| /* |
| * QEMU System Emulator |
| * |
| * Copyright (c) 2003-2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu/osdep.h" |
| #include <zlib.h> |
| #include "qemu-common.h" |
| #include "qemu/error-report.h" |
| #include "qemu/iov.h" |
| #include "migration.h" |
| #include "qemu-file.h" |
| #include "trace.h" |
| |
| #define IO_BUF_SIZE 32768 |
| #define MAX_IOV_SIZE MIN(IOV_MAX, 64) |
| |
| struct QEMUFile { |
| const QEMUFileOps *ops; |
| const QEMUFileHooks *hooks; |
| void *opaque; |
| |
| int64_t bytes_xfer; |
| int64_t xfer_limit; |
| |
| int64_t pos; /* start of buffer when writing, end of buffer |
| when reading */ |
| int buf_index; |
| int buf_size; /* 0 when writing */ |
| uint8_t buf[IO_BUF_SIZE]; |
| |
| DECLARE_BITMAP(may_free, MAX_IOV_SIZE); |
| struct iovec iov[MAX_IOV_SIZE]; |
| unsigned int iovcnt; |
| |
| int last_error; |
| }; |
| |
| /* |
| * Stop a file from being read/written - not all backing files can do this |
| * typically only sockets can. |
| */ |
| int qemu_file_shutdown(QEMUFile *f) |
| { |
| if (!f->ops->shut_down) { |
| return -ENOSYS; |
| } |
| return f->ops->shut_down(f->opaque, true, true); |
| } |
| |
| /* |
| * Result: QEMUFile* for a 'return path' for comms in the opposite direction |
| * NULL if not available |
| */ |
| QEMUFile *qemu_file_get_return_path(QEMUFile *f) |
| { |
| if (!f->ops->get_return_path) { |
| return NULL; |
| } |
| return f->ops->get_return_path(f->opaque); |
| } |
| |
| bool qemu_file_mode_is_not_valid(const char *mode) |
| { |
| if (mode == NULL || |
| (mode[0] != 'r' && mode[0] != 'w') || |
| mode[1] != 'b' || mode[2] != 0) { |
| fprintf(stderr, "qemu_fopen: Argument validity check failed\n"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops) |
| { |
| QEMUFile *f; |
| |
| f = g_new0(QEMUFile, 1); |
| |
| f->opaque = opaque; |
| f->ops = ops; |
| return f; |
| } |
| |
| |
| void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks) |
| { |
| f->hooks = hooks; |
| } |
| |
| /* |
| * Get last error for stream f |
| * |
| * Return negative error value if there has been an error on previous |
| * operations, return 0 if no error happened. |
| * |
| */ |
| int qemu_file_get_error(QEMUFile *f) |
| { |
| return f->last_error; |
| } |
| |
| void qemu_file_set_error(QEMUFile *f, int ret) |
| { |
| if (f->last_error == 0) { |
| f->last_error = ret; |
| } |
| } |
| |
| bool qemu_file_is_writable(QEMUFile *f) |
| { |
| return f->ops->writev_buffer; |
| } |
| |
| static void qemu_iovec_release_ram(QEMUFile *f) |
| { |
| struct iovec iov; |
| unsigned long idx; |
| |
| /* Find and release all the contiguous memory ranges marked as may_free. */ |
| idx = find_next_bit(f->may_free, f->iovcnt, 0); |
| if (idx >= f->iovcnt) { |
| return; |
| } |
| iov = f->iov[idx]; |
| |
| /* The madvise() in the loop is called for iov within a continuous range and |
| * then reinitialize the iov. And in the end, madvise() is called for the |
| * last iov. |
| */ |
| while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) { |
| /* check for adjacent buffer and coalesce them */ |
| if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) { |
| iov.iov_len += f->iov[idx].iov_len; |
| continue; |
| } |
| if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { |
| error_report("migrate: madvise DONTNEED failed %p %zd: %s", |
| iov.iov_base, iov.iov_len, strerror(errno)); |
| } |
| iov = f->iov[idx]; |
| } |
| if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { |
| error_report("migrate: madvise DONTNEED failed %p %zd: %s", |
| iov.iov_base, iov.iov_len, strerror(errno)); |
| } |
| memset(f->may_free, 0, sizeof(f->may_free)); |
