriverState *bs);
int GRAPH_RDLOCK_PTR (*bdrv_snapshot_create)(
BlockDriverState *bs, QEMUSnapshotInfo *sn_info);
int GRAPH_UNLOCKED_PTR (*bdrv_snapshot_goto)(
BlockDriverState *bs, const char *snapshot_id);
int GRAPH_RDLOCK_PTR (*bdrv_snapshot_delete)(
BlockDriverState *bs, const char *snapshot_id, const char *name,
Error **errp);
int GRAPH_RDLOCK_PTR (*bdrv_snapshot_list)(
BlockDriverState *bs, QEMUSnapshotInfo **psn_info);
int GRAPH_RDLOCK_PTR (*bdrv_snapshot_load_tmp)(
BlockDriverState *bs, const char *snapshot_id, const char *name,
Error **errp);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_change_backing_file)(
BlockDriverState *bs, const char *backing_file,
const char *backing_fmt);
/* TODO Better pass a option string/QDict/QemuOpts to add any rule? */
int (*bdrv_debug_breakpoint)(BlockDriverState *bs, const char *event,
const char *tag);
int (*bdrv_debug_remove_breakpoint)(BlockDriverState *bs,
const char *tag);
int (*bdrv_debug_resume)(BlockDriverState *bs, const char *tag);
bool (*bdrv_debug_is_suspended)(BlockDriverState *bs, const char *tag);
void GRAPH_RDLOCK_PTR (*bdrv_refresh_limits)(
BlockDriverState *bs, Error **errp);
/*
* Returns 1 if newly created images are guaranteed to contain only
* zeros, 0 otherwise.
*/
int GRAPH_RDLOCK_PTR (*bdrv_has_zero_init)(BlockDriverState *bs);
/*
* Remove fd handlers, timers, and other event loop callbacks so the event
* loop is no longer in use. Called with no in-flight requests and in
* depth-first traversal order with parents before child nodes.
*/
void (*bdrv_detach_aio_context)(BlockDriverState *bs);
/*
* Add fd handlers, timers, and other event loop callbacks so I/O requests
* can be processed again. Called with no in-flight requests and in
* depth-first traversal order with child nodes before parent nodes.
*/
void (*bdrv_attach_aio_context)(BlockDriverState *bs,
AioContext *new_context);
/**
* bdrv_drain_begin is called if implemented in the beginning of a
* drain operation to drain and stop any internal sources of requests in
* the driver.
* bdrv_drain_end is called if implemented at the end of the drain.
*
* They should be used by the driver to e.g. manage scheduled I/O
* requests, or toggle an internal state. After the end of the drain new
* requests will continue normally.
*
* Implementations of both functions must not call aio_poll().
*/
void (*bdrv_drain_begin)(BlockDriverState *bs);
void (*bdrv_drain_end)(BlockDriverState *bs);
/**
* Try to get @bs's logical and physical block size.
* On success, store them in @bsz and return zero.
* On failure, return negative errno.
*/
int GRAPH_RDLOCK_PTR (*bdrv_probe_blocksizes)(
BlockDriverState *bs, BlockSizes *bsz);
/**
* Try to get @bs's geometry (cyls, heads, sectors)
* On success, store them in @geo and return 0.
* On failure return -errno.
* Only drivers that want to override guest geometry implement this
* callback; see hd_geometry_guess().
*/
int GRAPH_RDLOCK_PTR (*bdrv_probe_geometry)(
BlockDriverState *bs, HDGeometry *geo);
void GRAPH_WRLOCK_PTR (*bdrv_add_child)(
BlockDriverState *parent, BlockDriverState *child, Error **errp);
void GRAPH_WRLOCK_PTR (*bdrv_del_child)(
BlockDriverState *parent, BdrvChild *child, Error **errp);
/**
* Informs the block driver that a permission change is intended. The
* driver checks whether the change is permissible and may take other
* preparations for the change (e.g. get file system locks). This operation
* is always followed either by a call to either .bdrv_set_perm or
* .bdrv_abort_perm_update.
*
* Checks whether the requested set of cumulative permissions in @perm
* can be granted for accessing @bs and whether no other users are using
* permissions other than those given in @shared (both arguments take
* BLK_PERM_* bitmasks).
*
* If both conditions are met, 0 is returned. Otherwise, -errno is returned
* and errp is set to an error describing the conflict.
