| /* |
| * PowerPC MMU, TLB and BAT emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * Copyright (c) 2013 David Gibson, IBM Corporation |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_ppc.h" |
| #include "internal.h" |
| #include "mmu-hash32.h" |
| #include "exec/log.h" |
| |
| /* #define DEBUG_BAT */ |
| |
| #ifdef DEBUG_BATS |
| # define LOG_BATS(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__) |
| #else |
| # define LOG_BATS(...) do { } while (0) |
| #endif |
| |
| struct mmu_ctx_hash32 { |
| hwaddr raddr; /* Real address */ |
| int prot; /* Protection bits */ |
| int key; /* Access key */ |
| }; |
| |
| static int ppc_hash32_pp_prot(int key, int pp, int nx) |
| { |
| int prot; |
| |
| if (key == 0) { |
| switch (pp) { |
| case 0x0: |
| case 0x1: |
| case 0x2: |
| prot = PAGE_READ | PAGE_WRITE; |
| break; |
| |
| case 0x3: |
| prot = PAGE_READ; |
| break; |
| |
| default: |
| abort(); |
| } |
| } else { |
| switch (pp) { |
| case 0x0: |
| prot = 0; |
| break; |
| |
| case 0x1: |
| case 0x3: |
| prot = PAGE_READ; |
| break; |
| |
| case 0x2: |
| prot = PAGE_READ | PAGE_WRITE; |
| break; |
| |
| default: |
| abort(); |
| } |
| } |
| if (nx == 0) { |
| prot |= PAGE_EXEC; |
| } |
| |
| return prot; |
| } |
| |
| static int ppc_hash32_pte_prot(PowerPCCPU *cpu, |
| target_ulong sr, ppc_hash_pte32_t pte) |
| { |
| CPUPPCState *env = &cpu->env; |
| unsigned pp, key; |
| |
| key = !!(msr_pr ? (sr & SR32_KP) : (sr & SR32_KS)); |
| pp = pte.pte1 & HPTE32_R_PP; |
| |
| return ppc_hash32_pp_prot(key, pp, !!(sr & SR32_NX)); |
| } |
| |
| static target_ulong hash32_bat_size(PowerPCCPU *cpu, |
| target_ulong batu, target_ulong batl) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| if ((msr_pr && !(batu & BATU32_VP)) |
| || (!msr_pr && !(batu & BATU32_VS))) { |
| return 0; |
| } |
| |
| return BATU32_BEPI & ~((batu & BATU32_BL) << 15); |
| } |
| |
| static int hash32_bat_prot(PowerPCCPU *cpu, |
| target_ulong batu, target_ulong batl) |
| { |
| int pp, prot; |
| |
| prot = 0; |
| pp = batl & BATL32_PP; |
| if (pp != 0) { |
| prot = PAGE_READ | PAGE_EXEC; |
| if (pp == 0x2) { |
| prot |= PAGE_WRITE; |
| } |
| } |
| return prot; |
| } |
| |
| static target_ulong hash32_bat_601_size(PowerPCCPU *cpu, |
| target_ulong batu, target_ulong batl) |
| { |
| if (!(batl & BATL32_601_V)) { |
| return 0; |
| } |
| |
| return BATU32_BEPI & ~((batl & BATL32_601_BL) << 17); |
| } |
| |
| static int hash32_bat_601_prot(PowerPCCPU *cpu, |
| target_ulong batu, target_ulong batl) |
| { |
| CPUPPCState *env = &cpu->env; |
| int key, pp; |
| |
| pp = batu & BATU32_601_PP; |
| if (msr_pr == 0) { |
| key = !!(batu & BATU32_601_KS); |
| } else { |
| key = !!(batu & BATU32_601_KP); |
| } |
| return ppc_hash32_pp_prot(key, pp, 0); |
| } |
| |
| static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea, |
| MMUAccessType access_type, int *prot) |
| { |
| CPUPPCState *env = &cpu->env; |
| target_ulong *BATlt, *BATut; |
| bool ifetch = access_type == MMU_INST_FETCH; |
| int i; |
| |
| LOG_BATS("%s: %cBAT v " TARGET_FMT_lx "\n", __func__, |
| ifetch ? 'I' : 'D', ea); |