| } |
| |
| /** |
| * Flushes QEMUFile buffer |
| * |
| * If there is writev_buffer QEMUFileOps it uses it otherwise uses |
| * put_buffer ops. This will flush all pending data. If data was |
| * only partially flushed, it will set an error state. |
| */ |
| void qemu_fflush(QEMUFile *f) |
| { |
| ssize_t ret = 0; |
| ssize_t expect = 0; |
| |
| if (!qemu_file_is_writable(f)) { |
| return; |
| } |
| |
| if (f->iovcnt > 0) { |
| expect = iov_size(f->iov, f->iovcnt); |
| ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos); |
| |
| qemu_iovec_release_ram(f); |
| } |
| |
| if (ret >= 0) { |
| f->pos += ret; |
| } |
| /* We expect the QEMUFile write impl to send the full |
| * data set we requested, so sanity check that. |
| */ |
| if (ret != expect) { |
| qemu_file_set_error(f, ret < 0 ? ret : -EIO); |
| } |
| f->buf_index = 0; |
| f->iovcnt = 0; |
| } |
| |
| void ram_control_before_iterate(QEMUFile *f, uint64_t flags) |
| { |
| int ret = 0; |
| |
| if (f->hooks && f->hooks->before_ram_iterate) { |
| ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL); |
| if (ret < 0) { |
| qemu_file_set_error(f, ret); |
| } |
| } |
| } |
| |
| void ram_control_after_iterate(QEMUFile *f, uint64_t flags) |
| { |
| int ret = 0; |
| |
| if (f->hooks && f->hooks->after_ram_iterate) { |
| ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL); |
| if (ret < 0) { |
| qemu_file_set_error(f, ret); |
| } |
| } |
| } |
| |
| void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data) |
| { |
| int ret = -EINVAL; |
| |
| if (f->hooks && f->hooks->hook_ram_load) { |
| ret = f->hooks->hook_ram_load(f, f->opaque, flags, data); |
| if (ret < 0) { |
| qemu_file_set_error(f, ret); |
| } |
| } else { |
| /* |
| * Hook is a hook specifically requested by the source sending a flag |
| * that expects there to be a hook on the destination. |
| */ |
| if (flags == RAM_CONTROL_HOOK) { |
| qemu_file_set_error(f, ret); |
| } |
| } |
| } |
| |
| size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset, |
| ram_addr_t offset, size_t size, |
| uint64_t *bytes_sent) |
| { |
| if (f->hooks && f->hooks->save_page) { |
| int ret = f->hooks->save_page(f, f->opaque, block_offset, |
| offset, size, bytes_sent); |
| |
| if (ret != RAM_SAVE_CONTROL_DELAYED) { |
| if (bytes_sent && *bytes_sent > 0) { |
| qemu_update_position(f, *bytes_sent); |
| } else if (ret < 0) { |
| qemu_file_set_error(f, ret); |
| } |
| } |
| |
| return ret; |
| } |
| |
| return RAM_SAVE_CONTROL_NOT_SUPP; |
| } |
| |
| /* |
| * Attempt to fill the buffer from the underlying file |
| * Returns the number of bytes read, or negative value for an error. |
| * |
| * Note that it can return a partially full buffer even in a not error/not EOF |
| * case if the underlying file descriptor gives a short read, and that can |
| * happen even on a blocking fd. |
| */ |
| static ssize_t qemu_fill_buffer(QEMUFile *f) |
| { |
| int len; |
| int pending; |
| |
| assert(!qemu_file_is_writable(f)); |
| |
| pending = f->buf_size - f->buf_index; |
| if (pending > 0) { |
| memmove(f->buf, f->buf + f->buf_index, pending); |
| } |
| f->buf_index = 0; |
| f->buf_size = pending; |
| |
| len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos, |
| IO_BUF_SIZE - pending); |
| if (len > 0) { |
| f->buf_size += len; |
| f->pos += len; |
| } else if (len == 0) { |
| qemu_file_set_error(f, -EIO); |
| } else if (len != -EAGAIN) { |
| qemu_file_set_error(f, len); |
| } |
| |
| return len; |
| } |
| |
| void qemu_update_position(QEMUFile *f, size_t size) |
| { |
| f->pos += size; |
| } |
| |
| /** Closes the file |
| * |