*/
int GRAPH_RDLOCK_PTR (*bdrv_check_perm)(BlockDriverState *bs, uint64_t perm,
uint64_t shared, Error **errp);
/**
* Called to inform the driver that the set of cumulative set of used
* permissions for @bs has changed to @perm, and the set of shareable
* permission to @shared. The driver can use this to propagate changes to
* its children (i.e. request permissions only if a parent actually needs
* them).
*
* This function is only invoked after bdrv_check_perm(), so block drivers
* may rely on preparations made in their .bdrv_check_perm implementation.
*/
void GRAPH_RDLOCK_PTR (*bdrv_set_perm)(
BlockDriverState *bs, uint64_t perm, uint64_t shared);
/*
* Called to inform the driver that after a previous bdrv_check_perm()
* call, the permission update is not performed and any preparations made
* for it (e.g. taken file locks) need to be undone.
*
* This function can be called even for nodes that never saw a
* bdrv_check_perm() call. It is a no-op then.
*/
void GRAPH_RDLOCK_PTR (*bdrv_abort_perm_update)(BlockDriverState *bs);
/**
* Returns in @nperm and @nshared the permissions that the driver for @bs
* needs on its child @c, based on the cumulative permissions requested by
* the parents in @parent_perm and @parent_shared.
*
* If @c is NULL, return the permissions for attaching a new child for the
* given @child_class and @role.
*
* If @reopen_queue is non-NULL, don't return the currently needed
* permissions, but those that will be needed after applying the
* @reopen_queue.
*/
void GRAPH_RDLOCK_PTR (*bdrv_child_perm)(
BlockDriverState *bs, BdrvChild *c, BdrvChildRole role,
BlockReopenQueue *reopen_queue,
uint64_t parent_perm, uint64_t parent_shared,
uint64_t *nperm, uint64_t *nshared);
/**
* Register/unregister a buffer for I/O. For example, when the driver is
* interested to know the memory areas that will later be used in iovs, so
* that it can do IOMMU mapping with VFIO etc., in order to get better
* performance. In the case of VFIO drivers, this callback is used to do
* DMA mapping for hot buffers.
*
* Returns: true on success, false on failure
*/
bool GRAPH_RDLOCK_PTR (*bdrv_register_buf)(
BlockDriverState *bs, void *host, size_t size, Error **errp);
void GRAPH_RDLOCK_PTR (*bdrv_unregister_buf)(
BlockDriverState *bs, void *host, size_t size);
/*
* This field is modified only under the BQL, and is part of
* the global state.
*/
QLIST_ENTRY(BlockDriver) list;
/*
* I/O API functions. These functions are thread-safe.
*
* See include/block/block-io.h for more information about
* the I/O API.
*/
int (*bdrv_probe)(const uint8_t *buf, int buf_size, const char *filename);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_amend)(
BlockDriverState *bs, BlockdevAmendOptions *opts, bool force,
Error **errp);
/* aio */
BlockAIOCB * GRAPH_RDLOCK_PTR (*bdrv_aio_preadv)(BlockDriverState *bs,
int64_t offset, int64_t bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags, BlockCompletionFunc *cb, void *opaque);
BlockAIOCB * GRAPH_RDLOCK_PTR (*bdrv_aio_pwritev)(BlockDriverState *bs,
int64_t offset, int64_t bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags, BlockCompletionFunc *cb, void *opaque);
BlockAIOCB * GRAPH_RDLOCK_PTR (*bdrv_aio_flush)(
BlockDriverState *bs, BlockCompletionFunc *cb, void *opaque);
BlockAIOCB * GRAPH_RDLOCK_PTR (*bdrv_aio_pdiscard)(
BlockDriverState *bs, int64_t offset, int bytes,
BlockCompletionFunc *cb, void *opaque);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_readv)(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov);
/**
* @offset: position in bytes to read at
* @bytes: number of bytes to read
* @qiov: the buffers to fill with read data
* @flags: currently unused, always 0
*
* @offset and @bytes will be a multiple of 'request_alignment',
* but the length of individual @qiov elements does not have to
* be a multiple.
*
* @bytes will always equal the total size of @qiov, and will be
* no larger than 'max_transfer'.
*
* The buffer in @qiov may point directly to guest memory.
