|  | /* | 
|  | *  mmap support for qemu | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "qemu/osdep.h" | 
|  | #include "trace.h" | 
|  | #include "exec/log.h" | 
|  | #include "qemu.h" | 
|  | #include "user-internals.h" | 
|  | #include "user-mmap.h" | 
|  | #include "target_mman.h" | 
|  |  | 
|  | static pthread_mutex_t mmap_mutex = PTHREAD_MUTEX_INITIALIZER; | 
|  | static __thread int mmap_lock_count; | 
|  |  | 
|  | void mmap_lock(void) | 
|  | { | 
|  | if (mmap_lock_count++ == 0) { | 
|  | pthread_mutex_lock(&mmap_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | void mmap_unlock(void) | 
|  | { | 
|  | if (--mmap_lock_count == 0) { | 
|  | pthread_mutex_unlock(&mmap_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool have_mmap_lock(void) | 
|  | { | 
|  | return mmap_lock_count > 0 ? true : false; | 
|  | } | 
|  |  | 
|  | /* Grab lock to make sure things are in a consistent state after fork().  */ | 
|  | void mmap_fork_start(void) | 
|  | { | 
|  | if (mmap_lock_count) | 
|  | abort(); | 
|  | pthread_mutex_lock(&mmap_mutex); | 
|  | } | 
|  |  | 
|  | void mmap_fork_end(int child) | 
|  | { | 
|  | if (child) | 
|  | pthread_mutex_init(&mmap_mutex, NULL); | 
|  | else | 
|  | pthread_mutex_unlock(&mmap_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate target prot bitmask. | 
|  | * Return the prot bitmask for the host in *HOST_PROT. | 
|  | * Return 0 if the target prot bitmask is invalid, otherwise | 
|  | * the internal qemu page_flags (which will include PAGE_VALID). | 
|  | */ | 
|  | static int validate_prot_to_pageflags(int *host_prot, int prot) | 
|  | { | 
|  | int valid = PROT_READ | PROT_WRITE | PROT_EXEC | TARGET_PROT_SEM; | 
|  | int page_flags = (prot & PAGE_BITS) | PAGE_VALID; | 
|  |  | 
|  | /* | 
|  | * For the host, we need not pass anything except read/write/exec. | 
|  | * While PROT_SEM is allowed by all hosts, it is also ignored, so | 
|  | * don't bother transforming guest bit to host bit.  Any other | 
|  | * target-specific prot bits will not be understood by the host | 
|  | * and will need to be encoded into page_flags for qemu emulation. | 
|  | * | 
|  | * Pages that are executable by the guest will never be executed | 
|  | * by the host, but the host will need to be able to read them. | 
|  | */ | 
|  | *host_prot = (prot & (PROT_READ | PROT_WRITE)) | 
|  | | (prot & PROT_EXEC ? PROT_READ : 0); | 
|  |  | 
|  | #ifdef TARGET_AARCH64 | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(thread_cpu); | 
|  |  | 
|  | /* | 
|  | * The PROT_BTI bit is only accepted if the cpu supports the feature. | 
|  | * Since this is the unusual case, don't bother checking unless | 
|  | * the bit has been requested.  If set and valid, record the bit | 
|  | * within QEMU's page_flags. | 
|  | */ | 
|  | if ((prot & TARGET_PROT_BTI) && cpu_isar_feature(aa64_bti, cpu)) { | 
|  | valid |= TARGET_PROT_BTI; | 
|  | page_flags |= PAGE_BTI; | 
|  | } | 
|  | /* Similarly for the PROT_MTE bit. */ | 
|  | if ((prot & TARGET_PROT_MTE) && cpu_isar_feature(aa64_mte, cpu)) { | 
|  | valid |= TARGET_PROT_MTE; | 
|  | page_flags |= PAGE_MTE; | 
|  | } | 
|  | } | 
|  | #elif defined(TARGET_HPPA) | 
|  | valid |= PROT_GROWSDOWN | PROT_GROWSUP; | 
|  | #endif | 
|  |  | 
|  | return prot & ~valid ? 0 : page_flags; | 
|  | } | 
|  |  | 
|  | /* NOTE: all the constants are the HOST ones, but addresses are target. */ | 
|  | int target_mprotect(abi_ulong start, abi_ulong len, int target_prot) | 
|  | { | 
|  | abi_ulong end, host_start, host_end, addr; | 
|  | int prot1, ret, page_flags, host_prot; | 
|  |  | 
|  | trace_target_mprotect(start, len, target_prot); | 
|  |  | 
|  | if ((start & ~TARGET_PAGE_MASK) != 0) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  | page_flags = validate_prot_to_pageflags(&host_prot, target_prot); | 
