blob: 8dbafafb9e742b16afd68034b5036e12e52031fa [file] [log] [blame]
/**
* QEMU vfio-user-server server object
*
* Copyright © 2022 Oracle and/or its affiliates.
*
* This work is licensed under the terms of the GNU GPL-v2, version 2 or later.
*
* See the COPYING file in the top-level directory.
*
*/
/**
* Usage: add options:
* -machine x-remote,vfio-user=on,auto-shutdown=on
* -device <PCI-device>,id=<pci-dev-id>
* -object x-vfio-user-server,id=<id>,type=unix,path=<socket-path>,
* device=<pci-dev-id>
*
* Note that x-vfio-user-server object must be used with x-remote machine only.
* This server could only support PCI devices for now.
*
* type - SocketAddress type - presently "unix" alone is supported. Required
* option
*
* path - named unix socket, it will be created by the server. It is
* a required option
*
* device - id of a device on the server, a required option. PCI devices
* alone are supported presently.
*
* notes - x-vfio-user-server could block IO and monitor during the
* initialization phase.
*
* When x-remote machine has the auto-shutdown property
* enabled (default), x-vfio-user-server terminates after the last
* client disconnects. Otherwise, it will continue running until
* explicitly killed.
*/
#include "qemu/osdep.h"
#include "qom/object.h"
#include "qom/object_interfaces.h"
#include "qemu/error-report.h"
#include "trace.h"
#include "sysemu/runstate.h"
#include "hw/boards.h"
#include "hw/remote/machine.h"
#include "qapi/error.h"
#include "qapi/qapi-visit-sockets.h"
#include "qapi/qapi-events-misc.h"
#include "qemu/notify.h"
#include "qemu/thread.h"
#include "qemu/main-loop.h"
#include "sysemu/sysemu.h"
#include "libvfio-user.h"
#include "hw/qdev-core.h"
#include "hw/pci/pci.h"
#include "qemu/timer.h"
#include "exec/memory.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/remote/vfio-user-obj.h"
#define TYPE_VFU_OBJECT "x-vfio-user-server"
OBJECT_DECLARE_TYPE(VfuObject, VfuObjectClass, VFU_OBJECT)
/**
* VFU_OBJECT_ERROR - reports an error message.
*
* If auto_shutdown is set, it aborts the machine on error. Otherwise,
* it logs an error message without aborting. auto_shutdown is disabled
* when the server serves clients from multiple VMs; as such, an error
* from one VM shouldn't be able to disrupt other VM's services.
*/
#define VFU_OBJECT_ERROR(o, fmt, ...) \
{ \
if (vfu_object_auto_shutdown()) { \
error_setg(&error_abort, (fmt), ## __VA_ARGS__); \
} else { \
error_report((fmt), ## __VA_ARGS__); \
} \
} \
struct VfuObjectClass {
ObjectClass parent_class;
unsigned int nr_devs;
};
struct VfuObject {
/* private */
Object parent;
SocketAddress *socket;
char *device;
Error *err;
Notifier machine_done;
vfu_ctx_t *vfu_ctx;
PCIDevice *pci_dev;
Error *unplug_blocker;
int vfu_poll_fd;
MSITriggerFunc *default_msi_trigger;
MSIPrepareMessageFunc *default_msi_prepare_message;
MSIxPrepareMessageFunc *default_msix_prepare_message;
};
static void vfu_object_init_ctx(VfuObject *o, Error **errp);
static bool vfu_object_auto_shutdown(void)
{
bool auto_shutdown = true;
Error *local_err = NULL;
if (!current_machine) {
return auto_shutdown;
}
auto_shutdown = object_property_get_bool(OBJECT(current_machine),
"auto-shutdown",
&local_err);
/*
* local_err would be set if no such property exists - safe to ignore.