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_preadv)(BlockDriverState *bs,
int64_t offset, int64_t bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_preadv_part)(
BlockDriverState *bs, int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset,
BdrvRequestFlags flags);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_writev)(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
int flags);
/**
* @offset: position in bytes to write at
* @bytes: number of bytes to write
* @qiov: the buffers containing data to write
* @flags: zero or more bits allowed by 'supported_write_flags'
*
* @offset and @bytes will be a multiple of 'request_alignment',
* but the length of individual @qiov elements does not have to
* be a multiple.
*
* @bytes will always equal the total size of @qiov, and will be
* no larger than 'max_transfer'.
*
* The buffer in @qiov may point directly to guest memory.
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_pwritev)(
BlockDriverState *bs, int64_t offset, int64_t bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_pwritev_part)(
BlockDriverState *bs, int64_t offset, int64_t bytes, QEMUIOVector *qiov,
size_t qiov_offset, BdrvRequestFlags flags);
/*
* Efficiently zero a region of the disk image. Typically an image format
* would use a compact metadata representation to implement this. This
* function pointer may be NULL or return -ENOSUP and .bdrv_co_writev()
* will be called instead.
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_pwrite_zeroes)(
BlockDriverState *bs, int64_t offset, int64_t bytes,
BdrvRequestFlags flags);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_pdiscard)(
BlockDriverState *bs, int64_t offset, int64_t bytes);
/*
* Map [offset, offset + nbytes) range onto a child of @bs to copy from,
* and invoke bdrv_co_copy_range_from(child, ...), or invoke
* bdrv_co_copy_range_to() if @bs is the leaf child to copy data from.
*
* See the comment of bdrv_co_copy_range for the parameter and return value
* semantics.
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_copy_range_from)(
BlockDriverState *bs, BdrvChild *src, int64_t offset,
BdrvChild *dst, int64_t dst_offset, int64_t bytes,
BdrvRequestFlags read_flags, BdrvRequestFlags write_flags);
/*
* Map [offset, offset + nbytes) range onto a child of bs to copy data to,
* and invoke bdrv_co_copy_range_to(child, src, ...), or perform the copy
* operation if @bs is the leaf and @src has the same BlockDriver. Return
* -ENOTSUP if @bs is the leaf but @src has a different BlockDriver.
*
* See the comment of bdrv_co_copy_range for the parameter and return value
* semantics.
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_copy_range_to)(
BlockDriverState *bs, BdrvChild *src, int64_t src_offset,
BdrvChild *dst, int64_t dst_offset, int64_t bytes,
BdrvRequestFlags read_flags, BdrvRequestFlags write_flags);
/*
* Building block for bdrv_block_status[_above] and
* bdrv_is_allocated[_above]. The driver should answer only
* according to the current layer, and should only need to set
* BDRV_BLOCK_DATA, BDRV_BLOCK_ZERO, BDRV_BLOCK_OFFSET_VALID,
* and/or BDRV_BLOCK_RAW; if the current layer defers to a backing
* layer, the result should be 0 (and not BDRV_BLOCK_ZERO). See
* block.h for the overall meaning of the bits. As a hint, the
* flag want_zero is true if the caller cares more about precise
* mappings (favor accurate _OFFSET_VALID/_ZERO) or false for
* overall allocation (favor larger *pnum, perhaps by reporting
* _DATA instead of _ZERO). The block layer guarantees input
* clamped to bdrv_getlength() and aligned to request_alignment,
* as well as non-NULL pnum, map, and file; in turn, the driver
* must return an error or set pnum to an aligned non-zero value.
*
* Note that @bytes is just a hint on how big of a region the
* caller wants to inspect. It is not a limit on *pnum.
* Implementations are free to return larger values of *pnum if
* doing so does not incur a performance penalty.
*
* block/io.c's bdrv_co_block_status() will utilize an unclamped
* *pnum value for the block-status cache on protocol nodes, prior
* to clamping *pnum for return to its caller.
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_block_status)(
BlockDriverState *bs,
bool want_zero, int64_t offset, int64_t bytes, int64_t *pnum,
int64_t *map, BlockDriverState **file);
/*
* Snapshot-access API.
*
* Block-driver may provide snapshot-access API: special functions to access
* some internal "snapshot". The functions are similar with normal
* read/block_status/discard handler, but don't have any specific handling
* in generic block-layer: no serializing, no alignment, no tracked
* requests. So, block-driver that realizes these APIs is fully responsible
* for synchronization between snapshot-access API and normal IO requests.