|  | if (!page_flags) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  | len = TARGET_PAGE_ALIGN(len); | 
|  | end = start + len; | 
|  | if (!guest_range_valid_untagged(start, len)) { | 
|  | return -TARGET_ENOMEM; | 
|  | } | 
|  | if (len == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mmap_lock(); | 
|  | host_start = start & qemu_host_page_mask; | 
|  | host_end = HOST_PAGE_ALIGN(end); | 
|  | if (start > host_start) { | 
|  | /* handle host page containing start */ | 
|  | prot1 = host_prot; | 
|  | for (addr = host_start; addr < start; addr += TARGET_PAGE_SIZE) { | 
|  | prot1 |= page_get_flags(addr); | 
|  | } | 
|  | if (host_end == host_start + qemu_host_page_size) { | 
|  | for (addr = end; addr < host_end; addr += TARGET_PAGE_SIZE) { | 
|  | prot1 |= page_get_flags(addr); | 
|  | } | 
|  | end = host_end; | 
|  | } | 
|  | ret = mprotect(g2h_untagged(host_start), qemu_host_page_size, | 
|  | prot1 & PAGE_BITS); | 
|  | if (ret != 0) { | 
|  | goto error; | 
|  | } | 
|  | host_start += qemu_host_page_size; | 
|  | } | 
|  | if (end < host_end) { | 
|  | prot1 = host_prot; | 
|  | for (addr = end; addr < host_end; addr += TARGET_PAGE_SIZE) { | 
|  | prot1 |= page_get_flags(addr); | 
|  | } | 
|  | ret = mprotect(g2h_untagged(host_end - qemu_host_page_size), | 
|  | qemu_host_page_size, prot1 & PAGE_BITS); | 
|  | if (ret != 0) { | 
|  | goto error; | 
|  | } | 
|  | host_end -= qemu_host_page_size; | 
|  | } | 
|  |  | 
|  | /* handle the pages in the middle */ | 
|  | if (host_start < host_end) { | 
|  | ret = mprotect(g2h_untagged(host_start), | 
|  | host_end - host_start, host_prot); | 
|  | if (ret != 0) { | 
|  | goto error; | 
|  | } | 
|  | } | 
|  |  | 
|  | page_set_flags(start, start + len - 1, page_flags); | 
|  | ret = 0; | 
|  |  | 
|  | error: | 
|  | mmap_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* map an incomplete host page */ | 
|  | static int mmap_frag(abi_ulong real_start, | 
|  | abi_ulong start, abi_ulong end, | 
|  | int prot, int flags, int fd, abi_ulong offset) | 
|  | { | 
|  | abi_ulong real_end, addr; | 
|  | void *host_start; | 
|  | int prot1, prot_new; | 
|  |  | 
|  | real_end = real_start + qemu_host_page_size; | 
|  | host_start = g2h_untagged(real_start); | 
|  |  | 
|  | /* get the protection of the target pages outside the mapping */ | 
|  | prot1 = 0; | 
|  | for(addr = real_start; addr < real_end; addr++) { | 
|  | if (addr < start || addr >= end) | 
|  | prot1 |= page_get_flags(addr); | 
|  | } | 
|  |  | 
|  | if (prot1 == 0) { | 
|  | /* no page was there, so we allocate one */ | 
|  | void *p = mmap(host_start, qemu_host_page_size, prot, | 
|  | flags | MAP_ANONYMOUS, -1, 0); | 
|  | if (p == MAP_FAILED) | 
|  | return -1; | 
|  | prot1 = prot; | 
|  | } | 
|  | prot1 &= PAGE_BITS; | 
|  |  | 
|  | prot_new = prot | prot1; | 
|  | if (!(flags & MAP_ANONYMOUS)) { | 
|  | /* msync() won't work here, so we return an error if write is | 
|  | possible while it is a shared mapping */ | 
|  | if ((flags & MAP_TYPE) == MAP_SHARED && | 
|  | (prot & PROT_WRITE)) | 
|  | return -1; | 
|  |  | 
|  | /* adjust protection to be able to read */ | 
|  | if (!(prot1 & PROT_WRITE)) | 
|  | mprotect(host_start, qemu_host_page_size, prot1 | PROT_WRITE); | 
|  |  | 
|  | /* read the corresponding file data */ | 
|  | if (pread(fd, g2h_untagged(start), end - start, offset) == -1) | 
|  | return -1; | 
|  |  | 
|  | /* put final protection */ | 
|  | if (prot_new != (prot1 | PROT_WRITE)) | 
|  | mprotect(host_start, qemu_host_page_size, prot_new); | 
|  | } else { | 
|  | if (prot_new != prot1) { | 
|  | mprotect(host_start, qemu_host_page_size, prot_new); | 
|  | } | 
|  | if (prot_new & PROT_WRITE) { | 