| if (ifetch) { |
| BATlt = env->IBAT[1]; |
| BATut = env->IBAT[0]; |
| } else { |
| BATlt = env->DBAT[1]; |
| BATut = env->DBAT[0]; |
| } |
| for (i = 0; i < env->nb_BATs; i++) { |
| target_ulong batu = BATut[i]; |
| target_ulong batl = BATlt[i]; |
| target_ulong mask; |
| |
| if (unlikely(env->mmu_model == POWERPC_MMU_601)) { |
| mask = hash32_bat_601_size(cpu, batu, batl); |
| } else { |
| mask = hash32_bat_size(cpu, batu, batl); |
| } |
| LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx |
| " BATl " TARGET_FMT_lx "\n", __func__, |
| ifetch ? 'I' : 'D', i, ea, batu, batl); |
| |
| if (mask && ((ea & mask) == (batu & BATU32_BEPI))) { |
| hwaddr raddr = (batl & mask) | (ea & ~mask); |
| |
| if (unlikely(env->mmu_model == POWERPC_MMU_601)) { |
| *prot = hash32_bat_601_prot(cpu, batu, batl); |
| } else { |
| *prot = hash32_bat_prot(cpu, batu, batl); |
| } |
| |
| return raddr & TARGET_PAGE_MASK; |
| } |
| } |
| |
| /* No hit */ |
| #if defined(DEBUG_BATS) |
| if (qemu_log_enabled()) { |
| LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", ea); |
| for (i = 0; i < 4; i++) { |
| BATu = &BATut[i]; |
| BATl = &BATlt[i]; |
| BEPIu = *BATu & BATU32_BEPIU; |
| BEPIl = *BATu & BATU32_BEPIL; |
| bl = (*BATu & 0x00001FFC) << 15; |
| LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx |
| " BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " " |
| TARGET_FMT_lx " " TARGET_FMT_lx "\n", |
| __func__, ifetch ? 'I' : 'D', i, ea, |
| *BATu, *BATl, BEPIu, BEPIl, bl); |
| } |
| } |
| #endif |
| |
| return -1; |
| } |
| |
| static bool ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr, |
| target_ulong eaddr, |
| MMUAccessType access_type, |
| hwaddr *raddr, int *prot, |
| bool guest_visible) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| int key = !!(msr_pr ? (sr & SR32_KP) : (sr & SR32_KS)); |
| |
| qemu_log_mask(CPU_LOG_MMU, "direct store...\n"); |
| |
| if ((sr & 0x1FF00000) >> 20 == 0x07f) { |
| /* |
| * Memory-forced I/O controller interface access |
| * |
| * If T=1 and BUID=x'07F', the 601 performs a memory access |
| * to SR[28-31] LA[4-31], bypassing all protection mechanisms. |
| */ |
| *raddr = ((sr & 0xF) << 28) | (eaddr & 0x0FFFFFFF); |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return true; |
| } |
| |
| if (access_type == MMU_INST_FETCH) { |
| /* No code fetch is allowed in direct-store areas */ |
| if (guest_visible) { |
| cs->exception_index = POWERPC_EXCP_ISI; |
| env->error_code = 0x10000000; |
| } |
| return false; |
| } |
| |
| /* |
| * From ppc_cpu_get_phys_page_debug, env->access_type is not set. |
| * Assume ACCESS_INT for that case. |
| */ |
| switch (guest_visible ? env->access_type : ACCESS_INT) { |
| case ACCESS_INT: |
| /* Integer load/store : only access allowed */ |
| break; |
| case ACCESS_FLOAT: |
| /* Floating point load/store */ |
| cs->exception_index = POWERPC_EXCP_ALIGN; |
| env->error_code = POWERPC_EXCP_ALIGN_FP; |
| env->spr[SPR_DAR] = eaddr; |
| return false; |
| case ACCESS_RES: |
| /* lwarx, ldarx or srwcx. */ |
| env->error_code = 0; |
| env->spr[SPR_DAR] = eaddr; |