*
* TODO: To be able to support qcow2's internal snapshots, this API will
* need to be extended to:
* - be able to select a specific snapshot
* - receive the snapshot's actual length (which may differ from bs's
* length)
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_preadv_snapshot)(
BlockDriverState *bs, int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_snapshot_block_status)(
BlockDriverState *bs, bool want_zero, int64_t offset, int64_t bytes,
int64_t *pnum, int64_t *map, BlockDriverState **file);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_pdiscard_snapshot)(
BlockDriverState *bs, int64_t offset, int64_t bytes);
/*
* Invalidate any cached meta-data.
*/
void coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_invalidate_cache)(
BlockDriverState *bs, Error **errp);
/*
* Flushes all data for all layers by calling bdrv_co_flush for underlying
* layers, if needed. This function is needed for deterministic
* synchronization of the flush finishing callback.
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_flush)(BlockDriverState *bs);
/* Delete a created file. */
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_delete_file)(
BlockDriverState *bs, Error **errp);
/*
* Flushes all data that was already written to the OS all the way down to
* the disk (for example file-posix.c calls fsync()).
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_flush_to_disk)(
BlockDriverState *bs);
/*
* Flushes all internal caches to the OS. The data may still sit in a
* writeback cache of the host OS, but it will survive a crash of the qemu
* process.
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_flush_to_os)(
BlockDriverState *bs);
/*
* Truncate @bs to @offset bytes using the given @prealloc mode
* when growing. Modes other than PREALLOC_MODE_OFF should be
* rejected when shrinking @bs.
*
* If @exact is true, @bs must be resized to exactly @offset.
* Otherwise, it is sufficient for @bs (if it is a host block
* device and thus there is no way to resize it) to be at least
* @offset bytes in length.
*
* If @exact is true and this function fails but would succeed
* with @exact = false, it should return -ENOTSUP.
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_truncate)(
BlockDriverState *bs, int64_t offset, bool exact,
PreallocMode prealloc, BdrvRequestFlags flags, Error **errp);
int64_t coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_getlength)(
BlockDriverState *bs);
int64_t coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_get_allocated_file_size)(
BlockDriverState *bs);
BlockMeasureInfo *(*bdrv_measure)(QemuOpts *opts, BlockDriverState *in_bs,
Error **errp);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_pwritev_compressed)(
BlockDriverState *bs, int64_t offset, int64_t bytes,
QEMUIOVector *qiov);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_pwritev_compressed_part)(
BlockDriverState *bs, int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_get_info)(
BlockDriverState *bs, BlockDriverInfo *bdi);
ImageInfoSpecific * GRAPH_RDLOCK_PTR (*bdrv_get_specific_info)(
BlockDriverState *bs, Error **errp);
BlockStatsSpecific *(*bdrv_get_specific_stats)(BlockDriverState *bs);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_save_vmstate)(
BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_load_vmstate)(
BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos);
int coroutine_fn (*bdrv_co_zone_report)(BlockDriverState *bs,
int64_t offset, unsigned int *nr_zones,
BlockZoneDescriptor *zones);
int coroutine_fn (*bdrv_co_zone_mgmt)(BlockDriverState *bs, BlockZoneOp op,
int64_t offset, int64_t len);
int coroutine_fn (*bdrv_co_zone_append)(BlockDriverState *bs,
int64_t *offset, QEMUIOVector *qiov,
BdrvRequestFlags flags);
/* removable device specific */
bool coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_is_inserted)(
BlockDriverState *bs);
void coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_eject)(
BlockDriverState *bs, bool eject_flag);
void coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_lock_medium)(
BlockDriverState *bs, bool locked);
/* to control generic scsi devices */
BlockAIOCB *coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_aio_ioctl)(
BlockDriverState *bs, unsigned long int req, void *buf,
BlockCompletionFunc *cb, void *opaque);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_ioctl)(
BlockDriverState *bs, unsigned long int req, void *buf);
/*
* Returns 0 for completed check, -errno for internal errors.
* The check results are stored in result.
