| /* |
| * Copyright (c) 2003-2004 Fabrice Bellard |
| * Copyright (c) 2019, 2024 Red Hat, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu/error-report.h" |
| #include "qemu/cutils.h" |
| #include "qemu/units.h" |
| #include "qemu/datadir.h" |
| #include "qapi/error.h" |
| #include "sysemu/numa.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/xen.h" |
| #include "trace.h" |
| |
| #include "hw/i386/x86.h" |
| #include "target/i386/cpu.h" |
| #include "hw/rtc/mc146818rtc.h" |
| #include "target/i386/sev.h" |
| |
| #include "hw/acpi/cpu_hotplug.h" |
| #include "hw/irq.h" |
| #include "hw/loader.h" |
| #include "multiboot.h" |
| #include "elf.h" |
| #include "standard-headers/asm-x86/bootparam.h" |
| #include CONFIG_DEVICES |
| #include "kvm/kvm_i386.h" |
| |
| #ifdef CONFIG_XEN_EMU |
| #include "hw/xen/xen.h" |
| #include "hw/i386/kvm/xen_evtchn.h" |
| #endif |
| |
| /* Physical Address of PVH entry point read from kernel ELF NOTE */ |
| static size_t pvh_start_addr; |
| |
| static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) |
| { |
| Object *cpu = object_new(MACHINE(x86ms)->cpu_type); |
| |
| if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { |
| goto out; |
| } |
| qdev_realize(DEVICE(cpu), NULL, errp); |
| |
| out: |
| object_unref(cpu); |
| } |
| |
| void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) |
| { |
| int i; |
| const CPUArchIdList *possible_cpus; |
| MachineState *ms = MACHINE(x86ms); |
| MachineClass *mc = MACHINE_GET_CLASS(x86ms); |
| |
| x86_cpu_set_default_version(default_cpu_version); |
| |
| /* |
| * Calculates the limit to CPU APIC ID values |
| * |
| * Limit for the APIC ID value, so that all |
| * CPU APIC IDs are < x86ms->apic_id_limit. |
| * |
| * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). |
| */ |
| x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, |
| ms->smp.max_cpus - 1) + 1; |
| |
| /* |
| * Can we support APIC ID 255 or higher? With KVM, that requires |
| * both in-kernel lapic and X2APIC userspace API. |
| * |
| * kvm_enabled() must go first to ensure that kvm_* references are |
| * not emitted for the linker to consume (kvm_enabled() is |
| * a literal `0` in configurations where kvm_* aren't defined) |
| */ |
| if (kvm_enabled() && x86ms->apic_id_limit > 255 && |
| kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) { |
| error_report("current -smp configuration requires kernel " |
| "irqchip and X2APIC API support."); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (kvm_enabled()) { |
| kvm_set_max_apic_id(x86ms->apic_id_limit); |
| } |
| |
| if (!kvm_irqchip_in_kernel()) { |
| apic_set_max_apic_id(x86ms->apic_id_limit); |
| } |
| |
| possible_cpus = mc->possible_cpu_arch_ids(ms); |
| for (i = 0; i < ms->smp.cpus; i++) { |
| x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); |
| } |
| } |
| |
| void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count) |
| { |
| MC146818RtcState *rtc = MC146818_RTC(s); |
| |
| if (cpus_count > 0xff) { |
| /* |
| * If the number of CPUs can't be represented in 8 bits, the |
| * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just |
| * to make old BIOSes fail more predictably. |
| */ |
| mc146818rtc_set_cmos_data(rtc, 0x5f, 0); |
| } else { |
| mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1); |
| } |
| } |
| |
| static int x86_apic_cmp(const void *a, const void *b) |
| { |
| CPUArchId *apic_a = (CPUArchId *)a; |
| CPUArchId *apic_b = (CPUArchId *)b; |
| |
| return apic_a->arch_id - apic_b->arch_id; |
| } |
| |
| /* |
| * returns pointer to CPUArchId descriptor that matches CPU's apic_id |
| * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no |