* Unlikely scenario as auto-shutdown is always defined for
* TYPE_REMOTE_MACHINE, and TYPE_VFU_OBJECT only works with
* TYPE_REMOTE_MACHINE
*/
if (local_err) {
auto_shutdown = true;
error_free(local_err);
}
return auto_shutdown;
}
static void vfu_object_set_socket(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
VfuObject *o = VFU_OBJECT(obj);
if (o->vfu_ctx) {
error_setg(errp, "vfu: Unable to set socket property - server busy");
return;
}
qapi_free_SocketAddress(o->socket);
o->socket = NULL;
visit_type_SocketAddress(v, name, &o->socket, errp);
if (o->socket->type != SOCKET_ADDRESS_TYPE_UNIX) {
error_setg(errp, "vfu: Unsupported socket type - %s",
SocketAddressType_str(o->socket->type));
qapi_free_SocketAddress(o->socket);
o->socket = NULL;
return;
}
trace_vfu_prop("socket", o->socket->u.q_unix.path);
vfu_object_init_ctx(o, errp);
}
static void vfu_object_set_device(Object *obj, const char *str, Error **errp)
{
VfuObject *o = VFU_OBJECT(obj);
if (o->vfu_ctx) {
error_setg(errp, "vfu: Unable to set device property - server busy");
return;
}
g_free(o->device);
o->device = g_strdup(str);
trace_vfu_prop("device", str);
vfu_object_init_ctx(o, errp);
}
static void vfu_object_ctx_run(void *opaque)
{
VfuObject *o = opaque;
const char *vfu_id;
char *vfu_path, *pci_dev_path;
int ret = -1;
while (ret != 0) {
ret = vfu_run_ctx(o->vfu_ctx);
if (ret < 0) {
if (errno == EINTR) {
continue;
} else if (errno == ENOTCONN) {
vfu_id = object_get_canonical_path_component(OBJECT(o));
vfu_path = object_get_canonical_path(OBJECT(o));
g_assert(o->pci_dev);
pci_dev_path = object_get_canonical_path(OBJECT(o->pci_dev));
/* o->device is a required property and is non-NULL here */
g_assert(o->device);
qapi_event_send_vfu_client_hangup(vfu_id, vfu_path,
o->device, pci_dev_path);
qemu_set_fd_handler(o->vfu_poll_fd, NULL, NULL, NULL);
o->vfu_poll_fd = -1;
object_unparent(OBJECT(o));
g_free(vfu_path);
g_free(pci_dev_path);
break;
} else {
VFU_OBJECT_ERROR(o, "vfu: Failed to run device %s - %s",
o->device, strerror(errno));
break;
}
}
}
}
static void vfu_object_attach_ctx(void *opaque)
{
VfuObject *o = opaque;
GPollFD pfds[1];
int ret;
qemu_set_fd_handler(o->vfu_poll_fd, NULL, NULL, NULL);
pfds[0].fd = o->vfu_poll_fd;
pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
retry_attach:
ret = vfu_attach_ctx(o->vfu_ctx);
if (ret < 0 && (errno == EAGAIN || errno == EWOULDBLOCK)) {
/**
* vfu_object_attach_ctx can block QEMU's main loop
* during attach - the monitor and other IO
* could be unresponsive during this time.
*/
(void)qemu_poll_ns(pfds, 1, 500 * (int64_t)SCALE_MS);
goto retry_attach;
} else if (ret < 0) {
VFU_OBJECT_ERROR(o, "vfu: Failed to attach device %s to context - %s",
o->device, strerror(errno));
return;
}
o->vfu_poll_fd = vfu_get_poll_fd(o->vfu_ctx);
if (o->vfu_poll_fd < 0) {
VFU_OBJECT_ERROR(o, "vfu: Failed to get poll fd %s", o->device);
return;
}
qemu_set_fd_handler(o->vfu_poll_fd, vfu_object_ctx_run, NULL, o);
}
static ssize_t vfu_object_cfg_access(vfu_ctx_t *vfu_ctx, char * const buf,
size_t count, loff_t offset,
const bool is_write)
{
VfuObject *o = vfu_get_private(vfu_ctx);
uint32_t pci_access_width = sizeof(uint32_t);
size_t bytes = count;
uint32_t val = 0;
char *ptr = buf;
int len;
/*
* Writes to the BAR registers would trigger an update to the
* global Memory and IO AddressSpaces. But the remote device
* never uses the global AddressSpaces, therefore overlapping
* memory regions are not a problem
*/
while (bytes > 0) {
len = (bytes > pci_access_width) ? pci_access_width : bytes;
if (is_write) {
val = ldn_le_p(ptr, len);
pci_host_config_write_common(o->pci_dev, offset,
pci_config_size(o->pci_dev),
val, len);
trace_vfu_cfg_write(offset, val);
} else {
val = pci_host_config_read_common(o->pci_dev, offset,
pci_config_size(o->pci_dev), len);
stn_le_p(ptr, len, val);
trace_vfu_cfg_read(offset, val);
}
offset += len;
ptr += len;