| if (access_type == MMU_DATA_STORE) { |
| env->spr[SPR_DSISR] = 0x06000000; |
| } else { |
| env->spr[SPR_DSISR] = 0x04000000; |
| } |
| return false; |
| case ACCESS_CACHE: |
| /* |
| * dcba, dcbt, dcbtst, dcbf, dcbi, dcbst, dcbz, or icbi |
| * |
| * Should make the instruction do no-op. As it already do |
| * no-op, it's quite easy :-) |
| */ |
| *raddr = eaddr; |
| return true; |
| case ACCESS_EXT: |
| /* eciwx or ecowx */ |
| cs->exception_index = POWERPC_EXCP_DSI; |
| env->error_code = 0; |
| env->spr[SPR_DAR] = eaddr; |
| if (access_type == MMU_DATA_STORE) { |
| env->spr[SPR_DSISR] = 0x06100000; |
| } else { |
| env->spr[SPR_DSISR] = 0x04100000; |
| } |
| return false; |
| default: |
| cpu_abort(cs, "ERROR: insn should not need address translation\n"); |
| } |
| |
| *prot = key ? PAGE_READ | PAGE_WRITE : PAGE_READ; |
| if (*prot & prot_for_access_type(access_type)) { |
| *raddr = eaddr; |
| return true; |
| } |
| |
| if (guest_visible) { |
| cs->exception_index = POWERPC_EXCP_DSI; |
| env->error_code = 0; |
| env->spr[SPR_DAR] = eaddr; |
| if (access_type == MMU_DATA_STORE) { |
| env->spr[SPR_DSISR] = 0x0a000000; |
| } else { |
| env->spr[SPR_DSISR] = 0x08000000; |
| } |
| } |
| return false; |
| } |
| |
| hwaddr get_pteg_offset32(PowerPCCPU *cpu, hwaddr hash) |
| { |
| target_ulong mask = ppc_hash32_hpt_mask(cpu); |
| |
| return (hash * HASH_PTEG_SIZE_32) & mask; |
| } |
| |
| static hwaddr ppc_hash32_pteg_search(PowerPCCPU *cpu, hwaddr pteg_off, |
| bool secondary, target_ulong ptem, |
| ppc_hash_pte32_t *pte) |
| { |
| hwaddr pte_offset = pteg_off; |
| target_ulong pte0, pte1; |
| int i; |
| |
| for (i = 0; i < HPTES_PER_GROUP; i++) { |
| pte0 = ppc_hash32_load_hpte0(cpu, pte_offset); |
| /* |
| * pte0 contains the valid bit and must be read before pte1, |
| * otherwise we might see an old pte1 with a new valid bit and |
| * thus an inconsistent hpte value |
| */ |
| smp_rmb(); |
| pte1 = ppc_hash32_load_hpte1(cpu, pte_offset); |
| |
| if ((pte0 & HPTE32_V_VALID) |
| && (secondary == !!(pte0 & HPTE32_V_SECONDARY)) |
| && HPTE32_V_COMPARE(pte0, ptem)) { |
| pte->pte0 = pte0; |
| pte->pte1 = pte1; |
| return pte_offset; |
| } |
| |
| pte_offset += HASH_PTE_SIZE_32; |
| } |
| |
| return -1; |
| } |
| |
| static void ppc_hash32_set_r(PowerPCCPU *cpu, hwaddr pte_offset, uint32_t pte1) |
| { |
| target_ulong base = ppc_hash32_hpt_base(cpu); |
| hwaddr offset = pte_offset + 6; |
| |
| /* The HW performs a non-atomic byte update */ |
| stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01); |
| } |
| |
| static void ppc_hash32_set_c(PowerPCCPU *cpu, hwaddr pte_offset, uint64_t pte1) |
| { |
| target_ulong base = ppc_hash32_hpt_base(cpu); |
| hwaddr offset = pte_offset + 7; |
| |
| /* The HW performs a non-atomic byte update */ |
| stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80); |
| } |
| |
| static hwaddr ppc_hash32_htab_lookup(PowerPCCPU *cpu, |
| target_ulong sr, target_ulong eaddr, |
| ppc_hash_pte32_t *pte) |
| { |
| hwaddr pteg_off, pte_offset; |
| hwaddr hash; |
| uint32_t vsid, pgidx, ptem; |
| |