| * Returns negative error value if any error happened on previous operations or |
| * while closing the file. Returns 0 or positive number on success. |
| * |
| * The meaning of return value on success depends on the specific backend |
| * being used. |
| */ |
| int qemu_fclose(QEMUFile *f) |
| { |
| int ret; |
| qemu_fflush(f); |
| ret = qemu_file_get_error(f); |
| |
| if (f->ops->close) { |
| int ret2 = f->ops->close(f->opaque); |
| if (ret >= 0) { |
| ret = ret2; |
| } |
| } |
| /* If any error was spotted before closing, we should report it |
| * instead of the close() return value. |
| */ |
| if (f->last_error) { |
| ret = f->last_error; |
| } |
| g_free(f); |
| trace_qemu_file_fclose(); |
| return ret; |
| } |
| |
| static void add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size, |
| bool may_free) |
| { |
| /* check for adjacent buffer and coalesce them */ |
| if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base + |
| f->iov[f->iovcnt - 1].iov_len && |
| may_free == test_bit(f->iovcnt - 1, f->may_free)) |
| { |
| f->iov[f->iovcnt - 1].iov_len += size; |
| } else { |
| if (may_free) { |
| set_bit(f->iovcnt, f->may_free); |
| } |
| f->iov[f->iovcnt].iov_base = (uint8_t *)buf; |
| f->iov[f->iovcnt++].iov_len = size; |
| } |
| |
| if (f->iovcnt >= MAX_IOV_SIZE) { |
| qemu_fflush(f); |
| } |
| } |
| |
| void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size, |
| bool may_free) |
| { |
| if (f->last_error) { |
| return; |
| } |
| |
| f->bytes_xfer += size; |
| add_to_iovec(f, buf, size, may_free); |
| } |
| |
| void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size) |
| { |
| size_t l; |
| |
| if (f->last_error) { |
| return; |
| } |
| |
| while (size > 0) { |
| l = IO_BUF_SIZE - f->buf_index; |
| if (l > size) { |
| l = size; |
| } |
| memcpy(f->buf + f->buf_index, buf, l); |
| f->bytes_xfer += l; |
| add_to_iovec(f, f->buf + f->buf_index, l, false); |
| f->buf_index += l; |
| if (f->buf_index == IO_BUF_SIZE) { |
| qemu_fflush(f); |
| } |
| if (qemu_file_get_error(f)) { |
| break; |
| } |
| buf += l; |
| size -= l; |
| } |
| } |
| |
| void qemu_put_byte(QEMUFile *f, int v) |
| { |
| if (f->last_error) { |
| return; |
| } |
| |
| f->buf[f->buf_index] = v; |
| f->bytes_xfer++; |
| add_to_iovec(f, f->buf + f->buf_index, 1, false); |
| f->buf_index++; |
| if (f->buf_index == IO_BUF_SIZE) { |
| qemu_fflush(f); |
| } |
| } |
| |
| void qemu_file_skip(QEMUFile *f, int size) |
| { |
| if (f->buf_index + size <= f->buf_size) { |
| f->buf_index += size; |
| } |
| } |
| |
| /* |
| * Read 'size' bytes from file (at 'offset') without moving the |
| * pointer and set 'buf' to point to that data. |
| * |
| * It will return size bytes unless there was an error, in which case it will |
| * return as many as it managed to read (assuming blocking fd's which |
| * all current QEMUFile are) |
| */ |
| size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset) |
| { |
| ssize_t pending; |
| size_t index; |
| |
| assert(!qemu_file_is_writable(f)); |
| assert(offset < IO_BUF_SIZE); |
| assert(size <= IO_BUF_SIZE - offset); |
| |
| /* The 1st byte to read from */ |
| index = f->buf_index + offset; |
| /* The number of available bytes starting at index */ |
| pending = f->buf_size - index; |
| |
| /* |
| * qemu_fill_buffer might return just a few bytes, even when there isn't |
| * an error, so loop collecting them until we get enough. |
| */ |
| while (pending < size) { |
| int received = qemu_fill_buffer(f); |
| |
| if (received <= 0) { |
| break; |
| } |
| |
| index = f->buf_index + offset; |
| pending = f->buf_size - index; |
| } |
| |
| if (pending <= 0) { |