bytes -= len;
}
return count;
}
static void dma_register(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
{
VfuObject *o = vfu_get_private(vfu_ctx);
AddressSpace *dma_as = NULL;
MemoryRegion *subregion = NULL;
g_autofree char *name = NULL;
struct iovec *iov = &info->iova;
if (!info->vaddr) {
return;
}
name = g_strdup_printf("mem-%s-%"PRIx64"", o->device,
(uint64_t)info->vaddr);
subregion = g_new0(MemoryRegion, 1);
memory_region_init_ram_ptr(subregion, NULL, name,
iov->iov_len, info->vaddr);
dma_as = pci_device_iommu_address_space(o->pci_dev);
memory_region_add_subregion(dma_as->root, (hwaddr)iov->iov_base, subregion);
trace_vfu_dma_register((uint64_t)iov->iov_base, iov->iov_len);
}
static void dma_unregister(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
{
VfuObject *o = vfu_get_private(vfu_ctx);
AddressSpace *dma_as = NULL;
MemoryRegion *mr = NULL;
ram_addr_t offset;
mr = memory_region_from_host(info->vaddr, &offset);
if (!mr) {
return;
}
dma_as = pci_device_iommu_address_space(o->pci_dev);
memory_region_del_subregion(dma_as->root, mr);
object_unparent((OBJECT(mr)));
trace_vfu_dma_unregister((uint64_t)info->iova.iov_base);
}
static int vfu_object_mr_rw(MemoryRegion *mr, uint8_t *buf, hwaddr offset,
hwaddr size, const bool is_write)
{
uint8_t *ptr = buf;
bool release_lock = false;
uint8_t *ram_ptr = NULL;
MemTxResult result;
int access_size;
uint64_t val;
if (memory_access_is_direct(mr, is_write)) {
/**
* Some devices expose a PCI expansion ROM, which could be buffer
* based as compared to other regions which are primarily based on
* MemoryRegionOps. memory_region_find() would already check
* for buffer overflow, we don't need to repeat it here.
*/
ram_ptr = memory_region_get_ram_ptr(mr);
if (is_write) {
memcpy((ram_ptr + offset), buf, size);
} else {
memcpy(buf, (ram_ptr + offset), size);
}
return 0;
}
while (size) {
/**
* The read/write logic used below is similar to the ones in
* flatview_read/write_continue()
*/
release_lock = prepare_mmio_access(mr);
access_size = memory_access_size(mr, size, offset);
if (is_write) {
val = ldn_he_p(ptr, access_size);
result = memory_region_dispatch_write(mr, offset, val,
size_memop(access_size),
MEMTXATTRS_UNSPECIFIED);
} else {
result = memory_region_dispatch_read(mr, offset, &val,
size_memop(access_size),
MEMTXATTRS_UNSPECIFIED);
stn_he_p(ptr, access_size, val);
}
if (release_lock) {
bql_unlock();
release_lock = false;
}
if (result != MEMTX_OK) {
return -1;
}
size -= access_size;
ptr += access_size;
offset += access_size;
}
return 0;
}
static size_t vfu_object_bar_rw(PCIDevice *pci_dev, int pci_bar,
hwaddr bar_offset, char * const buf,
hwaddr len, const bool is_write)
{
MemoryRegionSection section = { 0 };
uint8_t *ptr = (uint8_t *)buf;
MemoryRegion *section_mr = NULL;
uint64_t section_size;
hwaddr section_offset;
hwaddr size = 0;
while (len) {
section = memory_region_find(pci_dev->io_regions[pci_bar].memory,
bar_offset, len);
if (!section.mr) {
warn_report("vfu: invalid address 0x%"PRIx64"", bar_offset);
return size;
}
section_mr = section.mr;
section_offset = section.offset_within_region;
section_size = int128_get64(section.size);
if (is_write && section_mr->readonly) {
warn_report("vfu: attempting to write to readonly region in "
"bar %d - [0x%"PRIx64" - 0x%"PRIx64"]",
pci_bar, bar_offset,
(bar_offset + section_size));
memory_region_unref(section_mr);
return size;
}
if (vfu_object_mr_rw(section_mr, ptr, section_offset,
section_size, is_write)) {
warn_report("vfu: failed to %s "
"[0x%"PRIx64" - 0x%"PRIx64"] in bar %d",
is_write ? "write to" : "read from", bar_offset,
(bar_offset + section_size), pci_bar);
memory_region_unref(section_mr);
return size;
}
size += section_size;
bar_offset += section_size;
ptr += section_size;
len -= section_size;
memory_region_unref(section_mr);
}
return size;
}
/**
* VFU_OBJECT_BAR_HANDLER - macro for defining handlers for PCI BARs.