*/
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_check)(
BlockDriverState *bs, BdrvCheckResult *result, BdrvCheckMode fix);
void coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_debug_event)(
BlockDriverState *bs, BlkdebugEvent event);
bool (*bdrv_supports_persistent_dirty_bitmap)(BlockDriverState *bs);
bool coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_can_store_new_dirty_bitmap)(
BlockDriverState *bs, const char *name, uint32_t granularity,
Error **errp);
int coroutine_fn GRAPH_RDLOCK_PTR (*bdrv_co_remove_persistent_dirty_bitmap)(
BlockDriverState *bs, const char *name, Error **errp);
};
static inline bool TSA_NO_TSA block_driver_can_compress(BlockDriver *drv)
{
return drv->bdrv_co_pwritev_compressed ||
drv->bdrv_co_pwritev_compressed_part;
}
typedef struct BlockLimits {
/*
* Alignment requirement, in bytes, for offset/length of I/O
* requests. Must be a power of 2 less than INT_MAX; defaults to
* 1 for drivers with modern byte interfaces, and to 512
* otherwise.
*/
uint32_t request_alignment;
/*
* Maximum number of bytes that can be discarded at once. Must be multiple
* of pdiscard_alignment, but need not be power of 2. May be 0 if no
* inherent 64-bit limit.
*/
int64_t max_pdiscard;
/*
* Optimal alignment for discard requests in bytes. A power of 2
* is best but not mandatory. Must be a multiple of
* bl.request_alignment, and must be less than max_pdiscard if
* that is set. May be 0 if bl.request_alignment is good enough
*/
uint32_t pdiscard_alignment;
/*
* Maximum number of bytes that can zeroized at once. Must be multiple of
* pwrite_zeroes_alignment. 0 means no limit.
*/
int64_t max_pwrite_zeroes;
/*
* Optimal alignment for write zeroes requests in bytes. A power
* of 2 is best but not mandatory. Must be a multiple of
* bl.request_alignment, and must be less than max_pwrite_zeroes
* if that is set. May be 0 if bl.request_alignment is good
* enough
*/
uint32_t pwrite_zeroes_alignment;
/*
* Optimal transfer length in bytes. A power of 2 is best but not
* mandatory. Must be a multiple of bl.request_alignment, or 0 if
* no preferred size
*/
uint32_t opt_transfer;
/*
* Maximal transfer length in bytes. Need not be power of 2, but
* must be multiple of opt_transfer and bl.request_alignment, or 0
* for no 32-bit limit. For now, anything larger than INT_MAX is
* clamped down.
*/
uint32_t max_transfer;
/*
* Maximal hardware transfer length in bytes. Applies whenever
* transfers to the device bypass the kernel I/O scheduler, for
* example with SG_IO. If larger than max_transfer or if zero,
* blk_get_max_hw_transfer will fall back to max_transfer.
*/
uint64_t max_hw_transfer;
/*
* Maximal number of scatter/gather elements allowed by the hardware.
* Applies whenever transfers to the device bypass the kernel I/O
* scheduler, for example with SG_IO. If larger than max_iov
* or if zero, blk_get_max_hw_iov will fall back to max_iov.
*/
int max_hw_iov;
/* memory alignment, in bytes so that no bounce buffer is needed */
size_t min_mem_alignment;
/* memory alignment, in bytes, for bounce buffer */
size_t opt_mem_alignment;
/* maximum number of iovec elements */
int max_iov;
/*
* true if the length of the underlying file can change, and QEMU
* is expected to adjust automatically. Mostly for CD-ROM drives,
* whose length is zero when the tray is empty (they don't need
* an explicit monitor command to load the disk inside the guest).
*/
bool has_variable_length;
/* device zone model */
BlockZoneModel zoned;
/* zone size expressed in bytes */
uint32_t zone_size;
/* total number of zones */
uint32_t nr_zones;
/* maximum sectors of a zone append write operation */
uint32_t max_append_sectors;
/* maximum number of open zones */
uint32_t max_open_zones;
/* maximum number of active zones */
uint32_t max_active_zones;
uint32_t write_granularity;
} BlockLimits;
typedef struct BdrvOpBlocker BdrvOpBlocker;
typedef struct BdrvAioNotifier {
void (*attached_aio_context)(AioContext *new_context, void *opaque);
void (*detach_aio_context)(void *opaque);
void *opaque;
bool deleted;
QLIST_ENTRY(BdrvAioNotifier) list;
} BdrvAioNotifier;
struct BdrvChildClass {
/*
* If true, bdrv_replace_node() doesn't change the node this BdrvChild
* points to.