| return 0; |
| } |
| if (size > pending) { |
| size = pending; |
| } |
| |
| *buf = f->buf + index; |
| return size; |
| } |
| |
| /* |
| * Read 'size' bytes of data from the file into buf. |
| * 'size' can be larger than the internal buffer. |
| * |
| * It will return size bytes unless there was an error, in which case it will |
| * return as many as it managed to read (assuming blocking fd's which |
| * all current QEMUFile are) |
| */ |
| size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size) |
| { |
| size_t pending = size; |
| size_t done = 0; |
| |
| while (pending > 0) { |
| size_t res; |
| uint8_t *src; |
| |
| res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0); |
| if (res == 0) { |
| return done; |
| } |
| memcpy(buf, src, res); |
| qemu_file_skip(f, res); |
| buf += res; |
| pending -= res; |
| done += res; |
| } |
| return done; |
| } |
| |
| /* |
| * Read 'size' bytes of data from the file. |
| * 'size' can be larger than the internal buffer. |
| * |
| * The data: |
| * may be held on an internal buffer (in which case *buf is updated |
| * to point to it) that is valid until the next qemu_file operation. |
| * OR |
| * will be copied to the *buf that was passed in. |
| * |
| * The code tries to avoid the copy if possible. |
| * |
| * It will return size bytes unless there was an error, in which case it will |
| * return as many as it managed to read (assuming blocking fd's which |
| * all current QEMUFile are) |
| * |
| * Note: Since **buf may get changed, the caller should take care to |
| * keep a pointer to the original buffer if it needs to deallocate it. |
| */ |
| size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size) |
| { |
| if (size < IO_BUF_SIZE) { |
| size_t res; |
| uint8_t *src; |
| |
| res = qemu_peek_buffer(f, &src, size, 0); |
| |
| if (res == size) { |
| qemu_file_skip(f, res); |
| *buf = src; |
| return res; |
| } |
| } |
| |
| return qemu_get_buffer(f, *buf, size); |
| } |
| |
| /* |
| * Peeks a single byte from the buffer; this isn't guaranteed to work if |
| * offset leaves a gap after the previous read/peeked data. |
| */ |
| int qemu_peek_byte(QEMUFile *f, int offset) |
| { |
| int index = f->buf_index + offset; |
| |
| assert(!qemu_file_is_writable(f)); |
| assert(offset < IO_BUF_SIZE); |
| |
| if (index >= f->buf_size) { |
| qemu_fill_buffer(f); |
| index = f->buf_index + offset; |
| if (index >= f->buf_size) { |
| return 0; |
| } |
| } |
| return f->buf[index]; |
| } |
| |
| int qemu_get_byte(QEMUFile *f) |
| { |
| int result; |
| |
| result = qemu_peek_byte(f, 0); |
| qemu_file_skip(f, 1); |
| return result; |
| } |
| |
| int64_t qemu_ftell_fast(QEMUFile *f) |
| { |
| int64_t ret = f->pos; |
| int i; |
| |
| for (i = 0; i < f->iovcnt; i++) { |
| ret += f->iov[i].iov_len; |
| } |
| |
| return ret; |
| } |
| |
| int64_t qemu_ftell(QEMUFile *f) |
| { |
| qemu_fflush(f); |
| return f->pos; |
| } |
| |
| int qemu_file_rate_limit(QEMUFile *f) |
| { |
| if (qemu_file_get_error(f)) { |
| return 1; |
| } |
| if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| int64_t qemu_file_get_rate_limit(QEMUFile *f) |
| { |
| return f->xfer_limit; |
| } |
| |
| void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit) |
| { |
| f->xfer_limit = limit; |
| } |
| |
| void qemu_file_reset_rate_limit(QEMUFile *f) |
| { |
| f->bytes_xfer = 0; |
| } |
| |
| void qemu_put_be16(QEMUFile *f, unsigned int v) |
| { |
| qemu_put_byte(f, v >> 8); |
| qemu_put_byte(f, v); |
| } |
| |
| void qemu_put_be32(QEMUFile *f, unsigned int v) |
| { |
| qemu_put_byte(f, v >> 24); |
| qemu_put_byte(f, v >> 16); |
| qemu_put_byte(f, v >> 8); |