|  | memset(g2h_untagged(start), 0, end - start); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if HOST_LONG_BITS == 64 && TARGET_ABI_BITS == 64 | 
|  | #ifdef TARGET_AARCH64 | 
|  | # define TASK_UNMAPPED_BASE  0x5500000000 | 
|  | #else | 
|  | # define TASK_UNMAPPED_BASE  (1ul << 38) | 
|  | #endif | 
|  | #else | 
|  | #ifdef TARGET_HPPA | 
|  | # define TASK_UNMAPPED_BASE  0xfa000000 | 
|  | #else | 
|  | # define TASK_UNMAPPED_BASE  0x40000000 | 
|  | #endif | 
|  | #endif | 
|  | abi_ulong mmap_next_start = TASK_UNMAPPED_BASE; | 
|  |  | 
|  | unsigned long last_brk; | 
|  |  | 
|  | /* Subroutine of mmap_find_vma, used when we have pre-allocated a chunk | 
|  | of guest address space.  */ | 
|  | static abi_ulong mmap_find_vma_reserved(abi_ulong start, abi_ulong size, | 
|  | abi_ulong align) | 
|  | { | 
|  | abi_ulong addr, end_addr, incr = qemu_host_page_size; | 
|  | int prot; | 
|  | bool looped = false; | 
|  |  | 
|  | if (size > reserved_va) { | 
|  | return (abi_ulong)-1; | 
|  | } | 
|  |  | 
|  | /* Note that start and size have already been aligned by mmap_find_vma. */ | 
|  |  | 
|  | end_addr = start + size; | 
|  | if (start > reserved_va - size) { | 
|  | /* Start at the top of the address space.  */ | 
|  | end_addr = ((reserved_va + 1 - size) & -align) + size; | 
|  | looped = true; | 
|  | } | 
|  |  | 
|  | /* Search downward from END_ADDR, checking to see if a page is in use.  */ | 
|  | addr = end_addr; | 
|  | while (1) { | 
|  | addr -= incr; | 
|  | if (addr > end_addr) { | 
|  | if (looped) { | 
|  | /* Failure.  The entire address space has been searched.  */ | 
|  | return (abi_ulong)-1; | 
|  | } | 
|  | /* Re-start at the top of the address space.  */ | 
|  | addr = end_addr = ((reserved_va + 1 - size) & -align) + size; | 
|  | looped = true; | 
|  | } else { | 
|  | prot = page_get_flags(addr); | 
|  | if (prot) { | 
|  | /* Page in use.  Restart below this page.  */ | 
|  | addr = end_addr = ((addr - size) & -align) + size; | 
|  | } else if (addr && addr + size == end_addr) { | 
|  | /* Success!  All pages between ADDR and END_ADDR are free.  */ | 
|  | if (start == mmap_next_start) { | 
|  | mmap_next_start = addr; | 
|  | } | 
|  | return addr; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find and reserve a free memory area of size 'size'. The search | 
|  | * starts at 'start'. | 
|  | * It must be called with mmap_lock() held. | 
|  | * Return -1 if error. | 
|  | */ | 
|  | abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size, abi_ulong align) | 
|  | { | 
|  | void *ptr, *prev; | 
|  | abi_ulong addr; | 
|  | int wrapped, repeat; | 
|  |  | 
|  | align = MAX(align, qemu_host_page_size); | 
|  |  | 
|  | /* If 'start' == 0, then a default start address is used. */ | 
|  | if (start == 0) { | 
|  | start = mmap_next_start; | 
|  | } else { | 
|  | start &= qemu_host_page_mask; | 
|  | } | 
|  | start = ROUND_UP(start, align); | 
|  |  | 
|  | size = HOST_PAGE_ALIGN(size); | 
|  |  | 
|  | if (reserved_va) { | 
|  | return mmap_find_vma_reserved(start, size, align); | 
|  | } | 
|  |  | 
|  | addr = start; | 
|  | wrapped = repeat = 0; | 
|  | prev = 0; | 
|  |  | 
|  | for (;; prev = ptr) { | 
|  | /* | 
|  | * Reserve needed memory area to avoid a race. | 
|  | * It should be discarded using: | 
|  | *  - mmap() with MAP_FIXED flag | 
|  | *  - mremap() with MREMAP_FIXED flag | 
|  | *  - shmat() with SHM_REMAP flag | 
|  | */ | 
|  | ptr = mmap(g2h_untagged(addr), size, PROT_NONE, | 
|  | MAP_ANONYMOUS|MAP_PRIVATE|MAP_NORESERVE, -1, 0); | 
|  |  | 
|  | /* ENOMEM, if host address space has no memory */ | 
|  | if (ptr == MAP_FAILED) { | 
|  | return (abi_ulong)-1; | 
|  | } | 
|  |  | 
|  | /* Count the number of sequential returns of the same address. | 
|  | This is used to modify the search algorithm below.  */ | 
|  | repeat = (ptr == prev ? repeat + 1 : 0); | 