*/
bool stay_at_node;
/*
* If true, the parent is a BlockDriverState and bdrv_next_all_states()
* will return it. This information is used for drain_all, where every node
* will be drained separately, so the drain only needs to be propagated to
* non-BDS parents.
*/
bool parent_is_bds;
/*
* Global state (GS) API. These functions run under the BQL.
*
* See include/block/block-global-state.h for more information about
* the GS API.
*/
void (*inherit_options)(BdrvChildRole role, bool parent_is_format,
int *child_flags, QDict *child_options,
int parent_flags, QDict *parent_options);
void (*change_media)(BdrvChild *child, bool load);
/*
* Returns a malloced string that describes the parent of the child for a
* human reader. This could be a node-name, BlockBackend name, qdev ID or
* QOM path of the device owning the BlockBackend, job type and ID etc. The
* caller is responsible for freeing the memory.
*/
char *(*get_parent_desc)(BdrvChild *child);
/*
* Notifies the parent that the child has been activated/inactivated (e.g.
* when migration is completing) and it can start/stop requesting
* permissions and doing I/O on it.
*/
void GRAPH_RDLOCK_PTR (*activate)(BdrvChild *child, Error **errp);
int GRAPH_RDLOCK_PTR (*inactivate)(BdrvChild *child);
void GRAPH_WRLOCK_PTR (*attach)(BdrvChild *child);
void GRAPH_WRLOCK_PTR (*detach)(BdrvChild *child);
/*
* If this pair of functions is implemented, the parent doesn't issue new
* requests after returning from .drained_begin() until .drained_end() is
* called.
*
* These functions must not change the graph (and therefore also must not
* call aio_poll(), which could change the graph indirectly).
*
* Note that this can be nested. If drained_begin() was called twice, new
* I/O is allowed only after drained_end() was called twice, too.
*/
void GRAPH_RDLOCK_PTR (*drained_begin)(BdrvChild *child);
void GRAPH_RDLOCK_PTR (*drained_end)(BdrvChild *child);
/*
* Returns whether the parent has pending requests for the child. This
* callback is polled after .drained_begin() has been called until all
* activity on the child has stopped.
*/
bool GRAPH_RDLOCK_PTR (*drained_poll)(BdrvChild *child);
/*
* Notifies the parent that the filename of its child has changed (e.g.
* because the direct child was removed from the backing chain), so that it
* can update its reference.
*/
int (*update_filename)(BdrvChild *child, BlockDriverState *new_base,
const char *filename,
bool backing_mask_protocol,
Error **errp);
bool (*change_aio_ctx)(BdrvChild *child, AioContext *ctx,
GHashTable *visited, Transaction *tran,
Error **errp);
/*
* I/O API functions. These functions are thread-safe.
*
* See include/block/block-io.h for more information about
* the I/O API.
*/
void (*resize)(BdrvChild *child);
/*
* Returns a name that is supposedly more useful for human users than the
* node name for identifying the node in question (in particular, a BB
* name), or NULL if the parent can't provide a better name.
*/
const char *(*get_name)(BdrvChild *child);
AioContext *(*get_parent_aio_context)(BdrvChild *child);
};
extern const BdrvChildClass child_of_bds;
struct BdrvChild {
BlockDriverState *bs;
char *name;
const BdrvChildClass *klass;
BdrvChildRole role;
void *opaque;
/**
* Granted permissions for operating on this BdrvChild (BLK_PERM_* bitmask)
*/
uint64_t perm;
/**
* Permissions that can still be granted to other users of @bs while this
* BdrvChild is still attached to it. (BLK_PERM_* bitmask)
*/
uint64_t shared_perm;
/*
* This link is frozen: the child can neither be replaced nor
* detached from the parent.
*/
bool frozen;
/*
* True if the parent of this child has been drained by this BdrvChild
* (through klass->drained_*).
*
* It is generally true if bs->quiesce_counter > 0. It may differ while the
* child is entering or leaving a drained section.
*/
bool quiesced_parent;
QLIST_ENTRY(BdrvChild GRAPH_RDLOCK_PTR) next;
QLIST_ENTRY(BdrvChild GRAPH_RDLOCK_PTR) next_parent;
};
/*
* Allows bdrv_co_block_status() to cache one data region for a
* protocol node.