| * entry corresponding to CPU's apic_id returns NULL. |
| */ |
| static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) |
| { |
| CPUArchId apic_id, *found_cpu; |
| |
| apic_id.arch_id = id; |
| found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, |
| ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), |
| x86_apic_cmp); |
| if (found_cpu && idx) { |
| *idx = found_cpu - ms->possible_cpus->cpus; |
| } |
| return found_cpu; |
| } |
| |
| void x86_cpu_plug(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| CPUArchId *found_cpu; |
| Error *local_err = NULL; |
| X86CPU *cpu = X86_CPU(dev); |
| X86MachineState *x86ms = X86_MACHINE(hotplug_dev); |
| |
| if (x86ms->acpi_dev) { |
| hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| } |
| |
| /* increment the number of CPUs */ |
| x86ms->boot_cpus++; |
| if (x86ms->rtc) { |
| x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); |
| } |
| if (x86ms->fw_cfg) { |
| fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); |
| } |
| |
| found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); |
| found_cpu->cpu = CPU(dev); |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| int idx = -1; |
| X86CPU *cpu = X86_CPU(dev); |
| X86MachineState *x86ms = X86_MACHINE(hotplug_dev); |
| |
| if (!x86ms->acpi_dev) { |
| error_setg(errp, "CPU hot unplug not supported without ACPI"); |
| return; |
| } |
| |
| x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); |
| assert(idx != -1); |
| if (idx == 0) { |
| error_setg(errp, "Boot CPU is unpluggable"); |
| return; |
| } |
| |
| hotplug_handler_unplug_request(x86ms->acpi_dev, dev, |
| errp); |
| } |
| |
| void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| CPUArchId *found_cpu; |
| Error *local_err = NULL; |
| X86CPU *cpu = X86_CPU(dev); |
| X86MachineState *x86ms = X86_MACHINE(hotplug_dev); |
| |
| hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); |
| found_cpu->cpu = NULL; |
| qdev_unrealize(dev); |
| |
| /* decrement the number of CPUs */ |
| x86ms->boot_cpus--; |
| /* Update the number of CPUs in CMOS */ |
| x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); |
| fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| int idx; |
| CPUState *cs; |
| CPUArchId *cpu_slot; |
| X86CPUTopoIDs topo_ids; |
| X86CPU *cpu = X86_CPU(dev); |
| CPUX86State *env = &cpu->env; |
| MachineState *ms = MACHINE(hotplug_dev); |
| X86MachineState *x86ms = X86_MACHINE(hotplug_dev); |
| unsigned int smp_cores = ms->smp.cores; |
| unsigned int smp_threads = ms->smp.threads; |
| X86CPUTopoInfo topo_info; |
| |
| if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { |
| error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", |
| ms->cpu_type); |
| return; |
| } |
| |
| if (x86ms->acpi_dev) { |
| Error *local_err = NULL; |
| |
| hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, |
| &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| } |
| |
| init_topo_info(&topo_info, x86ms); |
| |
| if (ms->smp.modules > 1) { |
| env->nr_modules = ms->smp.modules; |
| set_bit(CPU_TOPO_LEVEL_MODULE, env->avail_cpu_topo); |
| } |
| |
| if (ms->smp.dies > 1) { |
| env->nr_dies = ms->smp.dies; |
| set_bit(CPU_TOPO_LEVEL_DIE, env->avail_cpu_topo); |
| } |
| |
| /* |
| * If APIC ID is not set, |
| * set it based on socket/die/module/core/thread properties. |
| */ |
| if (cpu->apic_id == UNASSIGNED_APIC_ID) { |
| /* |
| * die-id was optional in QEMU 4.0 and older, so keep it optional |
| * if there's only one die per socket. |
| */ |
| if (cpu->die_id < 0 && ms->smp.dies == 1) { |
| cpu->die_id = 0; |
| } |
| |
| if (cpu->socket_id < 0) { |
| error_setg(errp, "CPU socket-id is not set"); |
| return; |