|  |  | 
|  | if (h2g_valid(ptr + size - 1)) { | 
|  | addr = h2g(ptr); | 
|  |  | 
|  | if ((addr & (align - 1)) == 0) { | 
|  | /* Success.  */ | 
|  | if (start == mmap_next_start && addr >= TASK_UNMAPPED_BASE) { | 
|  | mmap_next_start = addr + size; | 
|  | } | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* The address is not properly aligned for the target.  */ | 
|  | switch (repeat) { | 
|  | case 0: | 
|  | /* Assume the result that the kernel gave us is the | 
|  | first with enough free space, so start again at the | 
|  | next higher target page.  */ | 
|  | addr = ROUND_UP(addr, align); | 
|  | break; | 
|  | case 1: | 
|  | /* Sometimes the kernel decides to perform the allocation | 
|  | at the top end of memory instead.  */ | 
|  | addr &= -align; | 
|  | break; | 
|  | case 2: | 
|  | /* Start over at low memory.  */ | 
|  | addr = 0; | 
|  | break; | 
|  | default: | 
|  | /* Fail.  This unaligned block must the last.  */ | 
|  | addr = -1; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | /* Since the result the kernel gave didn't fit, start | 
|  | again at low memory.  If any repetition, fail.  */ | 
|  | addr = (repeat ? -1 : 0); | 
|  | } | 
|  |  | 
|  | /* Unmap and try again.  */ | 
|  | munmap(ptr, size); | 
|  |  | 
|  | /* ENOMEM if we checked the whole of the target address space.  */ | 
|  | if (addr == (abi_ulong)-1) { | 
|  | return (abi_ulong)-1; | 
|  | } else if (addr == 0) { | 
|  | if (wrapped) { | 
|  | return (abi_ulong)-1; | 
|  | } | 
|  | wrapped = 1; | 
|  | /* Don't actually use 0 when wrapping, instead indicate | 
|  | that we'd truly like an allocation in low memory.  */ | 
|  | addr = (mmap_min_addr > TARGET_PAGE_SIZE | 
|  | ? TARGET_PAGE_ALIGN(mmap_min_addr) | 
|  | : TARGET_PAGE_SIZE); | 
|  | } else if (wrapped && addr >= start) { | 
|  | return (abi_ulong)-1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* NOTE: all the constants are the HOST ones */ | 
|  | abi_long target_mmap(abi_ulong start, abi_ulong len, int target_prot, | 
|  | int flags, int fd, abi_ulong offset) | 
|  | { | 
|  | abi_ulong ret, end, real_start, real_end, retaddr, host_offset, host_len, | 
|  | passthrough_start = -1, passthrough_end = -1; | 
|  | int page_flags, host_prot; | 
|  |  | 
|  | mmap_lock(); | 
|  | trace_target_mmap(start, len, target_prot, flags, fd, offset); | 
|  |  | 
|  | if (!len) { | 
|  | errno = EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | page_flags = validate_prot_to_pageflags(&host_prot, target_prot); | 
|  | if (!page_flags) { | 
|  | errno = EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Also check for overflows... */ | 
|  | len = TARGET_PAGE_ALIGN(len); | 
|  | if (!len) { | 
|  | errno = ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (offset & ~TARGET_PAGE_MASK) { | 
|  | errno = EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're mapping shared memory, ensure we generate code for parallel | 
|  | * execution and flush old translations.  This will work up to the level | 
|  | * supported by the host -- anything that requires EXCP_ATOMIC will not | 
|  | * be atomic with respect to an external process. | 
|  | */ | 
|  | if (flags & MAP_SHARED) { | 
|  | CPUState *cpu = thread_cpu; | 
|  | if (!(cpu->tcg_cflags & CF_PARALLEL)) { | 
|  | cpu->tcg_cflags |= CF_PARALLEL; | 
|  | tb_flush(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | real_start = start & qemu_host_page_mask; | 
|  | host_offset = offset & qemu_host_page_mask; | 
|  |  | 
|  | /* If the user is asking for the kernel to find a location, do that | 
|  | before we truncate the length for mapping files below.  */ | 
|  | if (!(flags & MAP_FIXED)) { | 
|  | host_len = len + offset - host_offset; | 
|  | host_len = HOST_PAGE_ALIGN(host_len); | 