*
* @valid: Whether the cache is valid (should be accessed with atomic
* functions so this can be reset by RCU readers)
* @data_start: Offset where we know (or strongly assume) is data
* @data_end: Offset where the data region ends (which is not necessarily
* the start of a zeroed region)
*/
typedef struct BdrvBlockStatusCache {
struct rcu_head rcu;
bool valid;
int64_t data_start;
int64_t data_end;
} BdrvBlockStatusCache;
struct BlockDriverState {
/*
* Protected by big QEMU lock or read-only after opening. No special
* locking needed during I/O...
*/
int open_flags; /* flags used to open the file, re-used for re-open */
bool encrypted; /* if true, the media is encrypted */
bool sg; /* if true, the device is a /dev/sg* */
bool probed; /* if true, format was probed rather than specified */
bool force_share; /* if true, always allow all shared permissions */
bool implicit; /* if true, this filter node was automatically inserted */
BlockDriver *drv; /* NULL means no media */
void *opaque;
AioContext *aio_context; /* event loop used for fd handlers, timers, etc */
/*
* long-running tasks intended to always use the same AioContext as this
* BDS may register themselves in this list to be notified of changes
* regarding this BDS's context
*/
QLIST_HEAD(, BdrvAioNotifier) aio_notifiers;
bool walking_aio_notifiers; /* to make removal during iteration safe */
char filename[PATH_MAX];
/*
* If not empty, this image is a diff in relation to backing_file.
* Note that this is the name given in the image header and
* therefore may or may not be equal to .backing->bs->filename.
* If this field contains a relative path, it is to be resolved
* relatively to the overlay's location.
*/
char backing_file[PATH_MAX];
/*
* The backing filename indicated by the image header. Contrary
* to backing_file, if we ever open this file, auto_backing_file
* is replaced by the resulting BDS's filename (i.e. after a
* bdrv_refresh_filename() run).
*/
char auto_backing_file[PATH_MAX];
char backing_format[16]; /* if non-zero and backing_file exists */
QDict *full_open_options;
char exact_filename[PATH_MAX];
/* I/O Limits */
BlockLimits bl;
/*
* Flags honored during pread
*/
BdrvRequestFlags supported_read_flags;
/*
* Flags honored during pwrite (so far: BDRV_REQ_FUA,
* BDRV_REQ_WRITE_UNCHANGED).
* If a driver does not support BDRV_REQ_WRITE_UNCHANGED, those
* writes will be issued as normal writes without the flag set.
* This is important to note for drivers that do not explicitly
* request a WRITE permission for their children and instead take
* the same permissions as their parent did (this is commonly what
* block filters do). Such drivers have to be aware that the
* parent may have taken a WRITE_UNCHANGED permission only and is
* issuing such requests. Drivers either must make sure that
* these requests do not result in plain WRITE accesses (usually
* by supporting BDRV_REQ_WRITE_UNCHANGED, and then forwarding
* every incoming write request as-is, including potentially that
* flag), or they have to explicitly take the WRITE permission for
* their children.
*/
BdrvRequestFlags supported_write_flags;
/*
* Flags honored during pwrite_zeroes (so far: BDRV_REQ_FUA,
* BDRV_REQ_MAY_UNMAP, BDRV_REQ_WRITE_UNCHANGED)
*/
BdrvRequestFlags supported_zero_flags;
/*
* Flags honoured during truncate (so far: BDRV_REQ_ZERO_WRITE).
*
* If BDRV_REQ_ZERO_WRITE is given, the truncate operation must make sure
* that any added space reads as all zeros. If this can't be guaranteed,
* the operation must fail.
*/
BdrvRequestFlags supported_truncate_flags;
/* the following member gives a name to every node on the bs graph. */
char node_name[32];
/* element of the list of named nodes building the graph */
QTAILQ_ENTRY(BlockDriverState) node_list;
/* element of the list of all BlockDriverStates (all_bdrv_states) */
QTAILQ_ENTRY(BlockDriverState) bs_list;
/* element of the list of monitor-owned BDS */
QTAILQ_ENTRY(BlockDriverState) monitor_list;
int refcnt;
/* operation blockers. Protected by BQL. */
QLIST_HEAD(, BdrvOpBlocker) op_blockers[BLOCK_OP_TYPE_MAX];
/*
* The node that this node inherited default options from (and a reopen on
* which can affect this node by changing these defaults). This is always a
* parent node of this node.
*/
BlockDriverState *inherits_from;
/*
* @backing and @file are some of @children or NULL. All these three fields
* (@file, @backing and @children) are modified only in
* bdrv_child_cb_attach() and bdrv_child_cb_detach().