| } else if (cpu->socket_id > ms->smp.sockets - 1) { |
| error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", |
| cpu->socket_id, ms->smp.sockets - 1); |
| return; |
| } |
| if (cpu->die_id < 0) { |
| error_setg(errp, "CPU die-id is not set"); |
| return; |
| } else if (cpu->die_id > ms->smp.dies - 1) { |
| error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", |
| cpu->die_id, ms->smp.dies - 1); |
| return; |
| } |
| if (cpu->core_id < 0) { |
| error_setg(errp, "CPU core-id is not set"); |
| return; |
| } else if (cpu->core_id > (smp_cores - 1)) { |
| error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", |
| cpu->core_id, smp_cores - 1); |
| return; |
| } |
| if (cpu->thread_id < 0) { |
| error_setg(errp, "CPU thread-id is not set"); |
| return; |
| } else if (cpu->thread_id > (smp_threads - 1)) { |
| error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", |
| cpu->thread_id, smp_threads - 1); |
| return; |
| } |
| |
| topo_ids.pkg_id = cpu->socket_id; |
| topo_ids.die_id = cpu->die_id; |
| topo_ids.core_id = cpu->core_id; |
| topo_ids.smt_id = cpu->thread_id; |
| |
| /* |
| * TODO: This is the temporary initialization for topo_ids.module_id to |
| * avoid "maybe-uninitialized" compilation errors. Will remove when |
| * X86CPU supports module_id. |
| */ |
| topo_ids.module_id = 0; |
| |
| cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); |
| } |
| |
| cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); |
| if (!cpu_slot) { |
| x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); |
| |
| error_setg(errp, |
| "Invalid CPU [socket: %u, die: %u, module: %u, core: %u, thread: %u]" |
| " with APIC ID %" PRIu32 ", valid index range 0:%d", |
| topo_ids.pkg_id, topo_ids.die_id, topo_ids.module_id, |
| topo_ids.core_id, topo_ids.smt_id, cpu->apic_id, |
| ms->possible_cpus->len - 1); |
| return; |
| } |
| |
| if (cpu_slot->cpu) { |
| error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", |
| idx, cpu->apic_id); |
| return; |
| } |
| |
| /* if 'address' properties socket-id/core-id/thread-id are not set, set them |
| * so that machine_query_hotpluggable_cpus would show correct values |
| */ |
| /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() |
| * once -smp refactoring is complete and there will be CPU private |
| * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ |
| x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); |
| if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { |
| error_setg(errp, "property socket-id: %u doesn't match set apic-id:" |
| " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, |
| topo_ids.pkg_id); |
| return; |
| } |
| cpu->socket_id = topo_ids.pkg_id; |
| |
| if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { |
| error_setg(errp, "property die-id: %u doesn't match set apic-id:" |
| " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); |
| return; |
| } |
| cpu->die_id = topo_ids.die_id; |
| |
| if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { |
| error_setg(errp, "property core-id: %u doesn't match set apic-id:" |
| " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, |
| topo_ids.core_id); |
| return; |
| } |
| cpu->core_id = topo_ids.core_id; |
| |
| if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { |
| error_setg(errp, "property thread-id: %u doesn't match set apic-id:" |
| " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, |
| topo_ids.smt_id); |
| return; |
| } |
| cpu->thread_id = topo_ids.smt_id; |
| |
| /* |
| * kvm_enabled() must go first to ensure that kvm_* references are |
| * not emitted for the linker to consume (kvm_enabled() is |
| * a literal `0` in configurations where kvm_* aren't defined) |