|  | start = mmap_find_vma(real_start, host_len, TARGET_PAGE_SIZE); | 
|  | if (start == (abi_ulong)-1) { | 
|  | errno = ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* When mapping files into a memory area larger than the file, accesses | 
|  | to pages beyond the file size will cause a SIGBUS. | 
|  |  | 
|  | For example, if mmaping a file of 100 bytes on a host with 4K pages | 
|  | emulating a target with 8K pages, the target expects to be able to | 
|  | access the first 8K. But the host will trap us on any access beyond | 
|  | 4K. | 
|  |  | 
|  | When emulating a target with a larger page-size than the hosts, we | 
|  | may need to truncate file maps at EOF and add extra anonymous pages | 
|  | up to the targets page boundary.  */ | 
|  |  | 
|  | if ((qemu_real_host_page_size() < qemu_host_page_size) && | 
|  | !(flags & MAP_ANONYMOUS)) { | 
|  | struct stat sb; | 
|  |  | 
|  | if (fstat (fd, &sb) == -1) | 
|  | goto fail; | 
|  |  | 
|  | /* Are we trying to create a map beyond EOF?.  */ | 
|  | if (offset + len > sb.st_size) { | 
|  | /* If so, truncate the file map at eof aligned with | 
|  | the hosts real pagesize. Additional anonymous maps | 
|  | will be created beyond EOF.  */ | 
|  | len = REAL_HOST_PAGE_ALIGN(sb.st_size - offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!(flags & MAP_FIXED)) { | 
|  | unsigned long host_start; | 
|  | void *p; | 
|  |  | 
|  | host_len = len + offset - host_offset; | 
|  | host_len = HOST_PAGE_ALIGN(host_len); | 
|  |  | 
|  | /* Note: we prefer to control the mapping address. It is | 
|  | especially important if qemu_host_page_size > | 
|  | qemu_real_host_page_size */ | 
|  | p = mmap(g2h_untagged(start), host_len, host_prot, | 
|  | flags | MAP_FIXED | MAP_ANONYMOUS, -1, 0); | 
|  | if (p == MAP_FAILED) { | 
|  | goto fail; | 
|  | } | 
|  | /* update start so that it points to the file position at 'offset' */ | 
|  | host_start = (unsigned long)p; | 
|  | if (!(flags & MAP_ANONYMOUS)) { | 
|  | p = mmap(g2h_untagged(start), len, host_prot, | 
|  | flags | MAP_FIXED, fd, host_offset); | 
|  | if (p == MAP_FAILED) { | 
|  | munmap(g2h_untagged(start), host_len); | 
|  | goto fail; | 
|  | } | 
|  | host_start += offset - host_offset; | 
|  | } | 
|  | start = h2g(host_start); | 
|  | passthrough_start = start; | 
|  | passthrough_end = start + len; | 
|  | } else { | 
|  | if (start & ~TARGET_PAGE_MASK) { | 
|  | errno = EINVAL; | 
|  | goto fail; | 
|  | } | 
|  | end = start + len; | 
|  | real_end = HOST_PAGE_ALIGN(end); | 
|  |  | 
|  | /* | 
|  | * Test if requested memory area fits target address space | 
|  | * It can fail only on 64-bit host with 32-bit target. | 
|  | * On any other target/host host mmap() handles this error correctly. | 
|  | */ | 
|  | if (end < start || !guest_range_valid_untagged(start, len)) { | 
|  | errno = ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* worst case: we cannot map the file because the offset is not | 
|  | aligned, so we read it */ | 
|  | if (!(flags & MAP_ANONYMOUS) && | 
|  | (offset & ~qemu_host_page_mask) != (start & ~qemu_host_page_mask)) { | 
|  | /* msync() won't work here, so we return an error if write is | 
|  | possible while it is a shared mapping */ | 
|  | if ((flags & MAP_TYPE) == MAP_SHARED && | 
|  | (host_prot & PROT_WRITE)) { | 
|  | errno = EINVAL; | 
|  | goto fail; | 
|  | } | 
|  | retaddr = target_mmap(start, len, target_prot | PROT_WRITE, | 
|  | MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, | 
|  | -1, 0); | 
|  | if (retaddr == -1) | 
|  | goto fail; | 
|  | if (pread(fd, g2h_untagged(start), len, offset) == -1) | 
|  | goto fail; | 
|  | if (!(host_prot & PROT_WRITE)) { | 
|  | ret = target_mprotect(start, len, target_prot); | 
|  | assert(ret == 0); | 
|  | } | 
|  | goto the_end; | 
|  | } | 
|  |  | 