*
* To create handler for BAR number 2, VFU_OBJECT_BAR_HANDLER(2) would
* define vfu_object_bar2_handler
*/
#define VFU_OBJECT_BAR_HANDLER(BAR_NO) \
static ssize_t vfu_object_bar##BAR_NO##_handler(vfu_ctx_t *vfu_ctx, \
char * const buf, size_t count, \
loff_t offset, const bool is_write) \
{ \
VfuObject *o = vfu_get_private(vfu_ctx); \
PCIDevice *pci_dev = o->pci_dev; \
\
return vfu_object_bar_rw(pci_dev, BAR_NO, offset, \
buf, count, is_write); \
} \
VFU_OBJECT_BAR_HANDLER(0)
VFU_OBJECT_BAR_HANDLER(1)
VFU_OBJECT_BAR_HANDLER(2)
VFU_OBJECT_BAR_HANDLER(3)
VFU_OBJECT_BAR_HANDLER(4)
VFU_OBJECT_BAR_HANDLER(5)
VFU_OBJECT_BAR_HANDLER(6)
static vfu_region_access_cb_t *vfu_object_bar_handlers[PCI_NUM_REGIONS] = {
&vfu_object_bar0_handler,
&vfu_object_bar1_handler,
&vfu_object_bar2_handler,
&vfu_object_bar3_handler,
&vfu_object_bar4_handler,
&vfu_object_bar5_handler,
&vfu_object_bar6_handler,
};
/**
* vfu_object_register_bars - Identify active BAR regions of pdev and setup
* callbacks to handle read/write accesses
*/
static void vfu_object_register_bars(vfu_ctx_t *vfu_ctx, PCIDevice *pdev)
{
int flags = VFU_REGION_FLAG_RW;
int i;
for (i = 0; i < PCI_NUM_REGIONS; i++) {
if (!pdev->io_regions[i].size) {
continue;
}
if ((i == VFU_PCI_DEV_ROM_REGION_IDX) ||
pdev->io_regions[i].memory->readonly) {
flags &= ~VFU_REGION_FLAG_WRITE;
}
vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX + i,
(size_t)pdev->io_regions[i].size,
vfu_object_bar_handlers[i],
flags, NULL, 0, -1, 0);
trace_vfu_bar_register(i, pdev->io_regions[i].addr,
pdev->io_regions[i].size);
}
}
static int vfu_object_map_irq(PCIDevice *pci_dev, int intx)
{
int pci_bdf = PCI_BUILD_BDF(pci_bus_num(pci_get_bus(pci_dev)),
pci_dev->devfn);
return pci_bdf;
}
static void vfu_object_set_irq(void *opaque, int pirq, int level)
{
PCIBus *pci_bus = opaque;
PCIDevice *pci_dev = NULL;
vfu_ctx_t *vfu_ctx = NULL;
int pci_bus_num, devfn;
if (level) {
pci_bus_num = PCI_BUS_NUM(pirq);
devfn = PCI_BDF_TO_DEVFN(pirq);
/*
* pci_find_device() performs at O(1) if the device is attached
* to the root PCI bus. Whereas, if the device is attached to a
* secondary PCI bus (such as when a root port is involved),
* finding the parent PCI bus could take O(n)
*/
pci_dev = pci_find_device(pci_bus, pci_bus_num, devfn);
vfu_ctx = pci_dev->irq_opaque;
g_assert(vfu_ctx);
vfu_irq_trigger(vfu_ctx, 0);
}
}
static MSIMessage vfu_object_msi_prepare_msg(PCIDevice *pci_dev,
unsigned int vector)
{
MSIMessage msg;
msg.address = 0;
msg.data = vector;
return msg;
}
static void vfu_object_msi_trigger(PCIDevice *pci_dev, MSIMessage msg)
{
vfu_ctx_t *vfu_ctx = pci_dev->irq_opaque;
vfu_irq_trigger(vfu_ctx, msg.data);
}
static void vfu_object_setup_msi_cbs(VfuObject *o)
{
o->default_msi_trigger = o->pci_dev->msi_trigger;
o->default_msi_prepare_message = o->pci_dev->msi_prepare_message;
