| /* |
| * QEMU Plugin API |
| * |
| * This provides the API that is available to the plugins to interact |
| * with QEMU. We have to be careful not to expose internal details of |
| * how QEMU works so we abstract out things like translation and |
| * instructions to anonymous data types: |
| * |
| * qemu_plugin_tb |
| * qemu_plugin_insn |
| * qemu_plugin_register |
| * |
| * Which can then be passed back into the API to do additional things. |
| * As such all the public functions in here are exported in |
| * qemu-plugin.h. |
| * |
| * The general life-cycle of a plugin is: |
| * |
| * - plugin is loaded, public qemu_plugin_install called |
| * - the install func registers callbacks for events |
| * - usually an atexit_cb is registered to dump info at the end |
| * - when a registered event occurs the plugin is called |
| * - some events pass additional info |
| * - during translation the plugin can decide to instrument any |
| * instruction |
| * - when QEMU exits all the registered atexit callbacks are called |
| * |
| * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> |
| * Copyright (C) 2019, Linaro |
| * |
| * License: GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| * SPDX-License-Identifier: GPL-2.0-or-later |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/plugin.h" |
| #include "qemu/log.h" |
| #include "tcg/tcg.h" |
| #include "exec/exec-all.h" |
| #include "exec/gdbstub.h" |
| #include "exec/ram_addr.h" |
| #include "disas/disas.h" |
| #include "plugin.h" |
| #ifndef CONFIG_USER_ONLY |
| #include "qemu/plugin-memory.h" |
| #include "hw/boards.h" |
| #else |
| #include "qemu.h" |
| #ifdef CONFIG_LINUX |
| #include "loader.h" |
| #endif |
| #endif |
| |
| /* Uninstall and Reset handlers */ |
| |
| void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) |
| { |
| plugin_reset_uninstall(id, cb, false); |
| } |
| |
| void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) |
| { |
| plugin_reset_uninstall(id, cb, true); |
| } |
| |
| /* |
| * Plugin Register Functions |
| * |
| * This allows the plugin to register callbacks for various events |
| * during the translation. |
| */ |
| |
| void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, |
| qemu_plugin_vcpu_simple_cb_t cb) |
| { |
| plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); |
| } |
| |
| void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, |
| qemu_plugin_vcpu_simple_cb_t cb) |
| { |
| plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); |
| } |
| |
| void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, |
| qemu_plugin_vcpu_udata_cb_t cb, |
| enum qemu_plugin_cb_flags flags, |
| void *udata) |
| { |
| if (!tb->mem_only) { |
| plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata); |
| } |
| } |
| |
| void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu( |
| struct qemu_plugin_tb *tb, |
| enum qemu_plugin_op op, |
| qemu_plugin_u64 entry, |
| uint64_t imm) |
| { |
| if (!tb->mem_only) { |
| plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm); |
| } |
| } |
| |
| void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, |
| qemu_plugin_vcpu_udata_cb_t cb, |
| enum qemu_plugin_cb_flags flags, |
| void *udata) |
| { |
| if (!insn->mem_only) { |
| plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata); |
| } |
| } |
| |
| void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu( |
| struct qemu_plugin_insn *insn, |
| enum qemu_plugin_op op, |
| qemu_plugin_u64 entry, |
| uint64_t imm) |
| { |
| if (!insn->mem_only) { |
| plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm); |
| } |
| } |
| |
| |
| /* |
| * We always plant memory instrumentation because they don't finalise until |
| * after the operation has complete. |
| */ |
| void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, |
| qemu_plugin_vcpu_mem_cb_t cb, |
| enum qemu_plugin_cb_flags flags, |
| enum qemu_plugin_mem_rw rw, |
| void *udata) |
| { |
| plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata); |
| } |
| |
| void qemu_plugin_register_vcpu_mem_inline_per_vcpu( |
| struct qemu_plugin_insn *insn, |
| enum qemu_plugin_mem_rw rw, |
| enum qemu_plugin_op op, |
| qemu_plugin_u64 entry, |
| uint64_t imm) |
| { |
| plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm); |
| } |
| |
| void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, |
| qemu_plugin_vcpu_tb_trans_cb_t cb) |
| { |
| plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); |
| } |
| |