*
* See also comment in include/block/block.h, to learn how backing and file
* are connected with BdrvChildRole.
*/
QLIST_HEAD(, BdrvChild GRAPH_RDLOCK_PTR) children;
BdrvChild * GRAPH_RDLOCK_PTR backing;
BdrvChild * GRAPH_RDLOCK_PTR file;
QLIST_HEAD(, BdrvChild GRAPH_RDLOCK_PTR) parents;
QDict *options;
QDict *explicit_options;
BlockdevDetectZeroesOptions detect_zeroes;
/* The error object in use for blocking operations on backing_hd */
Error *backing_blocker;
/*
* If we are reading a disk image, give its size in sectors.
* Generally read-only; it is written to by load_snapshot and
* save_snaphost, but the block layer is quiescent during those.
*/
int64_t total_sectors;
/* threshold limit for writes, in bytes. "High water mark". */
uint64_t write_threshold_offset;
/*
* Writing to the list requires the BQL _and_ the dirty_bitmap_mutex.
* Reading from the list can be done with either the BQL or the
* dirty_bitmap_mutex. Modifying a bitmap only requires
* dirty_bitmap_mutex.
*/
QemuMutex dirty_bitmap_mutex;
QLIST_HEAD(, BdrvDirtyBitmap) dirty_bitmaps;
/* Offset after the highest byte written to */
Stat64 wr_highest_offset;
/*
* If true, copy read backing sectors into image. Can be >1 if more
* than one client has requested copy-on-read. Accessed with atomic
* ops.
*/
int copy_on_read;
/*
* number of in-flight requests; overall and serialising.
* Accessed with atomic ops.
*/
unsigned int in_flight;
unsigned int serialising_in_flight;
/* do we need to tell the quest if we have a volatile write cache? */
int enable_write_cache;
/* Accessed with atomic ops. */
int quiesce_counter;
unsigned int write_gen; /* Current data generation */
/* Protected by reqs_lock. */
QemuMutex reqs_lock;
QLIST_HEAD(, BdrvTrackedRequest) tracked_requests;
CoQueue flush_queue; /* Serializing flush queue */
bool active_flush_req; /* Flush request in flight? */
/* Only read/written by whoever has set active_flush_req to true. */
unsigned int flushed_gen; /* Flushed write generation */
/* BdrvChild links to this node may never be frozen */
bool never_freeze;
/* Lock for block-status cache RCU writers */
CoMutex bsc_modify_lock;
/* Always non-NULL, but must only be dereferenced under an RCU read guard */
BdrvBlockStatusCache *block_status_cache;
/* array of write pointers' location of each zone in the zoned device. */
BlockZoneWps *wps;
};
struct BlockBackendRootState {
int open_flags;
BlockdevDetectZeroesOptions detect_zeroes;
};
typedef enum BlockMirrorBackingMode {
/*
* Reuse the existing backing chain from the source for the target.
* - sync=full: Set backing BDS to NULL.
* - sync=top: Use source's backing BDS.
* - sync=none: Use source as the backing BDS.
*/
MIRROR_SOURCE_BACKING_CHAIN,
/* Open the target's backing chain completely anew */
MIRROR_OPEN_BACKING_CHAIN,
/* Do not change the target's backing BDS after job completion */
MIRROR_LEAVE_BACKING_CHAIN,
} BlockMirrorBackingMode;
/*
* Essential block drivers which must always be statically linked into qemu, and
* which therefore can be accessed without using bdrv_find_format()
*/
extern BlockDriver bdrv_file;
extern BlockDriver bdrv_raw;
extern BlockDriver bdrv_qcow2;
extern unsigned int bdrv_drain_all_count;
extern QemuOptsList bdrv_create_opts_simple;
/*
* Common functions that are neither I/O nor Global State.
*
* See include/block/block-common.h for more information about
* the Common API.
*/
static inline BlockDriverState *child_bs(BdrvChild *child)
{
return child ? child->bs : NULL;
}
int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp);
char *create_tmp_file(Error **errp);
void bdrv_parse_filename_strip_prefix(const char *filename, const char *prefix,
QDict *options);
int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset,
Error **errp);
#ifdef _WIN32
int is_windows_drive(const char *filename);
#endif
#endif /* BLOCK_INT_COMMON_H */