o->default_msix_prepare_message = o->pci_dev->msix_prepare_message;
o->pci_dev->msi_trigger = vfu_object_msi_trigger;
o->pci_dev->msi_prepare_message = vfu_object_msi_prepare_msg;
o->pci_dev->msix_prepare_message = vfu_object_msi_prepare_msg;
}
static void vfu_object_restore_msi_cbs(VfuObject *o)
{
o->pci_dev->msi_trigger = o->default_msi_trigger;
o->pci_dev->msi_prepare_message = o->default_msi_prepare_message;
o->pci_dev->msix_prepare_message = o->default_msix_prepare_message;
}
static void vfu_msix_irq_state(vfu_ctx_t *vfu_ctx, uint32_t start,
uint32_t count, bool mask)
{
VfuObject *o = vfu_get_private(vfu_ctx);
uint32_t vector;
for (vector = start; vector < count; vector++) {
msix_set_mask(o->pci_dev, vector, mask);
}
}
static void vfu_msi_irq_state(vfu_ctx_t *vfu_ctx, uint32_t start,
uint32_t count, bool mask)
{
VfuObject *o = vfu_get_private(vfu_ctx);
Error *err = NULL;
uint32_t vector;
for (vector = start; vector < count; vector++) {
msi_set_mask(o->pci_dev, vector, mask, &err);
if (err) {
VFU_OBJECT_ERROR(o, "vfu: %s: %s", o->device,
error_get_pretty(err));
error_free(err);
err = NULL;
}
}
}
static int vfu_object_setup_irqs(VfuObject *o, PCIDevice *pci_dev)
{
vfu_ctx_t *vfu_ctx = o->vfu_ctx;
int ret;
ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_INTX_IRQ, 1);
if (ret < 0) {
return ret;
}
if (msix_nr_vectors_allocated(pci_dev)) {
ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_MSIX_IRQ,
msix_nr_vectors_allocated(pci_dev));
vfu_setup_irq_state_callback(vfu_ctx, VFU_DEV_MSIX_IRQ,
&vfu_msix_irq_state);
} else if (msi_nr_vectors_allocated(pci_dev)) {
ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_MSI_IRQ,
msi_nr_vectors_allocated(pci_dev));
vfu_setup_irq_state_callback(vfu_ctx, VFU_DEV_MSI_IRQ,
&vfu_msi_irq_state);
}
if (ret < 0) {
return ret;
}
vfu_object_setup_msi_cbs(o);
pci_dev->irq_opaque = vfu_ctx;
return 0;
}
void vfu_object_set_bus_irq(PCIBus *pci_bus)
{
int bus_num = pci_bus_num(pci_bus);
int max_bdf = PCI_BUILD_BDF(bus_num, PCI_DEVFN_MAX - 1);
pci_bus_irqs(pci_bus, vfu_object_set_irq, pci_bus, max_bdf);
pci_bus_map_irqs(pci_bus, vfu_object_map_irq);
}
static int vfu_object_device_reset(vfu_ctx_t *vfu_ctx, vfu_reset_type_t type)
{
VfuObject *o = vfu_get_private(vfu_ctx);
/* vfu_object_ctx_run() handles lost connection */
if (type == VFU_RESET_LOST_CONN) {
return 0;
}
device_cold_reset(DEVICE(o->pci_dev));
return 0;
}
/*
* TYPE_VFU_OBJECT depends on the availability of the 'socket' and 'device'
* properties. It also depends on devices instantiated in QEMU. These
* dependencies are not available during the instance_init phase of this
* object's life-cycle. As such, the server is initialized after the
* machine is setup. machine_init_done_notifier notifies TYPE_VFU_OBJECT
* when the machine is setup, and the dependencies are available.