| qemu_put_byte(f, v); |
| } |
| |
| void qemu_put_be64(QEMUFile *f, uint64_t v) |
| { |
| qemu_put_be32(f, v >> 32); |
| qemu_put_be32(f, v); |
| } |
| |
| unsigned int qemu_get_be16(QEMUFile *f) |
| { |
| unsigned int v; |
| v = qemu_get_byte(f) << 8; |
| v |= qemu_get_byte(f); |
| return v; |
| } |
| |
| unsigned int qemu_get_be32(QEMUFile *f) |
| { |
| unsigned int v; |
| v = (unsigned int)qemu_get_byte(f) << 24; |
| v |= qemu_get_byte(f) << 16; |
| v |= qemu_get_byte(f) << 8; |
| v |= qemu_get_byte(f); |
| return v; |
| } |
| |
| uint64_t qemu_get_be64(QEMUFile *f) |
| { |
| uint64_t v; |
| v = (uint64_t)qemu_get_be32(f) << 32; |
| v |= qemu_get_be32(f); |
| return v; |
| } |
| |
| /* Compress size bytes of data start at p with specific compression |
| * level and store the compressed data to the buffer of f. |
| * |
| * When f is not writable, return -1 if f has no space to save the |
| * compressed data. |
| * When f is wirtable and it has no space to save the compressed data, |
| * do fflush first, if f still has no space to save the compressed |
| * data, return -1. |
| */ |
| |
| ssize_t qemu_put_compression_data(QEMUFile *f, const uint8_t *p, size_t size, |
| int level) |
| { |
| ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t); |
| |
| if (blen < compressBound(size)) { |
| if (!qemu_file_is_writable(f)) { |
| return -1; |
| } |
| qemu_fflush(f); |
| blen = IO_BUF_SIZE - sizeof(int32_t); |
| if (blen < compressBound(size)) { |
| return -1; |
| } |
| } |
| if (compress2(f->buf + f->buf_index + sizeof(int32_t), (uLongf *)&blen, |
| (Bytef *)p, size, level) != Z_OK) { |
| error_report("Compress Failed!"); |
| return 0; |
| } |
| qemu_put_be32(f, blen); |
| if (f->ops->writev_buffer) { |
| add_to_iovec(f, f->buf + f->buf_index, blen, false); |
| } |
| f->buf_index += blen; |
| if (f->buf_index == IO_BUF_SIZE) { |
| qemu_fflush(f); |
| } |
| return blen + sizeof(int32_t); |
| } |
| |
| /* Put the data in the buffer of f_src to the buffer of f_des, and |
| * then reset the buf_index of f_src to 0. |
| */ |
| |
| int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src) |
| { |
| int len = 0; |
| |
| if (f_src->buf_index > 0) { |
| len = f_src->buf_index; |
| qemu_put_buffer(f_des, f_src->buf, f_src->buf_index); |
| f_src->buf_index = 0; |
| f_src->iovcnt = 0; |
| } |
| return len; |
| } |
| |
| /* |
| * Get a string whose length is determined by a single preceding byte |
| * A preallocated 256 byte buffer must be passed in. |
| * Returns: len on success and a 0 terminated string in the buffer |
| * else 0 |
| * (Note a 0 length string will return 0 either way) |
| */ |
| size_t qemu_get_counted_string(QEMUFile *f, char buf[256]) |
| { |
| size_t len = qemu_get_byte(f); |
| size_t res = qemu_get_buffer(f, (uint8_t *)buf, len); |
| |
| buf[res] = 0; |
| |
| return res == len ? res : 0; |
| } |
| |
| /* |
| * Put a string with one preceding byte containing its length. The length of |
| * the string should be less than 256. |
| */ |
| void qemu_put_counted_string(QEMUFile *f, const char *str) |
| { |
| size_t len = strlen(str); |
| |
| assert(len < 256); |
| qemu_put_byte(f, len); |
| qemu_put_buffer(f, (const uint8_t *)str, len); |
| } |
| |
| /* |
| * Set the blocking state of the QEMUFile. |
| * Note: On some transports the OS only keeps a single blocking state for |
| * both directions, and thus changing the blocking on the main |
| * QEMUFile can also affect the return path. |
| */ |
| void qemu_file_set_blocking(QEMUFile *f, bool block) |
| { |
| if (f->ops->set_blocking) { |
| f->ops->set_blocking(f->opaque, block); |
| } |
| } |