| */ |
| if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && |
| !kvm_hv_vpindex_settable()) { |
| error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); |
| return; |
| } |
| |
| cs = CPU(cpu); |
| cs->cpu_index = idx; |
| |
| numa_cpu_pre_plug(cpu_slot, dev, errp); |
| } |
| |
| static long get_file_size(FILE *f) |
| { |
| long where, size; |
| |
| /* XXX: on Unix systems, using fstat() probably makes more sense */ |
| |
| where = ftell(f); |
| fseek(f, 0, SEEK_END); |
| size = ftell(f); |
| fseek(f, where, SEEK_SET); |
| |
| return size; |
| } |
| |
| void gsi_handler(void *opaque, int n, int level) |
| { |
| GSIState *s = opaque; |
| |
| trace_x86_gsi_interrupt(n, level); |
| switch (n) { |
| case 0 ... ISA_NUM_IRQS - 1: |
| if (s->i8259_irq[n]) { |
| /* Under KVM, Kernel will forward to both PIC and IOAPIC */ |
| qemu_set_irq(s->i8259_irq[n], level); |
| } |
| /* fall through */ |
| case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: |
| #ifdef CONFIG_XEN_EMU |
| /* |
| * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC |
| * routing actually works properly under Xen). And then to |
| * *either* the PIRQ handling or the I/OAPIC depending on |
| * whether the former wants it. |
| */ |
| if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) { |
| break; |
| } |
| #endif |
| qemu_set_irq(s->ioapic_irq[n], level); |
| break; |
| case IO_APIC_SECONDARY_IRQBASE |
| ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: |
| qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); |
| break; |
| } |
| } |
| |
| void ioapic_init_gsi(GSIState *gsi_state, Object *parent) |
| { |
| DeviceState *dev; |
| SysBusDevice *d; |
| unsigned int i; |
| |
| assert(parent); |
| if (kvm_ioapic_in_kernel()) { |
| dev = qdev_new(TYPE_KVM_IOAPIC); |
| } else { |
| dev = qdev_new(TYPE_IOAPIC); |
| } |
| object_property_add_child(parent, "ioapic", OBJECT(dev)); |
| d = SYS_BUS_DEVICE(dev); |
| sysbus_realize_and_unref(d, &error_fatal); |
| sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); |
| |
| for (i = 0; i < IOAPIC_NUM_PINS; i++) { |
| gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); |
| } |
| } |
| |
| DeviceState *ioapic_init_secondary(GSIState *gsi_state) |
| { |
| DeviceState *dev; |
| SysBusDevice *d; |
| unsigned int i; |
| |
| dev = qdev_new(TYPE_IOAPIC); |
| d = SYS_BUS_DEVICE(dev); |
| sysbus_realize_and_unref(d, &error_fatal); |
| sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); |
| |
| for (i = 0; i < IOAPIC_NUM_PINS; i++) { |
| gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); |
| } |
| return dev; |
| } |
| |
| /* |
| * The entry point into the kernel for PVH boot is different from |
| * the native entry point. The PVH entry is defined by the x86/HVM |
| * direct boot ABI and is available in an ELFNOTE in the kernel binary. |
| * |
| * This function is passed to load_elf() when it is called from |
| * load_elfboot() which then additionally checks for an ELF Note of |
| * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to |
| * parse the PVH entry address from the ELF Note. |
| * |
| * Due to trickery in elf_opts.h, load_elf() is actually available as |
| * load_elf32() or load_elf64() and this routine needs to be able |
| * to deal with being called as 32 or 64 bit. |
| * |
| * The address of the PVH entry point is saved to the 'pvh_start_addr' |
| * global variable. (although the entry point is 32-bit, the kernel |
| * binary can be either 32-bit or 64-bit). |
| */ |
| static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) |
| { |
| size_t *elf_note_data_addr; |
| |
| /* Check if ELF Note header passed in is valid */ |
| if (arg1 == NULL) { |