*/
static void vfu_object_machine_done(Notifier *notifier, void *data)
{
VfuObject *o = container_of(notifier, VfuObject, machine_done);
Error *err = NULL;
vfu_object_init_ctx(o, &err);
if (err) {
error_propagate(&error_abort, err);
}
}
/**
* vfu_object_init_ctx: Create and initialize libvfio-user context. Add
* an unplug blocker for the associated PCI device. Setup a FD handler
* to process incoming messages in the context's socket.
*
* The socket and device properties are mandatory, and this function
* will not create the context without them - the setters for these
* properties should call this function when the property is set. The
* machine should also be ready when this function is invoked - it is
* because QEMU objects are initialized before devices, and the
* associated PCI device wouldn't be available at the object
* initialization time. Until these conditions are satisfied, this
* function would return early without performing any task.
*/
static void vfu_object_init_ctx(VfuObject *o, Error **errp)
{
DeviceState *dev = NULL;
vfu_pci_type_t pci_type = VFU_PCI_TYPE_CONVENTIONAL;
int ret;
if (o->vfu_ctx || !o->socket || !o->device ||
!phase_check(PHASE_MACHINE_READY)) {
return;
}
if (o->err) {
error_propagate(errp, o->err);
o->err = NULL;
return;
}
o->vfu_ctx = vfu_create_ctx(VFU_TRANS_SOCK, o->socket->u.q_unix.path,
LIBVFIO_USER_FLAG_ATTACH_NB,
o, VFU_DEV_TYPE_PCI);
if (o->vfu_ctx == NULL) {
error_setg(errp, "vfu: Failed to create context - %s", strerror(errno));
return;
}
dev = qdev_find_recursive(sysbus_get_default(), o->device);
if (dev == NULL) {
error_setg(errp, "vfu: Device %s not found", o->device);
goto fail;
}
if (!object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
error_setg(errp, "vfu: %s not a PCI device", o->device);
goto fail;
}
o->pci_dev = PCI_DEVICE(dev);
object_ref(OBJECT(o->pci_dev));
if (pci_is_express(o->pci_dev)) {
pci_type = VFU_PCI_TYPE_EXPRESS;
}
ret = vfu_pci_init(o->vfu_ctx, pci_type, PCI_HEADER_TYPE_NORMAL, 0);
if (ret < 0) {
error_setg(errp,
"vfu: Failed to attach PCI device %s to context - %s",
o->device, strerror(errno));
goto fail;
}
error_setg(&o->unplug_blocker,
"vfu: %s for %s must be deleted before unplugging",
TYPE_VFU_OBJECT, o->device);
qdev_add_unplug_blocker(DEVICE(o->pci_dev), o->unplug_blocker);
ret = vfu_setup_region(o->vfu_ctx, VFU_PCI_DEV_CFG_REGION_IDX,
pci_config_size(o->pci_dev), &vfu_object_cfg_access,
VFU_REGION_FLAG_RW | VFU_REGION_FLAG_ALWAYS_CB,
NULL, 0, -1, 0);
if (ret < 0) {
error_setg(errp,
"vfu: Failed to setup config space handlers for %s- %s",
o->device, strerror(errno));
goto fail;
}
ret = vfu_setup_device_dma(o->vfu_ctx, &dma_register, &dma_unregister);
if (ret < 0) {
error_setg(errp, "vfu: Failed to setup DMA handlers for %s",
o->device);
goto fail;
}
vfu_object_register_bars(o->vfu_ctx, o->pci_dev);
ret = vfu_object_setup_irqs(o, o->pci_dev);
if (ret < 0) {
error_setg(errp, "vfu: Failed to setup interrupts for %s",
o->device);
goto fail;
}
ret = vfu_setup_device_reset_cb(o->vfu_ctx, &vfu_object_device_reset);
if (ret < 0) {
error_setg(errp, "vfu: Failed to setup reset callback");
goto fail;
}
ret = vfu_realize_ctx(o->vfu_ctx);