| vsid = sr & SR32_VSID; |
| pgidx = (eaddr & ~SEGMENT_MASK_256M) >> TARGET_PAGE_BITS; |
| hash = vsid ^ pgidx; |
| ptem = (vsid << 7) | (pgidx >> 10); |
| |
| /* Page address translation */ |
| qemu_log_mask(CPU_LOG_MMU, "htab_base " TARGET_FMT_plx |
| " htab_mask " TARGET_FMT_plx |
| " hash " TARGET_FMT_plx "\n", |
| ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu), hash); |
| |
| /* Primary PTEG lookup */ |
| qemu_log_mask(CPU_LOG_MMU, "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx |
| " vsid=%" PRIx32 " ptem=%" PRIx32 |
| " hash=" TARGET_FMT_plx "\n", |
| ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu), |
| vsid, ptem, hash); |
| pteg_off = get_pteg_offset32(cpu, hash); |
| pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 0, ptem, pte); |
| if (pte_offset == -1) { |
| /* Secondary PTEG lookup */ |
| qemu_log_mask(CPU_LOG_MMU, "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx |
| " vsid=%" PRIx32 " api=%" PRIx32 |
| " hash=" TARGET_FMT_plx "\n", ppc_hash32_hpt_base(cpu), |
| ppc_hash32_hpt_mask(cpu), vsid, ptem, ~hash); |
| pteg_off = get_pteg_offset32(cpu, ~hash); |
| pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 1, ptem, pte); |
| } |
| |
| return pte_offset; |
| } |
| |
| static hwaddr ppc_hash32_pte_raddr(target_ulong sr, ppc_hash_pte32_t pte, |
| target_ulong eaddr) |
| { |
| hwaddr rpn = pte.pte1 & HPTE32_R_RPN; |
| hwaddr mask = ~TARGET_PAGE_MASK; |
| |
| return (rpn & ~mask) | (eaddr & mask); |
| } |
| |
| static bool ppc_hash32_xlate(PowerPCCPU *cpu, vaddr eaddr, |
| MMUAccessType access_type, |
| hwaddr *raddrp, int *psizep, int *protp, |
| bool guest_visible) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| target_ulong sr; |
| hwaddr pte_offset; |
| ppc_hash_pte32_t pte; |
| int prot; |
| int need_prot; |
| hwaddr raddr; |
| |
| /* There are no hash32 large pages. */ |
| *psizep = TARGET_PAGE_BITS; |
| |
| /* 1. Handle real mode accesses */ |
| if (access_type == MMU_INST_FETCH ? !msr_ir : !msr_dr) { |
| /* Translation is off */ |
| *raddrp = eaddr; |
| *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return true; |
| } |
| |
| need_prot = prot_for_access_type(access_type); |
| |
| /* 2. Check Block Address Translation entries (BATs) */ |
| if (env->nb_BATs != 0) { |
| raddr = ppc_hash32_bat_lookup(cpu, eaddr, access_type, protp); |
| if (raddr != -1) { |
| if (need_prot & ~*protp) { |
| if (guest_visible) { |
| if (access_type == MMU_INST_FETCH) { |
| cs->exception_index = POWERPC_EXCP_ISI; |
| env->error_code = 0x08000000; |
| } else { |
| cs->exception_index = POWERPC_EXCP_DSI; |
| env->error_code = 0; |
| env->spr[SPR_DAR] = eaddr; |
| if (access_type == MMU_DATA_STORE) { |
| env->spr[SPR_DSISR] = 0x0a000000; |
| } else { |
| env->spr[SPR_DSISR] = 0x08000000; |
| } |
| } |
| } |
| return false; |
| } |
| *raddrp = raddr; |
| return true; |
| } |
| } |
| |
| /* 3. Look up the Segment Register */ |
| sr = env->sr[eaddr >> 28]; |
| |
| /* 4. Handle direct store segments */ |
| if (sr & SR32_T) { |
| return ppc_hash32_direct_store(cpu, sr, eaddr, access_type, |
| raddrp, protp, guest_visible); |