| return 0; |
| } |
| |
| if (is64) { |
| struct elf64_note *nhdr64 = (struct elf64_note *)arg1; |
| uint64_t nhdr_size64 = sizeof(struct elf64_note); |
| uint64_t phdr_align = *(uint64_t *)arg2; |
| uint64_t nhdr_namesz = nhdr64->n_namesz; |
| |
| elf_note_data_addr = |
| ((void *)nhdr64) + nhdr_size64 + |
| QEMU_ALIGN_UP(nhdr_namesz, phdr_align); |
| |
| pvh_start_addr = *elf_note_data_addr; |
| } else { |
| struct elf32_note *nhdr32 = (struct elf32_note *)arg1; |
| uint32_t nhdr_size32 = sizeof(struct elf32_note); |
| uint32_t phdr_align = *(uint32_t *)arg2; |
| uint32_t nhdr_namesz = nhdr32->n_namesz; |
| |
| elf_note_data_addr = |
| ((void *)nhdr32) + nhdr_size32 + |
| QEMU_ALIGN_UP(nhdr_namesz, phdr_align); |
| |
| pvh_start_addr = *(uint32_t *)elf_note_data_addr; |
| } |
| |
| return pvh_start_addr; |
| } |
| |
| static bool load_elfboot(const char *kernel_filename, |
| int kernel_file_size, |
| uint8_t *header, |
| size_t pvh_xen_start_addr, |
| FWCfgState *fw_cfg) |
| { |
| uint32_t flags = 0; |
| uint32_t mh_load_addr = 0; |
| uint32_t elf_kernel_size = 0; |
| uint64_t elf_entry; |
| uint64_t elf_low, elf_high; |
| int kernel_size; |
| |
| if (ldl_p(header) != 0x464c457f) { |
| return false; /* no elfboot */ |
| } |
| |
| bool elf_is64 = header[EI_CLASS] == ELFCLASS64; |
| flags = elf_is64 ? |
| ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; |
| |
| if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ |
| error_report("elfboot unsupported flags = %x", flags); |
| exit(1); |
| } |
| |
| uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; |
| kernel_size = load_elf(kernel_filename, read_pvh_start_addr, |
| NULL, &elf_note_type, &elf_entry, |
| &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, |
| 0, 0); |
| |
| if (kernel_size < 0) { |
| error_report("Error while loading elf kernel"); |
| exit(1); |
| } |
| mh_load_addr = elf_low; |
| elf_kernel_size = elf_high - elf_low; |
| |
| if (pvh_start_addr == 0) { |
| error_report("Error loading uncompressed kernel without PVH ELF Note"); |
| exit(1); |
| } |
| fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); |
| |
| return true; |
| } |
| |
| void x86_load_linux(X86MachineState *x86ms, |
| FWCfgState *fw_cfg, |
| int acpi_data_size, |
| bool pvh_enabled) |
| { |
| bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; |
| uint16_t protocol; |
| int setup_size, kernel_size, cmdline_size; |
| int dtb_size, setup_data_offset; |
| uint32_t initrd_max; |
| uint8_t header[8192], *setup, *kernel; |
| hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; |
| FILE *f; |
| char *vmode; |
| MachineState *machine = MACHINE(x86ms); |
| struct setup_data *setup_data; |
| const char *kernel_filename = machine->kernel_filename; |
| const char *initrd_filename = machine->initrd_filename; |
| const char *dtb_filename = machine->dtb; |
| const char *kernel_cmdline = machine->kernel_cmdline; |
| SevKernelLoaderContext sev_load_ctx = {}; |
| |
| /* Align to 16 bytes as a paranoia measure */ |
| cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; |
| |
| /* load the kernel header */ |
| f = fopen(kernel_filename, "rb"); |
| if (!f) { |
| fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", |
| kernel_filename, strerror(errno)); |
| exit(1); |
| } |
| |
| kernel_size = get_file_size(f); |
| if (!kernel_size || |
| fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != |
| MIN(ARRAY_SIZE(header), kernel_size)) { |
| fprintf(stderr, "qemu: could not load kernel '%s': %s\n", |
| kernel_filename, strerror(errno)); |
| exit(1); |
| } |
| |
| /* kernel protocol version */ |
| if (ldl_p(header + 0x202) == 0x53726448) { |
| protocol = lduw_p(header + 0x206); |
| } else { |
| /* |
| * This could be a multiboot kernel. If it is, let's stop treating it |
| * like a Linux kernel. |
| * Note: some multiboot images could be in the ELF format (the same of |
| * PVH), so we try multiboot first since we check the multiboot magic |
| * header before to load it. |
| */ |
| if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, |
| kernel_cmdline, kernel_size, header)) { |
| return; |
| } |
| /* |
| * Check if the file is an uncompressed kernel file (ELF) and load it, |
| * saving the PVH entry point used by the x86/HVM direct boot ABI. |
| * If load_elfboot() is successful, populate the fw_cfg info. |
| */ |
| if (pvh_enabled && |
| load_elfboot(kernel_filename, kernel_size, |
| header, pvh_start_addr, fw_cfg)) { |
| fclose(f); |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, |
| strlen(kernel_cmdline) + 1); |
| fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, |
| header, sizeof(header)); |
| |
| /* load initrd */ |
| if (initrd_filename) { |
| GMappedFile *mapped_file; |
| gsize initrd_size; |
| gchar *initrd_data; |
| GError *gerr = NULL; |
| |
| mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); |
| if (!mapped_file) { |
| fprintf(stderr, "qemu: error reading initrd %s: %s\n", |
| initrd_filename, gerr->message); |
| exit(1); |
| } |
| x86ms->initrd_mapped_file = mapped_file; |
| |
| initrd_data = g_mapped_file_get_contents(mapped_file); |
| initrd_size = g_mapped_file_get_length(mapped_file); |
| initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; |
| if (initrd_size >= initrd_max) { |
| fprintf(stderr, "qemu: initrd is too large, cannot support." |
| "(max: %"PRIu32", need %"PRId64")\n", |
| initrd_max, (uint64_t)initrd_size); |
| exit(1); |
| } |
| |
| initrd_addr = (initrd_max - initrd_size) & ~4095; |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, |
| initrd_size); |
| } |
| |
| option_rom[nb_option_roms].bootindex = 0; |
| option_rom[nb_option_roms].name = "pvh.bin"; |
| nb_option_roms++; |
| |
| return; |
| } |
| protocol = 0; |
| } |
| |
| if (protocol < 0x200 || !(header[0x211] & 0x01)) { |
| /* Low kernel */ |
| real_addr = 0x90000; |
| cmdline_addr = 0x9a000 - cmdline_size; |
| prot_addr = 0x10000; |
| } else if (protocol < 0x202) { |
| /* High but ancient kernel */ |
| real_addr = 0x90000; |
| cmdline_addr = 0x9a000 - cmdline_size; |
| prot_addr = 0x100000; |
| } else { |
| /* High and recent kernel */ |
| real_addr = 0x10000; |
| cmdline_addr = 0x20000; |
| prot_addr = 0x100000; |
| } |
| |
| /* highest address for loading the initrd */ |
| if (protocol >= 0x20c && |
| lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { |
| /* |
| * Linux has supported initrd up to 4 GB for a very long time (2007, |
| * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), |
| * though it only sets initrd_max to 2 GB to "work around bootloader |
| * bugs". Luckily, QEMU firmware(which does something like bootloader) |
| * has supported this. |
| * |
| * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can |
| * be loaded into any address. |
| * |
| * In addition, initrd_max is uint32_t simply because QEMU doesn't |
| * support the 64-bit boot protocol (specifically the ext_ramdisk_image |
| * field). |
| * |
| * Therefore here just limit initrd_max to UINT32_MAX simply as well. |
| */ |
| initrd_max = UINT32_MAX; |
| } else if (protocol >= 0x203) { |
| initrd_max = ldl_p(header + 0x22c); |
| } else { |
| initrd_max = 0x37ffffff; |
| } |
| |
| if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { |
| initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; |
| } |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); |
| fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); |
| sev_load_ctx.cmdline_data = (char *)kernel_cmdline; |
| sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; |
| |
| if (protocol >= 0x202) { |
| stl_p(header + 0x228, cmdline_addr); |
| } else { |
| stw_p(header + 0x20, 0xA33F); |
| stw_p(header + 0x22, cmdline_addr - real_addr); |
| } |
| |
| /* handle vga= parameter */ |
| vmode = strstr(kernel_cmdline, "vga="); |
| if (vmode) { |
| unsigned int video_mode; |
| const char *end; |
| int ret; |
| /* skip "vga=" */ |
| vmode += 4; |
| if (!strncmp(vmode, "normal", 6)) { |
| video_mode = 0xffff; |
| } else if (!strncmp(vmode, "ext", 3)) { |
| video_mode = 0xfffe; |
| } else if (!strncmp(vmode, "ask", 3)) { |
| video_mode = 0xfffd; |
| } else { |
| ret = qemu_strtoui(vmode, &end, 0, &video_mode); |
| if (ret != 0 || (*end && *end != ' ')) { |
| fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); |
| exit(1); |
| } |
| } |
| stw_p(header + 0x1fa, video_mode); |
| } |
| |
| /* loader type */ |
| /* |
| * High nybble = B reserved for QEMU; low nybble is revision number. |
| * If this code is substantially changed, you may want to consider |
| * incrementing the revision. |
| */ |
| if (protocol >= 0x200) { |
| header[0x210] = 0xB0; |
| } |
| /* heap */ |
| if (protocol >= 0x201) { |
| header[0x211] |= 0x80; /* CAN_USE_HEAP */ |
| stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); |
| } |
| |
| /* load initrd */ |
| if (initrd_filename) { |
| GMappedFile *mapped_file; |
| gsize initrd_size; |
| gchar *initrd_data; |
| GError *gerr = NULL; |
| |
| if (protocol < 0x200) { |
| fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); |
| exit(1); |
| } |
| |
| mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); |
| if (!mapped_file) { |
| fprintf(stderr, "qemu: error reading initrd %s: %s\n", |
| initrd_filename, gerr->message); |
| exit(1); |
| } |
| x86ms->initrd_mapped_file = mapped_file; |
| |
| initrd_data = g_mapped_file_get_contents(mapped_file); |
| initrd_size = g_mapped_file_get_length(mapped_file); |
| if (initrd_size >= initrd_max) { |
| fprintf(stderr, "qemu: initrd is too large, cannot support." |
| "(max: %"PRIu32", need %"PRId64")\n", |
| initrd_max, (uint64_t)initrd_size); |
| exit(1); |
| } |
| |
| initrd_addr = (initrd_max - initrd_size) & ~4095; |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); |
| sev_load_ctx.initrd_data = initrd_data; |
| sev_load_ctx.initrd_size = initrd_size; |
| |
| stl_p(header + 0x218, initrd_addr); |
| stl_p(header + 0x21c, initrd_size); |
| } |
| |
| /* load kernel and setup */ |
| setup_size = header[0x1f1]; |
| if (setup_size == 0) { |
| setup_size = 4; |
| } |
| setup_size = (setup_size + 1) * 512; |
| if (setup_size > kernel_size) { |
| fprintf(stderr, "qemu: invalid kernel header\n"); |
| exit(1); |
| } |
| kernel_size -= setup_size; |
| |
| setup = g_malloc(setup_size); |
| kernel = g_malloc(kernel_size); |
| fseek(f, 0, SEEK_SET); |
| if (fread(setup, 1, setup_size, f) != setup_size) { |
| fprintf(stderr, "fread() failed\n"); |
| exit(1); |
| } |
| if (fread(kernel, 1, kernel_size, f) != kernel_size) { |
| fprintf(stderr, "fread() failed\n"); |
| exit(1); |
| } |
| fclose(f); |
| |
| /* append dtb to kernel */ |
| if (dtb_filename) { |
| if (protocol < 0x209) { |
| fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); |
| exit(1); |
| } |
| |
| dtb_size = get_image_size(dtb_filename); |
| if (dtb_size <= 0) { |
| fprintf(stderr, "qemu: error reading dtb %s: %s\n", |
| dtb_filename, strerror(errno)); |
| exit(1); |
| } |
| |
| setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); |
| kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; |