if (ret < 0) {
error_setg(errp, "vfu: Failed to realize device %s- %s",
o->device, strerror(errno));
goto fail;
}
o->vfu_poll_fd = vfu_get_poll_fd(o->vfu_ctx);
if (o->vfu_poll_fd < 0) {
error_setg(errp, "vfu: Failed to get poll fd %s", o->device);
goto fail;
}
qemu_set_fd_handler(o->vfu_poll_fd, vfu_object_attach_ctx, NULL, o);
return;
fail:
vfu_destroy_ctx(o->vfu_ctx);
if (o->unplug_blocker && o->pci_dev) {
qdev_del_unplug_blocker(DEVICE(o->pci_dev), o->unplug_blocker);
error_free(o->unplug_blocker);
o->unplug_blocker = NULL;
}
if (o->pci_dev) {
vfu_object_restore_msi_cbs(o);
o->pci_dev->irq_opaque = NULL;
object_unref(OBJECT(o->pci_dev));
o->pci_dev = NULL;
}
o->vfu_ctx = NULL;
}
static void vfu_object_init(Object *obj)
{
VfuObjectClass *k = VFU_OBJECT_GET_CLASS(obj);
VfuObject *o = VFU_OBJECT(obj);
k->nr_devs++;
if (!object_dynamic_cast(OBJECT(current_machine), TYPE_REMOTE_MACHINE)) {
error_setg(&o->err, "vfu: %s only compatible with %s machine",
TYPE_VFU_OBJECT, TYPE_REMOTE_MACHINE);
return;
}
if (!phase_check(PHASE_MACHINE_READY)) {
o->machine_done.notify = vfu_object_machine_done;
qemu_add_machine_init_done_notifier(&o->machine_done);
}
o->vfu_poll_fd = -1;
}
static void vfu_object_finalize(Object *obj)
{
VfuObjectClass *k = VFU_OBJECT_GET_CLASS(obj);
VfuObject *o = VFU_OBJECT(obj);
k->nr_devs--;
qapi_free_SocketAddress(o->socket);
o->socket = NULL;
if (o->vfu_poll_fd != -1) {
qemu_set_fd_handler(o->vfu_poll_fd, NULL, NULL, NULL);
o->vfu_poll_fd = -1;
}
if (o->vfu_ctx) {
vfu_destroy_ctx(o->vfu_ctx);
o->vfu_ctx = NULL;
}
g_free(o->device);
o->device = NULL;
if (o->unplug_blocker && o->pci_dev) {
qdev_del_unplug_blocker(DEVICE(o->pci_dev), o->unplug_blocker);
error_free(o->unplug_blocker);
o->unplug_blocker = NULL;
}
if (o->pci_dev) {
vfu_object_restore_msi_cbs(o);
o->pci_dev->irq_opaque = NULL;
object_unref(OBJECT(o->pci_dev));
o->pci_dev = NULL;
}
if (!k->nr_devs && vfu_object_auto_shutdown()) {
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
}
if (o->machine_done.notify) {
qemu_remove_machine_init_done_notifier(&o->machine_done);
o->machine_done.notify = NULL;
}
}
static void vfu_object_class_init(ObjectClass *klass, void *data)
{
VfuObjectClass *k = VFU_OBJECT_CLASS(klass);
k->nr_devs = 0;
object_class_property_add(klass, "socket", "SocketAddress", NULL,
vfu_object_set_socket, NULL, NULL);
object_class_property_set_description(klass, "socket",
"SocketAddress "
"(ex: type=unix,path=/tmp/sock). "
"Only UNIX is presently supported");
object_class_property_add_str(klass, "device", NULL,
vfu_object_set_device);
object_class_property_set_description(klass, "device",
"device ID - only PCI devices "
"are presently supported");
}
static const TypeInfo vfu_object_info = {
.name = TYPE_VFU_OBJECT,
.parent = TYPE_OBJECT,
.instance_size = sizeof(VfuObject),
.instance_init = vfu_object_init,
.instance_finalize = vfu_object_finalize,
.class_size = sizeof(VfuObjectClass),
.class_init = vfu_object_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_USER_CREATABLE },
{ }
}
};
static void vfu_register_types(void)
{
type_register_static(&vfu_object_info);
}
type_init(vfu_register_types);