|  | /* handle the start of the mapping */ | 
|  | if (start > real_start) { | 
|  | if (real_end == real_start + qemu_host_page_size) { | 
|  | /* one single host page */ | 
|  | ret = mmap_frag(real_start, start, end, | 
|  | host_prot, flags, fd, offset); | 
|  | if (ret == -1) | 
|  | goto fail; | 
|  | goto the_end1; | 
|  | } | 
|  | ret = mmap_frag(real_start, start, real_start + qemu_host_page_size, | 
|  | host_prot, flags, fd, offset); | 
|  | if (ret == -1) | 
|  | goto fail; | 
|  | real_start += qemu_host_page_size; | 
|  | } | 
|  | /* handle the end of the mapping */ | 
|  | if (end < real_end) { | 
|  | ret = mmap_frag(real_end - qemu_host_page_size, | 
|  | real_end - qemu_host_page_size, end, | 
|  | host_prot, flags, fd, | 
|  | offset + real_end - qemu_host_page_size - start); | 
|  | if (ret == -1) | 
|  | goto fail; | 
|  | real_end -= qemu_host_page_size; | 
|  | } | 
|  |  | 
|  | /* map the middle (easier) */ | 
|  | if (real_start < real_end) { | 
|  | void *p; | 
|  | unsigned long offset1; | 
|  | if (flags & MAP_ANONYMOUS) | 
|  | offset1 = 0; | 
|  | else | 
|  | offset1 = offset + real_start - start; | 
|  | p = mmap(g2h_untagged(real_start), real_end - real_start, | 
|  | host_prot, flags, fd, offset1); | 
|  | if (p == MAP_FAILED) | 
|  | goto fail; | 
|  | passthrough_start = real_start; | 
|  | passthrough_end = real_end; | 
|  | } | 
|  | } | 
|  | the_end1: | 
|  | if (flags & MAP_ANONYMOUS) { | 
|  | page_flags |= PAGE_ANON; | 
|  | } | 
|  | page_flags |= PAGE_RESET; | 
|  | if (passthrough_start == passthrough_end) { | 
|  | page_set_flags(start, start + len - 1, page_flags); | 
|  | } else { | 
|  | if (start < passthrough_start) { | 
|  | page_set_flags(start, passthrough_start - 1, page_flags); | 
|  | } | 
|  | page_set_flags(passthrough_start, passthrough_end - 1, | 
|  | page_flags | PAGE_PASSTHROUGH); | 
|  | if (passthrough_end < start + len) { | 
|  | page_set_flags(passthrough_end, start + len - 1, page_flags); | 
|  | } | 
|  | } | 
|  | the_end: | 
|  | trace_target_mmap_complete(start); | 
|  | if (qemu_loglevel_mask(CPU_LOG_PAGE)) { | 
|  | FILE *f = qemu_log_trylock(); | 
|  | if (f) { | 
|  | fprintf(f, "page layout changed following mmap\n"); | 
|  | page_dump(f); | 
|  | qemu_log_unlock(f); | 
|  | } | 
|  | } | 
|  | mmap_unlock(); | 
|  | return start; | 
|  | fail: | 
|  | mmap_unlock(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void mmap_reserve(abi_ulong start, abi_ulong size) | 
|  | { | 
|  | abi_ulong real_start; | 
|  | abi_ulong real_end; | 
|  | abi_ulong addr; | 
|  | abi_ulong end; | 
|  | int prot; | 
|  |  | 
|  | real_start = start & qemu_host_page_mask; | 
|  | real_end = HOST_PAGE_ALIGN(start + size); | 
|  | end = start + size; | 
|  | if (start > real_start) { | 
|  | /* handle host page containing start */ | 
|  | prot = 0; | 
|  | for (addr = real_start; addr < start; addr += TARGET_PAGE_SIZE) { | 
|  | prot |= page_get_flags(addr); | 
|  | } | 
|  | if (real_end == real_start + qemu_host_page_size) { | 
|  | for (addr = end; addr < real_end; addr += TARGET_PAGE_SIZE) { | 
|  | prot |= page_get_flags(addr); | 
|  | } | 
|  | end = real_end; | 
|  | } | 
|  | if (prot != 0) | 
|  | real_start += qemu_host_page_size; | 
|  | } | 
|  | if (end < real_end) { | 
|  | prot = 0; | 
|  | for (addr = end; addr < real_end; addr += TARGET_PAGE_SIZE) { | 
|  | prot |= page_get_flags(addr); | 
|  | } | 
|  | if (prot != 0) | 
|  | real_end -= qemu_host_page_size; | 
|  | } | 
|  | if (real_start != real_end) { | 
|  | mmap(g2h_untagged(real_start), real_end - real_start, PROT_NONE, | 
|  | MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, | 
|  | -1, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | int target_munmap(abi_ulong start, abi_ulong len) | 
|  | { | 