| } |
| |
| /* 5. Check for segment level no-execute violation */ |
| if (access_type == MMU_INST_FETCH && (sr & SR32_NX)) { |
| if (guest_visible) { |
| cs->exception_index = POWERPC_EXCP_ISI; |
| env->error_code = 0x10000000; |
| } |
| return false; |
| } |
| |
| /* 6. Locate the PTE in the hash table */ |
| pte_offset = ppc_hash32_htab_lookup(cpu, sr, eaddr, &pte); |
| if (pte_offset == -1) { |
| if (guest_visible) { |
| if (access_type == MMU_INST_FETCH) { |
| cs->exception_index = POWERPC_EXCP_ISI; |
| env->error_code = 0x40000000; |
| } else { |
| cs->exception_index = POWERPC_EXCP_DSI; |
| env->error_code = 0; |
| env->spr[SPR_DAR] = eaddr; |
| if (access_type == MMU_DATA_STORE) { |
| env->spr[SPR_DSISR] = 0x42000000; |
| } else { |
| env->spr[SPR_DSISR] = 0x40000000; |
| } |
| } |
| } |
| return false; |
| } |
| qemu_log_mask(CPU_LOG_MMU, |
| "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset); |
| |
| /* 7. Check access permissions */ |
| |
| prot = ppc_hash32_pte_prot(cpu, sr, pte); |
| |
| if (need_prot & ~prot) { |
| /* Access right violation */ |
| qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n"); |
| if (guest_visible) { |
| if (access_type == MMU_INST_FETCH) { |
| cs->exception_index = POWERPC_EXCP_ISI; |
| env->error_code = 0x08000000; |
| } else { |
| cs->exception_index = POWERPC_EXCP_DSI; |
| env->error_code = 0; |
| env->spr[SPR_DAR] = eaddr; |
| if (access_type == MMU_DATA_STORE) { |
| env->spr[SPR_DSISR] = 0x0a000000; |
| } else { |
| env->spr[SPR_DSISR] = 0x08000000; |
| } |
| } |
| } |
| return false; |
| } |
| |
| qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n"); |
| |
| /* 8. Update PTE referenced and changed bits if necessary */ |
| |
| if (!(pte.pte1 & HPTE32_R_R)) { |
| ppc_hash32_set_r(cpu, pte_offset, pte.pte1); |
| } |
| if (!(pte.pte1 & HPTE32_R_C)) { |
| if (access_type == MMU_DATA_STORE) { |
| ppc_hash32_set_c(cpu, pte_offset, pte.pte1); |
| } else { |
| /* |
| * Treat the page as read-only for now, so that a later write |
| * will pass through this function again to set the C bit |
| */ |
| prot &= ~PAGE_WRITE; |
| } |
| } |
| |
| /* 9. Determine the real address from the PTE */ |
| |
| *raddrp = ppc_hash32_pte_raddr(sr, pte, eaddr); |
| *protp = prot; |
| return true; |
| } |
| |
| int ppc_hash32_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, |
| MMUAccessType access_type, int mmu_idx) |
| { |
| CPUState *cs = CPU(cpu); |
| int page_size, prot; |
| hwaddr raddr; |
| |
| /* Translate eaddr to raddr (where raddr is addr qemu needs for access) */ |
| if (!ppc_hash32_xlate(cpu, eaddr, access_type, &raddr, |
| &page_size, &prot, true)) { |
| return 1; |
| } |
| |
| tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, |
| prot, mmu_idx, 1UL << page_size); |
| return 0; |
| } |
| |
| hwaddr ppc_hash32_get_phys_page_debug(PowerPCCPU *cpu, target_ulong eaddr) |
| { |
| int psize, prot; |
| hwaddr raddr; |
| |
| if (!ppc_hash32_xlate(cpu, eaddr, MMU_DATA_LOAD, &raddr, |
| &psize, &prot, false)) { |
| return -1; |
| } |
| |
| return raddr & TARGET_PAGE_MASK; |
| } |