| void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, |
| qemu_plugin_vcpu_syscall_cb_t cb) |
| { |
| plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); |
| } |
| |
| void |
| qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, |
| qemu_plugin_vcpu_syscall_ret_cb_t cb) |
| { |
| plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); |
| } |
| |
| /* |
| * Plugin Queries |
| * |
| * These are queries that the plugin can make to gauge information |
| * from our opaque data types. We do not want to leak internal details |
| * here just information useful to the plugin. |
| */ |
| |
| /* |
| * Translation block information: |
| * |
| * A plugin can query the virtual address of the start of the block |
| * and the number of instructions in it. It can also get access to |
| * each translated instruction. |
| */ |
| |
| size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) |
| { |
| return tb->n; |
| } |
| |
| uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) |
| { |
| return tb->vaddr; |
| } |
| |
| struct qemu_plugin_insn * |
| qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) |
| { |
| struct qemu_plugin_insn *insn; |
| if (unlikely(idx >= tb->n)) { |
| return NULL; |
| } |
| insn = g_ptr_array_index(tb->insns, idx); |
| insn->mem_only = tb->mem_only; |
| return insn; |
| } |
| |
| /* |
| * Instruction information |
| * |
| * These queries allow the plugin to retrieve information about each |
| * instruction being translated. |
| */ |
| |
| const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn) |
| { |
| return insn->data->data; |
| } |
| |
| size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) |
| { |
| return insn->data->len; |
| } |
| |
| uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) |
| { |
| return insn->vaddr; |
| } |
| |
| void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) |
| { |
| return insn->haddr; |
| } |
| |
| char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) |
| { |
| CPUState *cpu = current_cpu; |
| return plugin_disas(cpu, insn->vaddr, insn->data->len); |
| } |
| |
| const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) |
| { |
| const char *sym = lookup_symbol(insn->vaddr); |
| return sym[0] != 0 ? sym : NULL; |
| } |
| |
| /* |
| * The memory queries allow the plugin to query information about a |
| * memory access. |
| */ |
| |
| unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) |
| { |
| MemOp op = get_memop(info); |
| return op & MO_SIZE; |
| } |
| |
| bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) |
| { |
| MemOp op = get_memop(info); |
| return op & MO_SIGN; |
| } |
| |
| bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) |
| { |
| MemOp op = get_memop(info); |
| return (op & MO_BSWAP) == MO_BE; |
| } |
| |
| bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) |
| { |
| return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; |
| } |
| |
| /* |
| * Virtual Memory queries |
| */ |
| |
| #ifdef CONFIG_SOFTMMU |
| static __thread struct qemu_plugin_hwaddr hwaddr_info; |
| #endif |
| |
| struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, |
| uint64_t vaddr) |
| { |
| #ifdef CONFIG_SOFTMMU |
| CPUState *cpu = current_cpu; |
| unsigned int mmu_idx = get_mmuidx(info); |
| enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); |
| hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0; |
| |
| assert(mmu_idx < NB_MMU_MODES); |
| |
| if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, |
| hwaddr_info.is_store, &hwaddr_info)) { |
| error_report("invalid use of qemu_plugin_get_hwaddr"); |
| return NULL; |
| } |
| |
| return &hwaddr_info; |
| #else |
| return NULL; |
| #endif |
| } |
| |
| bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) |
| { |
| #ifdef CONFIG_SOFTMMU |
| return haddr->is_io; |
| #else |
| return false; |
| #endif |
| } |
| |
| uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) |
| { |
| #ifdef CONFIG_SOFTMMU |
| if (haddr) { |
| return haddr->phys_addr; |
| } |
| #endif |
| return 0; |
| } |
| |
| const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) |
| { |
| #ifdef CONFIG_SOFTMMU |
| if (h && h->is_io) { |
| MemoryRegion *mr = h->mr; |
| if (!mr->name) { |
| unsigned maddr = (uintptr_t)mr; |
| g_autofree char *temp = g_strdup_printf("anon%08x", maddr); |
| return g_intern_string(temp); |
| } else { |
| return g_intern_string(mr->name); |
| } |
| } else { |
| return g_intern_static_string("RAM"); |
| } |
| #else |
| return g_intern_static_string("Invalid"); |
| #endif |
| } |
| |
| int qemu_plugin_num_vcpus(void) |
| { |
| return plugin_num_vcpus(); |
| } |
| |
| /* |
| * Plugin output |
| */ |
| void qemu_plugin_outs(const char *string) |
| { |
| qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); |
| } |
| |
| bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) |
| { |
| return name && value && qapi_bool_parse(name, value, ret, NULL); |
| } |
| |
| /* |
| * Binary path, start and end locations |
| */ |
| const char *qemu_plugin_path_to_binary(void) |
| { |
| char *path = NULL; |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = get_task_state(current_cpu); |
| path = g_strdup(ts->bprm->filename); |
| #endif |
| return path; |
| } |
| |
| uint64_t qemu_plugin_start_code(void) |
| { |
| uint64_t start = 0; |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = get_task_state(current_cpu); |
| start = ts->info->start_code; |
| #endif |
| return start; |
| } |
| |
| uint64_t qemu_plugin_end_code(void) |
| { |
| uint64_t end = 0; |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = get_task_state(current_cpu); |
| end = ts->info->end_code; |
| #endif |
| return end; |
| } |
| |
| uint64_t qemu_plugin_entry_code(void) |
| { |
| uint64_t entry = 0; |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = get_task_state(current_cpu); |
| entry = ts->info->entry; |
| #endif |
| return entry; |
| } |
| |
| /* |
| * Create register handles. |
| * |
| * We need to create a handle for each register so the plugin |
| * infrastructure can call gdbstub to read a register. They are |
| * currently just a pointer encapsulation of the gdb_reg but in |
| * future may hold internal plugin state so its important plugin |
| * authors are not tempted to treat them as numbers. |
| * |
| * We also construct a result array with those handles and some |
| * ancillary data the plugin might find useful. |
| */ |
| |
| static GArray *create_register_handles(GArray *gdbstub_regs) |
| { |
| GArray *find_data = g_array_new(true, true, |
| sizeof(qemu_plugin_reg_descriptor)); |
| |
| for (int i = 0; i < gdbstub_regs->len; i++) { |
| GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i); |
| qemu_plugin_reg_descriptor desc; |
| |
| /* skip "un-named" regs */ |
| if (!grd->name) { |
| continue; |
| } |
| |
| /* Create a record for the plugin */ |
| desc.handle = GINT_TO_POINTER(grd->gdb_reg); |
| desc.name = g_intern_string(grd->name); |
| desc.feature = g_intern_string(grd->feature_name); |
| g_array_append_val(find_data, desc); |
| } |
| |
| return find_data; |
| } |
| |
| GArray *qemu_plugin_get_registers(void) |
| { |
| g_assert(current_cpu); |
| |
| g_autoptr(GArray) regs = gdb_get_register_list(current_cpu); |
| return create_register_handles(regs); |
| } |
| |
| int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf) |
| { |
| g_assert(current_cpu); |
| |
| return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg)); |
| } |
| |
| struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size) |
| { |
| return plugin_scoreboard_new(element_size); |
| } |
| |
| void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score) |
| { |
| plugin_scoreboard_free(score); |
| } |
| |
| void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score, |
| unsigned int vcpu_index) |
| { |
| g_assert(vcpu_index < qemu_plugin_num_vcpus()); |
| /* we can't use g_array_index since entry size is not statically known */ |
| char *base_ptr = score->data->data; |
| return base_ptr + vcpu_index * g_array_get_element_size(score->data); |
| } |
| |
| static uint64_t *plugin_u64_address(qemu_plugin_u64 entry, |
| unsigned int vcpu_index) |
| { |
| char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index); |
| return (uint64_t *)(ptr + entry.offset); |
| } |
| |
| void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index, |
| uint64_t added) |
| { |
| *plugin_u64_address(entry, vcpu_index) += added; |
| } |
| |
| uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry, |
| unsigned int vcpu_index) |
| { |
| return *plugin_u64_address(entry, vcpu_index); |
| } |
| |
| void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index, |
| uint64_t val) |
| { |
| *plugin_u64_address(entry, vcpu_index) = val; |
| } |
| |
| uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry) |
| { |
| uint64_t total = 0; |
| for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) { |
| total += qemu_plugin_u64_get(entry, i); |
| } |
| return total; |
| } |