|  | abi_ulong end, real_start, real_end, addr; | 
|  | int prot, ret; | 
|  |  | 
|  | trace_target_munmap(start, len); | 
|  |  | 
|  | if (start & ~TARGET_PAGE_MASK) | 
|  | return -TARGET_EINVAL; | 
|  | len = TARGET_PAGE_ALIGN(len); | 
|  | if (len == 0 || !guest_range_valid_untagged(start, len)) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  |  | 
|  | mmap_lock(); | 
|  | end = start + len; | 
|  | real_start = start & qemu_host_page_mask; | 
|  | real_end = HOST_PAGE_ALIGN(end); | 
|  |  | 
|  | if (start > real_start) { | 
|  | /* handle host page containing start */ | 
|  | prot = 0; | 
|  | for(addr = real_start; addr < start; addr += TARGET_PAGE_SIZE) { | 
|  | prot |= page_get_flags(addr); | 
|  | } | 
|  | if (real_end == real_start + qemu_host_page_size) { | 
|  | for(addr = end; addr < real_end; addr += TARGET_PAGE_SIZE) { | 
|  | prot |= page_get_flags(addr); | 
|  | } | 
|  | end = real_end; | 
|  | } | 
|  | if (prot != 0) | 
|  | real_start += qemu_host_page_size; | 
|  | } | 
|  | if (end < real_end) { | 
|  | prot = 0; | 
|  | for(addr = end; addr < real_end; addr += TARGET_PAGE_SIZE) { | 
|  | prot |= page_get_flags(addr); | 
|  | } | 
|  | if (prot != 0) | 
|  | real_end -= qemu_host_page_size; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | /* unmap what we can */ | 
|  | if (real_start < real_end) { | 
|  | if (reserved_va) { | 
|  | mmap_reserve(real_start, real_end - real_start); | 
|  | } else { | 
|  | ret = munmap(g2h_untagged(real_start), real_end - real_start); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret == 0) { | 
|  | page_set_flags(start, start + len - 1, 0); | 
|  | } | 
|  | mmap_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, | 
|  | abi_ulong new_size, unsigned long flags, | 
|  | abi_ulong new_addr) | 
|  | { | 
|  | int prot; | 
|  | void *host_addr; | 
|  |  | 
|  | if (!guest_range_valid_untagged(old_addr, old_size) || | 
|  | ((flags & MREMAP_FIXED) && | 
|  | !guest_range_valid_untagged(new_addr, new_size)) || | 
|  | ((flags & MREMAP_MAYMOVE) == 0 && | 
|  | !guest_range_valid_untagged(old_addr, new_size))) { | 
|  | errno = ENOMEM; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | mmap_lock(); | 
|  |  | 
|  | if (flags & MREMAP_FIXED) { | 
|  | host_addr = mremap(g2h_untagged(old_addr), old_size, new_size, | 
|  | flags, g2h_untagged(new_addr)); | 
|  |  | 
|  | if (reserved_va && host_addr != MAP_FAILED) { | 
|  | /* If new and old addresses overlap then the above mremap will | 
|  | already have failed with EINVAL.  */ | 
|  | mmap_reserve(old_addr, old_size); | 
|  | } | 
|  | } else if (flags & MREMAP_MAYMOVE) { | 
|  | abi_ulong mmap_start; | 
|  |  | 
|  | mmap_start = mmap_find_vma(0, new_size, TARGET_PAGE_SIZE); | 
|  |  | 
|  | if (mmap_start == -1) { | 
|  | errno = ENOMEM; | 
|  | host_addr = MAP_FAILED; | 
|  | } else { | 
|  | host_addr = mremap(g2h_untagged(old_addr), old_size, new_size, | 
|  | flags | MREMAP_FIXED, | 
|  | g2h_untagged(mmap_start)); | 
|  | if (reserved_va) { | 
|  | mmap_reserve(old_addr, old_size); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | int prot = 0; | 
|  | if (reserved_va && old_size < new_size) { | 
|  | abi_ulong addr; | 
|  | for (addr = old_addr + old_size; | 
|  | addr < old_addr + new_size; | 
|  | addr++) { | 
|  | prot |= page_get_flags(addr); | 
|  | } | 
|  | } | 
|  | if (prot == 0) { | 
|  | host_addr = mremap(g2h_untagged(old_addr), | 
|  | old_size, new_size, flags); | 
|  |  | 
|  | if (host_addr != MAP_FAILED) { | 
|  | /* Check if address fits target address space */ | 
|  | if (!guest_range_valid_untagged(h2g(host_addr), new_size)) { | 
|  | /* Revert mremap() changes */ | 
|  | host_addr = mremap(g2h_untagged(old_addr), | 
|  | new_size, old_size, flags); | 
|  | errno = ENOMEM; | 
|  | host_addr = MAP_FAILED; | 