| kernel = g_realloc(kernel, kernel_size); |
| |
| stq_p(header + 0x250, prot_addr + setup_data_offset); |
| |
| setup_data = (struct setup_data *)(kernel + setup_data_offset); |
| setup_data->next = 0; |
| setup_data->type = cpu_to_le32(SETUP_DTB); |
| setup_data->len = cpu_to_le32(dtb_size); |
| |
| load_image_size(dtb_filename, setup_data->data, dtb_size); |
| } |
| |
| /* |
| * If we're starting an encrypted VM, it will be OVMF based, which uses the |
| * efi stub for booting and doesn't require any values to be placed in the |
| * kernel header. We therefore don't update the header so the hash of the |
| * kernel on the other side of the fw_cfg interface matches the hash of the |
| * file the user passed in. |
| */ |
| if (!sev_enabled()) { |
| memcpy(setup, header, MIN(sizeof(header), setup_size)); |
| } |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); |
| sev_load_ctx.kernel_data = (char *)kernel; |
| sev_load_ctx.kernel_size = kernel_size; |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); |
| sev_load_ctx.setup_data = (char *)setup; |
| sev_load_ctx.setup_size = setup_size; |
| |
| if (sev_enabled()) { |
| sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); |
| } |
| |
| option_rom[nb_option_roms].bootindex = 0; |
| option_rom[nb_option_roms].name = "linuxboot.bin"; |
| if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { |
| option_rom[nb_option_roms].name = "linuxboot_dma.bin"; |
| } |
| nb_option_roms++; |
| } |
| |
| void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory, |
| MemoryRegion *bios, bool read_only) |
| { |
| uint64_t bios_size = memory_region_size(bios); |
| uint64_t isa_bios_size = MIN(bios_size, 128 * KiB); |
| |
| memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, |
| bios_size - isa_bios_size, isa_bios_size); |
| memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size, |
| isa_bios, 1); |
| memory_region_set_readonly(isa_bios, read_only); |
| } |
| |
| void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware, |
| MemoryRegion *rom_memory, bool isapc_ram_fw) |
| { |
| const char *bios_name; |
| char *filename; |
| int bios_size; |
| ssize_t ret; |
| |
| /* BIOS load */ |
| bios_name = MACHINE(x86ms)->firmware ?: default_firmware; |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); |
| if (filename) { |
| bios_size = get_image_size(filename); |
| } else { |
| bios_size = -1; |
| } |
| if (bios_size <= 0 || |
| (bios_size % 65536) != 0) { |
| goto bios_error; |
| } |
| memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", bios_size, |
| &error_fatal); |
| if (sev_enabled()) { |
| /* |
| * The concept of a "reset" simply doesn't exist for |
| * confidential computing guests, we have to destroy and |
| * re-launch them instead. So there is no need to register |
| * the firmware as rom to properly re-initialize on reset. |
| * Just go for a straight file load instead. |
| */ |
| void *ptr = memory_region_get_ram_ptr(&x86ms->bios); |
| load_image_size(filename, ptr, bios_size); |
| x86_firmware_configure(ptr, bios_size); |
| } else { |
| memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw); |
| ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); |
| if (ret != 0) { |
| goto bios_error; |
| } |
| } |
| g_free(filename); |
| |
| /* map the last 128KB of the BIOS in ISA space */ |
| x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios, |
| !isapc_ram_fw); |
| |
| /* map all the bios at the top of memory */ |
| memory_region_add_subregion(rom_memory, |
| (uint32_t)(-bios_size), |
| &x86ms->bios); |
| return; |
| |
| bios_error: |
| fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); |
| exit(1); |
| } |