|  | } else if (reserved_va && old_size > new_size) { | 
|  | mmap_reserve(old_addr + old_size, old_size - new_size); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | errno = ENOMEM; | 
|  | host_addr = MAP_FAILED; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (host_addr == MAP_FAILED) { | 
|  | new_addr = -1; | 
|  | } else { | 
|  | new_addr = h2g(host_addr); | 
|  | prot = page_get_flags(old_addr); | 
|  | page_set_flags(old_addr, old_addr + old_size - 1, 0); | 
|  | page_set_flags(new_addr, new_addr + new_size - 1, | 
|  | prot | PAGE_VALID | PAGE_RESET); | 
|  | } | 
|  | mmap_unlock(); | 
|  | return new_addr; | 
|  | } | 
|  |  | 
|  | static bool can_passthrough_madvise(abi_ulong start, abi_ulong end) | 
|  | { | 
|  | ulong addr; | 
|  |  | 
|  | if ((start | end) & ~qemu_host_page_mask) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (addr = start; addr < end; addr += TARGET_PAGE_SIZE) { | 
|  | if (!(page_get_flags(addr) & PAGE_PASSTHROUGH)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | abi_long target_madvise(abi_ulong start, abi_ulong len_in, int advice) | 
|  | { | 
|  | abi_ulong len, end; | 
|  | int ret = 0; | 
|  |  | 
|  | if (start & ~TARGET_PAGE_MASK) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  | len = TARGET_PAGE_ALIGN(len_in); | 
|  |  | 
|  | if (len_in && !len) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  |  | 
|  | end = start + len; | 
|  | if (end < start) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  |  | 
|  | if (end == start) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!guest_range_valid_untagged(start, len)) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  |  | 
|  | /* Translate for some architectures which have different MADV_xxx values */ | 
|  | switch (advice) { | 
|  | case TARGET_MADV_DONTNEED:      /* alpha */ | 
|  | advice = MADV_DONTNEED; | 
|  | break; | 
|  | case TARGET_MADV_WIPEONFORK:    /* parisc */ | 
|  | advice = MADV_WIPEONFORK; | 
|  | break; | 
|  | case TARGET_MADV_KEEPONFORK:    /* parisc */ | 
|  | advice = MADV_KEEPONFORK; | 
|  | break; | 
|  | /* we do not care about the other MADV_xxx values yet */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Most advice values are hints, so ignoring and returning success is ok. | 
|  | * | 
|  | * However, some advice values such as MADV_DONTNEED, MADV_WIPEONFORK and | 
|  | * MADV_KEEPONFORK are not hints and need to be emulated. | 
|  | * | 
|  | * A straight passthrough for those may not be safe because qemu sometimes | 
|  | * turns private file-backed mappings into anonymous mappings. | 
|  | * can_passthrough_madvise() helps to check if a passthrough is possible by | 
|  | * comparing mappings that are known to have the same semantics in the host | 
|  | * and the guest. In this case passthrough is safe. | 
|  | * | 
|  | * We pass through MADV_WIPEONFORK and MADV_KEEPONFORK if possible and | 
|  | * return failure if not. | 
|  | * | 
|  | * MADV_DONTNEED is passed through as well, if possible. | 
|  | * If passthrough isn't possible, we nevertheless (wrongly!) return | 
|  | * success, which is broken but some userspace programs fail to work | 
|  | * otherwise. Completely implementing such emulation is quite complicated | 
|  | * though. | 
|  | */ | 
|  | mmap_lock(); | 
|  | switch (advice) { | 
|  | case MADV_WIPEONFORK: | 
|  | case MADV_KEEPONFORK: | 
|  | ret = -EINVAL; | 
|  | /* fall through */ | 
|  | case MADV_DONTNEED: | 
|  | if (can_passthrough_madvise(start, end)) { | 
|  | ret = get_errno(madvise(g2h_untagged(start), len, advice)); | 
|  | if ((advice == MADV_DONTNEED) && (ret == 0)) { | 
|  | page_reset_target_data(start, start + len - 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | mmap_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } |